
1/26/08

1

Kinetic BV Hierarchies
and Collision Detection

Gabriel Zachmann
Clausthal University, Germany
zach@tu-clausthal.de

Bonn, 25. January 2008

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Bounding Volume Hierarchies

 BVHs are standard DS for collision detection …

 … but not just for collision detection!

 Can be applied to ray-tracing, occlusion culling,
etc.

 Pre-processed hierarchy becomes invalid
when object deforms

→ BVH must be rebuilt or updated after
deformations

Intro

1/26/08

2

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Brute Force Update and Variants

 Problems of Brute-Force Updates:

 Many update operations

 No use of temporal coherence

 Other approaches:

 Hybrid updates [van den Bergen, 1998]

 In!ation and lazy updates of the BVs [Mezger et al. 2003]

 Restriction of deformation schemes [James and Pai, 2004]

 Intrinsic collision test on the GPU [Wong and Baciu 2005]

 Chromatic decompositions [Govindaraju et al. 2005]

 BVH reconstruction [Saarbrücken, 2006]

Intro

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Our Approach

 Observation:

 Motion in the physical world is normally continuous

 Changes in the combinatorial structure of the BVHs occur only at
discrete time points

We store only the combinatorial structure of the BVH and use an
event-based approach for updating (kinetization)

Kinetic BVHs

1/26/08

3

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Kinetic Toy Example

Kinetic BVHs

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Advantages

 Fewer update operations

 Valid BVHs at every point in time

 Independent of query sampling frequency

 Can handle all kinds of objects

 polygon soups (point clouds, and NURBS models)

 Can handle insertions/deletions during run-time

 Can handle all kinds of animated deformations

 Only a !ightplan is required for every vertex

 These !ightplans may change during simulation

Kinetic BVHs

1/26/08

4

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Recap: Kinetic Data Structures

 KDS are a framework for designing and analyzing algorithms for
objects in motion [Basch et al. 1997]

 KDS framework leads to event-based algorithms that "sample"
the state of parts of a system only as often as necessary for a
special task (e.g. a bounding box)

Kinetic BVHs

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

KDS terminology

 The task is called the attribute

 A KDS consists of set of certi"cates

 Certi"cate failures are called events → event queue

 If the attribute changes at the time of an event, the event is called
external, otherwise internal

Kinetic BVHs

1/26/08

5

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Quality of a KDS

 A KDS is compact, if it requires only little space

 Space = number of certi"cates

 Little = should not exceed static data structure by "too much"

 A KDS is responsive, if we can update it quickly in case of a
certi"cate failure

 Depends on number of certi"cates

 Quickly = e.g. O(log(number of certi"cates))

 A KDS is local, if one object is not involved in too many events
 Depends on number of certi"cates

 Not too many = e.g. O(log(number of certi"cates))

 A KDS is ef"cient, if the ratio of internal events to external events
is reasonable
 Desirable is: O(1) or less

Kinetic BVHs

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Kinetic AABB Tree

 Kinetization of the AABB tree

 Pre-processing: Build the tree by any algorithm suitable for static
AABB trees

 For a theoretical analysis, it is only required that the height of the BVH
is logarithmic

 Store with every node the indices of those points that determine
the BV (the "realizing points")

 Initialize the event queue

Kinetic BVHs

1/26/08

6

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

The Events

 Leaf Event:

 Inner node event:

 Is determined by only 2 points of
its 2 children

 Flightplan Update Event

Kinetic BVHs

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

The Simulation Loop

while simulation runs

 determine time t of next frame

 e ← min event in event queue

 while e.timestamp < t

 process event e

 e ← min event in event queue

 check for collisions (or cast ray, or …)

 render scene

Kinetic BVHs

1/26/08

7

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Event Handling at Run-Time

 Leaf Events:

 At the bottom of the AABB:

 Propagation through the tree:

Kinetic BVHs

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Analysis

 Theorem 1:
Given a 2-manifold mesh with n vertices.
The kinetic AABB tree is compact (num. certi"cates = O(n)),
local (O(log n)), responsive (one event = O(log n)) and
ef"cient.
Furthermore, the kinetic AABB tree is a valid BVH at every
point in time.

 Theorem 2:
Given n vertices, we assume that each pair
of !ightplans intersect at most s times.
Then, the total number of events is in nearly O(n log n).

 Remark: this bound is independent of the query frequency.

Kinetic BVHs

1/26/08

8

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

The Kinetic Boxtree

 Problem: the kinetic AABB tree needs up to 6 events for every BV

 Idea: a kinetic BoxTree

 A.k.a.: bounding interval hierarchy (BIH), SKD tree

 Property: combination of k-d tree and AABB

 Advantage: uses less memory than the kinetic AABB tree

 Only 1 "splitting plane" per BV → only 1 event per BV

AABB tree BoxTree

Kinetic BVHs

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

1

2
3

5

4

6

11

7

9

10

8

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11

1, 2, 5 3, 4, 6

1, 2 5

1 2

3, 4 6

3 4

10, 11 7, 8, 9

10 11 7 8, 9

8 9

Event Computation

 1D example:

Kinetic BVHs

1/26/08

9

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

split
x

x

x

y

y

split
x

y

y

y

y

 In 3D:

 Analysis:
The kinetic BoxTree is compact, local and ef"cient.
But not responsive.

Kinetic BVHs

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Test Scenes

Kinetic BVHs

1/26/08

10

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Results

Kinetic BVHs

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Total Time (incl. Collision Detection Time)

Kinetic BVHs

1/26/08

11

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Kinetic Separation Lists for Continuous Coll.Det.

 Continuous collision detection = determine earliest time of contact

 Conventional approach: swept volumes

 Problems:

 Same as for static BVH updates

 Swept volumes are too large

Kinetic Continuous Coll.Det.

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

 Idea:

1. Maintain the list of nodes of the bounding-volume test tree (BVTT)
where the simultaneous traversal stopped

2. Kinetize this list → "kinetic separation list"

 Toy example:

 Advantages:

 Continuous collision detection
is reduced to the discrete problem
of determining changes in the separation list

 Collisions are automatically reported in the correct order

 Inter-object and self-collision detection

Kinetic Continuous Coll.Det.

1/26/08

12

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Initialization of the Kinetic Separation List (KSL)

 Travere the 2 BVHs of the 2 objects as usual

 For self collision detection: Test object against itself

 Compute separation list and initial events:

 Separation list = set of pairs of nodes

 Pair of nodes ∈ separation list ⇔

- BVs have been reached by traversal AND

- BVs do not overlap OR nodes are leaves

 Example:

Kinetic Continuous Coll.Det.

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

The Events

 Pair of BVs is in the KSL, will overlap
at time t:

 Pair of parent BVs does overlap, will
cease to overlap at time t:

Kinetic Continuous Coll.Det.

1/26/08

13

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Event Handling During Run-Time

 BVs begin to overlap at time t:

Kinetic Continuous Coll.Det.

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

 Parent BVs will cease to overlap at time t:

Kinetic Continuous Coll.Det.

1/26/08

14

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

 Topology of BV changes, i.e., extent is realized by other vertices:

Kinetic Continuous Coll.Det.

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Analysis

 Worst case:

 Theorem 1:
In the worst case, our kinetic separation list is local (O(n)),
responsive (O(1)), ef"cient, and, arguably, compact (O(n2)).

 Theoream 2:
In the average case, our kinetic separation list is local (O(1)),
responsive (O(1)), ef"cient, and compact (O(n)).

Kinetic Continuous Coll.Det.

1/26/08

15

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Results

 Time for
updates and
collision check:

Kinetic Continuous Coll.Det.

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

 Self Collision:

 Two animated
objs:

Kinetic Continuous Coll.Det.

1/26/08

16

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Kinetic Ray Tracing of Animated Scenes

 Work in Progress

 Current challenge: animated scenes

 Current approaches: re-build acceleration data structure

 kd-tree, grid

Kinetic Ray Tracing

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Overview of Our Approach

 Idea: Kinetic Grid of Frusta

 Maintain sorted list of polygons
for each pixel frustum

 Events:

- swap pair of polygons

- delete / insert polygon

 Problem: Ordering polygons in a frustum (e.g. by kinetic ray
casting) leads to high-order polynomials and "ugly" events

Track intersection points of polygons with the frusta

 Two Tasks:

 Event-based polygon tracking

 Kinetic sorting within frusta

Kinetic Ray Tracing

1/26/08

17

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Event-Based Polygon-Tracking

Kinetic Ray Tracing

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Kinetic Sorting within a Frustum

Kinetic Ray Tracing

1/26/08

18

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Advantages

 Independent of rendering frequency

 E.g., rendering in slow motion without extra cost for updates or
intersection tests

 Antialiasing for free

 No complicated mix of different data structures for dynamic and
static objects

 Static objects simply emit no events

 Can handle insertions/deletions during run-time

 Can handle all kinds of animated deformations

 Only a !ightplan is required for every vertex

 These !ightplans may change during simulation

Kinetic Ray Tracing

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Analysis

 Assumptions:

 Num intersection between polygons and frusta is bounded

 Num intersection of !ightplans and frusta borders is bounded

 Event-based polygon tracking:

 Compactness and total number of events: O(n)

 Locality and Responsiveness: O(1)

 Kinetic sorting within frusta:

 Compactness: O(n)

 Locality and Responsiveness:
O(log n) (kinetic tournament) or O(1) (kinetic heap)

 Num. events: O(n log n) (kin. tournament) or O(n log² n) (kin. heap)

Kinetic Ray Tracing

1/26/08

19

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Conclusions

 Novel, event-based data structures (KDS) for

 Updating BVHs

 Continuous collision detection and self-collision detection

 Ray tracing

 BVH update is in O(n log n)

 Dito for Kinetic Grid of Frusta

 Uncoupling of data structure updating from query frequency

 Computational effort for coll.det. independent of num. in-betweens

 Dito for ray casting of primary rays

 Coll. det. is up to 50 times faster than swept volume approach in
practically relevant scenarios

Conclusion

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Future Work

 Use our kinetic data structures also for other kinds of primitives
like NURBS

 Extend to scenarios with unknown !ightplans

 Kinetic Light-buffers (for shadow rays)

 Improve performance of kinetic sorting within frusta by using
kinetic heaters or kinetic hangers

 Integrate other kinetic data structures (like the kinetic AABB-Tree)
for secondary rays

 Improve quality of anti-aliasing

 Parallelization

Conclusion

