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Abstract

In this work, we investigate various specification languages and their relation
to Casl, the recently developed Common Algebraic Specification Language. In
particular, we consider the languages Larch, OBJ3 and functional CafeOBJ, ACT
ONE, ASF, and HEP-theories, as well as various sublanguages of Casl. All these
languages are translated to an appropriate sublanguage of Casl.

The translation mainly concerns the level of specification in-the-small: the logics
underlying the languages are formalized as institutions, and representations among
the institutions are developed. However, it is also considered how these translations
interact with specification in-the-large.

Thus, we obtain on the one hand translations of any of the abovementioned
specification languages to an appropriate sublanguage of Casl. This allows us to
take libraries and case studies that have been developed for other languages and
re-use them in Casl.

On the other hand, we set up institution representations going from the Casl

institution (and some of its subinstitutions) to simpler subinstitutions. Given a theo-
rem proving tool for such a simpler subinstitution, with the help of a representation,
it can also be used for a more complex institution. Thus, first-order theorem provers
and conditional term rewriting tools become usable for Casl.
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1 Introduction

Casl is a specification language that has been designed by CoFI, the interna-
tional Common Framework Initiative for algebraic specification and develop-
ment [65,21], with the goal to subsume many previous algebraic specification
languages and to provide a standard language for the specification and de-
velopment of modular software systems. The design of Casl is explained in
another paper in this volume [4], see also [22]. Actually, Casl is a central lan-
guage in a whole family of languages. Casl concentrates on the specification
of abstract data types and (first-order) functional requirements, while some
(currently still prototypical) extensions of Casl also consider the specification
of higher-order functions [60,72] and of reactive [9,68,69] and object-oriented
[3,43] behaviour. Several restrictions of Casl to sublanguages make it possible
to use specialized tool support.
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The aim of the present paper is to substantiate the claim that Casl subsumes
many existing specification languages. We will consider the relation of both
specification languages (Larch [40], OBJ3 and functional CafeOBJ [31,26],
ACT ONE [20], ASF [11], HEP-theories [70]) and common tool-supported
logics (e.g. first-order logic, conditional equational logic) to Casl. As a first
step, we deal with specification in-the-small, i.e. unstructured specifications
of individual software modules, formulated in a specific logic. We also study
how these translations interact with the Casl concepts of specification in-
the-large (although we do not study translations among different concepts of
specification in-the-large). A clean separation of specification in-the-small and
specification in-the-large is possible, because in Casl, both levels are treated
separately: the semantics of Casl in-the-large is orthogonal to the underlying
logic that is used for specification in-the-small.

For any practically usable specification language, there is a distinction between
underlying mathematical concepts on the one hand, and language constructs
on the other hand. Typically, the language constructs provide a concise and
user-friendly syntax for writing specifications, and the semantics interprets
the constructs in terms of the concepts. At the level of specification in-the-
small, the essential mathematical concept is that of the logic underlying the
language.

Here, we mainly address the problem of relating the underlying logics of the
specification languages. To this end, we formalize the logics as institutions in
the sense of Goguen and Burstall [33]. For some specification languages, the
recognition of the underlying logic is not obvious, and the formalization as
an institution is a non-trivial task. Once this has been done, the institutions
can be related using institution representations [47,74]. In some cases, there is
an obvious subinstitution of the Casl institution that closely corresponds to
the institution underlying the specification language in question. We therefore
single out a number of subinstitutions of Casl and develop a uniform naming
scheme for them. In other cases, the relation is not so obvious, and there are
several good choices for the institution representation.

We also address the translation of (subinstitutions of) Casl to other, simpler
subinstitutions. Typically, the target of such a translation will be an institution
with good tool support, and the translation will have the property that the tool
support can be lifted against the translation (this has been called “borrowing”
[18]). We also present some new results concerning such lifting properties.

The level of languages constructs is not discussed formally in this paper. This
would require detailed language definitions, which would be too lengthy to
be presented here (apart from the difficulty that not all of the languages
are precisely defined, e.g. w.r.t. their static semantic conditions). Rather, we
informally discuss how the institution representations lift to translations of
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the corresponding language constructs. In many cases, this is straightforward.
But there remain some situations where it is not advisable to first expand a
construct into a theory of the underlying institution and then translate this
theory. Instead, it is better to use a more direct translation of the constructs.

The structure of this paper is as follows: In Section 2, we recall the notions
of institution and institution representation. We study various properties of
institution representations that lead to a good interaction of flat and struc-
tured specifications with institution representations. In this context, we also
develop some new results concerning structured specifications. In Section 3, we
introduce the institution underlying Casl and a number of its subinstitutions,
for which we develop a uniform naming scheme. Section 4 discusses represen-
tations of Casl in some of its subinstitutions such as first-order logic, and
also representations among subinstitutions of Casl. We obtain three graphs
of institutions and representations: one at the first-order level without sort
generation constraints, one at the first-order level with sort generation con-
straints, and one at the positive conditional level. The graphs contain different
kinds of edges corresponding to the different properties of institution repre-
sentations introduced in Section 2. By combining these graphs with the results
about interaction of institution representations with flat and structured spec-
ifications, we obtain a number of theorems about re-use of theorem provers
and about the existence of free objects (liberality). In particular, we show that
a theorem prover for first-order logic plus induction suffices to prove theorems
within the CASL institution, even at the level of structured specifications
including certain free specifications. Further, conditional term rewriting and
paramodulation can be applied to the positive conditional fragment of CASL.
Moreover, we show the latter to be liberal. Next, sections 6, 7, 8, 9, 10 are
devoted to the definition and translation of the institutions underlying Larch,
ACT ONE, ASF, HEP-theories, and OBJ3 and functional CafeOBJ, respec-
tively. In each case, a separate subsection is devoted to an informal discussion
of the level of language constructs. Section 11 contains some general remarks
about boolean-valued functions versus predicates and about the empty carrier
problem. Throughout the paper, only little knowledge about category theory
is assumed, except from some parts of Section 2. These parts rely on some
purely category theoretic results, which we have relegated to the appendix.

2 Institutions and Institution Representations

In this section, we introduce the notion of institution and different types of
institution representations known from the literature. We summarize some
known properties of these and prove new results concerning their interaction
with specification in-the-large.
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2.1 Institutions

A specification formalism is usually based on some notion of signature, model,
sentence and satisfaction. These are the usual ingredients of Barwise’s abstract
model theory [7]. Contrary to Barwise’s notions, institutions of Goguen and
Burstall [33] do not assume that signatures are algebraic signatures and thus
cover a much larger variety of logics. Indeed, the theory of institutions assumes
nothing about signatures except that they form a class and that there are
signature morphisms, which can be composed in some way. This amounts to
stating that signatures form a category.

There is also nothing special assumed about the form of the sentences and mod-
els. Given a signature Σ, the Σ-sentences form just a set, while the Σ-models
form a category (taking into account that there may be model morphisms).

Signature morphisms lead to translations of sentences and of models (thus,
the assignments of sentences and of models to signatures are functors). There
is a contravariance between the sentence and the model translation: sentences
are translated along signature morphisms, while models are translated against
signature morphisms.

Informally, this can be motivated as follows. Forget for a moment the above
generality and think of signatures as of sets of certain symbols. Think of
sentences over a signature Σ as derivation trees over some grammar, decorated
at the nodes with the symbols from Σ. Then sentence translation along a
signature morphism σ: Σ −→ Σ′ keeps the structure of the derivation tree,
but replaces the symbols decorating the nodes, using σ. This explains why
sentences are translated along signature morphisms.

Concerning models over a signature: they have to interpret the symbols from
the signature somehow. Thus, a Σ-model can be seen as a map m going from
the symbols of Σ to some semantical domain. Now given a Σ′-model m′ and
a signature morphism σ: Σ−→ Σ′, by composing the interpretation map m′

with σ we get a new interpretation map, let us call it m′|σ, which is a Σ-
model! (m′|σ is also called the σ-reduct of m′.) This explains why models are
translated against signature morphisms.

Of course, these explanations just have motivating purpose: there can be insti-
tutions with a completely different view of signatures, models and sentences.
However, they shed some light on how many typical institutions work. 2

Finally, institutions have a satisfaction relation between models and sentences,
which has to be invariant under the simultaneous translation of sentences and

2 Indeed, the above explanation has been formalized as so-called parchments [55].
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models w.r.t. a given signature morphism.

This leads to the following formal definition. Let CAT be the category of
categories and functors. 3

Definition 2.1 An institution I = (SignI ,SenI ,ModI , |=I) consists of

• a category SignI of signatures,
• a functor SenI : SignI −→Set giving, for each signature Σ, the set of sen-

tences SenI(Σ), and for each signature morphism σ: Σ−→Σ′, the sentence
translation map SenI(σ): SenI(Σ)−→SenI(Σ′), where often SenI(σ)(ϕ) is
written as σ(ϕ),
• a functor ModI : (SignI)op−→CAT giving, for each signature Σ, the cat-

egory of models ModI(Σ), and for each signature morphism σ: Σ−→Σ′, the
reduct functor ModI(σ): ModI(Σ′)−→ModI(Σ), where often ModI(σ)(M ′)
is written as M ′|σ,
• a satisfaction relation |=I

Σ ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ SignI ,

such that for each σ: Σ −→ Σ′ in SignI the following satisfaction condition
holds:

M ′ |=I
Σ′ σ(ϕ)⇔M ′|σ |=I

Σ ϕ

for each M ′ ∈ModI(Σ′) and ϕ ∈ SenI(Σ). 2

We will omit the index I when it is clear from the context.

We now informally present some examples. They will be formally introduced
in Section 3.

Example 2.2 The institution Eq= of equational logic. Signatures are many-
sorted algebraic signatures consisting of a set of sorts and a set of function
symbols (where each function symbol has a string of argument sorts and a
result sort). Signature morphisms map sorts and function symbols in a com-
patible way. Models are just many-sorted algebras, i.e. each sort is interpreted
as a carrier set, and each function symbol is interpreted as a function be-
tween the carrier sets specified by the argument and result sorts. Reducts are
constructed as sketched above. Sentences are equations between many-sorted
terms, and sentence translation means replacement of the translated symbols.
Finally, satisfaction is the usual satisfaction of an equation in an algebra. 2

Example 2.3 The institution FOL= of many-sorted first-order logic with
equality. Signatures are many-sorted first-order signatures, i.e. many-sorted
algebraic signatures enriched with predicate symbols. Models are many-sorted
first-order structures. Sentences are first-order formulas, and again sentence

3 Strictly speaking, CAT is not a category but only a so-called quasicategory, which
is a category that lives in a higher set-theoretic universe [42].
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translation means replacement of the translated symbols. Satisfaction is the
usual satisfaction of a first-order sentence in a first-order structure. 2

Example 2.4 The institution PFOL= of partial first-order logic with equal-
ity. Signatures are many-sorted first-order signatures enriched by partial func-
tion symbols. Models are many-sorted partial first-order structures. Sentences
are first-order formulas containing existential equations, strong equations, de-
finedness statements and predicate applications as atomic formulas. Satisfac-
tion is defined using total valuations of variables, while valuation of terms is
partial due to the existence of partial functions. An existential equation holds
if both sides are defined and equal, whereas a strong equation also holds if
both sides are undefined. A definedness statement holds if the term is defined.
A predicate application holds if the terms contained in it are defined, and the
corresponding tuple of values is in the interpretation of the predicate. This is
extended to first-order formulas as usual. 2

Within an arbitrary but fixed institution, we can easily define the usual notion
of logical consequence or semantical entailment: Given a set of Σ-sentences Γ
and a Σ-sentence ϕ, we say

Γ |=Σ ϕ (ϕ follows from Γ)

iff for all Σ-models M , we have

M |=Σ Γ implies M |=Σ ϕ.

Here, M |=Σ Γ means that M |=Σ ψ for each ψ ∈ Γ.

We will also freely use other standard logical terminology when working within
an arbitrary but fixed institution.

2.2 Specifications Over an Arbitrary Institution

This paper mainly concentrates on translating specification languages at the
level of specification in-the-small. However, when translating the underlying
logics of specification languages, the question arises how this interacts with
specification in-the-large, for a given fixed set of structuring operations for
specification in-the-large. Therefore, in this section we recall a popular set of
institution-independent structuring operations, which seems to be quite uni-
versal and which can also be seen as a kernel language for the Casl structur-
ing constructs. The question how this would relate to other sets of structuring
operations is beyond the scope of the present paper.

In the sequel, let us fix an arbitrary institution I = (Sign,Sen,Mod, |=).
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The simplest specifications over an arbitrary institution are just theories T =
〈Σ,Γ〉, where Σ ∈ Sign and Γ ⊆ Sen(Σ) (we set Sig(T ) = Σ and Ax(T ) =
Γ). Theory morphisms σ: 〈Σ,Γ〉 −→ 〈Σ′,Γ′〉 are those signature morphisms
σ: Σ −→ Σ′ for which Γ′ |=Σ′ σ(Γ), that is, axioms are mapped to logical
consequences. By inheriting composition and identities from Sign, we obtain
a category Th of theories. It is easy to extend Sen and Mod to start from
Th by putting Sen(〈Σ,Γ〉) = Sen(Σ) and letting Mod(〈Σ,Γ〉) be the full
subcategory of Mod(Σ) induced by the class of those models M satisfying Γ.
The category Pres of presentations (also called flat specifications) is just the
full subcategory of theories having finite sets of axioms.

Concerning more complex specifications, in [71], the following kernel language
for specifications in an arbitrary institution has been proposed. Simultaneously
with the notion of specification, we define functions Sig and Mod yielding
the signature and the model class of a specification.

presentations: For any signature Σ ∈ |Sign| and finite set Γ ⊆ Sen(Σ) of
Σ-sentences, the presentation 〈Σ,Γ〉 is a specification with:

Sig(〈Σ,Γ〉) := Σ
Mod(〈Σ,Γ〉) := {M ∈Mod(Σ) |M |= Γ}

union: For any signature Σ ∈ |Sign|, given Σ-specifications SP1 and SP2,
their union SP1 ∪ SP2 is a specification with:

Sig(SP1 ∪ SP2) := Σ
Mod(SP1 ∪ SP2) := Mod(SP1) ∩Mod(SP2)

translation: For any signature morphism σ: Σ −→ Σ′ and Σ-specification
SP , translate SP by σ is a specification with:

Sig(translate SP by σ) := Σ′

Mod(translate SP by σ) := {M ′ ∈Mod(Σ′) |M ′
σ ∈Mod(SP)}

hiding : For any signature morphism σ: Σ −→ Σ′ and Σ′-specification SP ′,
derive from SP ′ by σ is a specification with:

Sig(derive from SP ′ by σ) := Σ
Mod(derive from SP ′ by σ) := {M ′

σ |M ′ ∈Mod(SP ′)}

The above specification-building operations, although extremely simple, al-
ready provide flexible mechanisms for expressing basic ways of putting spec-
ifications together and thus building specifications in a structured manner.
Hence, they can be considered to be a kernel language for structured speci-
fication. The specification language Casl provides more sophisticated struc-
turing constructs, but it is possible to translate the Casl constructs (except
the free construct, which will be examined in the next section) to the above
kernel language, see [59].

A specification SP is said to be consistent, if Mod(SP ) is not empty.
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Given two structured specifications SP1 and SP2, a specification morphism
σ:SP1 −→ SP2 is a signature morphism σ: Sig(SP1)−→ Sig(SP2) such that
M |σ ∈ Mod(SP1) for each M ∈ Mod(SP2). By the satisfaction condition,
each theory morphism between presentations also is a specification morphism.

A structured Σ-specification SP2 refines a structured Σ-specification SP1

(written SP1
/o/o/o /o/o/o +3 SP2), if Mod(SP2) ⊆Mod(SP1).

A specification not containing derive is called flattenable. This is because it
is easy to normalize flattenable specifications into flat specifications [10]:

Definition 2.5 Given a flattenable specification SP over an institution I,
its normal form NF (SP ) is inductively defined as follows:

• NF (〈Σ,Γ〉) := 〈Σ,Γ〉
• If SP = SP1 ∪ SP2, let NF (SPi) = 〈Σ,Γi〉 (i = 1, 2). Then NF (SP ) :=
〈Σ,Γ1 ∪ Γ2〉.
• If SP = translate SP1 by σ: Σ1−→Σ, let NF (SP1) = 〈Σ1,Γ1〉. Then
NF (SP ) := 〈Σ, σ(Γ1)〉. 2

Fact 2.6 If SP is a flattenable specification, then

Mod(SP ) = Mod(NF (SP )). 2

To be able to introduce normal forms of non-flattenable specifications, we need
the notion of weak amalgamation:

Definition 2.7 An institution I = (Sign,Sen,Mod, |=) admits weak amal-
gamation, if Sign has pushouts and, moreover, given any pushout

Σ
σ1

~~}}}}}}}}
σ2

  BBBBBBBB

Σ1

θ2   AAAAAAAA Σ2

θ1~~}}}}}}}}

Σ′

any Σ1-model M1 and any Σ2-model M2 with M1|σ1 = M2|σ2 , there exists
some Σ′-model M ′ with M ′|θ2 = M1 and M ′|θ1 = M2. 2

It is well known that in institutions with weak amalgamation, there is a normal
form for specifications [29,10,12], having the format

derive from 〈Σ,Γ〉 by σ.

Since the construction of a normal form involves pushouts and these are only
determined up to isomorphism, also the normal form is only determined up to
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signature isomorphism. We therefore define a relation “SP ′ is a normal form
of SP”.

Definition 2.8 The relation “is a normal form of” is the least relation sat-
isfying:

• derive from 〈Σ,Γ〉 by id is a normal form of 〈Σ,Γ〉.
• If SP = SP1 ∪ SP2, let derive from 〈Σi,Γi〉 by σi be a normal form of
SPi (i = 1, 2), and let

Σ
σ1

~~}}}}}}}}
σ2

  BBBBBBBB

Σ1

θ2   AAAAAAAA Σ2

θ1~~}}}}}}}}

Σ′

be a pushout. Then derive from 〈Σ′, θ2(Γ1) ∪ θ1(Γ2)〉 by θ2 ◦ σ1 is a nor-
mal form of SP .
• If SP = translate SP ′ by σ1: Σ−→Σ1, let derive from 〈Σ2,Γ2〉 by σ2 be

a normal form of SP ′, and take the pushout of σ1 and σ2 as above. Then
derive from 〈Σ′, θ1(Γ2)〉 by θ2 is a normal form of SP .
• If SP = derive from SP ′ by σ1: Σ−→Σ1, let derive from 〈Σ2,Γ2〉 by σ2

be a normal form of SP ′. Then derive from 〈Σ2,Γ2〉 by σ2 ◦ σ1 is a normal
form of SP . 2

Fact 2.9 Assume that we work with specifications over an institution with
weak amalgamation. Let SP ′ be a normal form of SP . Then

Mod(SP ) = Mod(SP ′). 2

2.3 Free extensions and liberality

Another institution independent structuring construct is that of free exten-
sions. We treat it separately because in many structuring languages, it is not
included, and moreover, it is not preserved so well along institution represen-
tations (see Section 2.4).

Free extensions can be defined w.r.t. an arbitrary functor: Given categories
A and B and a functor G: B−→A, an object B ∈ B is called G-free (with
unit ηA:A−→G(B)) over A ∈ A, if for any object B′ ∈ B and any morphism
h:A−→G(B′), there is a unique morphism h#:B −→B′ such that G(h#) ◦
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ηA = h.

A
ηA //

h ""DDDDDDDDD G(B)

G(h#)zzuuuuuuuuu

G(B′)

In this case, the unit ηA is called a G-universal arrow. We will mostly omit
the specification of the unit. An object B ∈ B is called persistently G-free, if
it is G-free over some A ∈ A with the unit being an isomorphism. It is called
strongly persistently G-free if it is G-free with unit id over G(B) (id denotes
the identity).

Proposition 2.10 Given a functor G: B−→A, an object B ∈ B is persis-
tently G-free if and only if it is strongly persistently G-free.

A
ηA //

ηA

!!CCCCCCCCC G(B)

G((f◦ηA)#)

��

G(B)

id

::uuuuuuuuu

f

$$IIIIIIIII

G(B′)

Proof. The “if” direction is clear. For the “only if” direction, let ηA:A−→
G(B) be a G-universal isomorphism. If f :G(B) −→ G(B′) is a morphism,
(f ◦ ηA)# is the unique morphism g:B −→ B′ with id ◦ G(g) = f . Hence,
id:G(B)−→G(B) is G-universal as well. 2

We now extend the kernel language of the previous section as follows. For any
signature morphism σ: Σ −→ Σ′ and Σ′-specification SP ′, free SP ′ along σ
is a specification with:

Sig(free SP ′ along σ) = Σ′

Mod(free SP ′ along σ) = {M ′ ∈Mod(SP ′) |
M ′ is strongly persistently (Mod(σ): Mod(SP ′)−→Mod(Σ))-free }

These specifications are called data SP ′ over σ in [71]. Since the unit has
to be the identity, the freeness condition for M ′ means that for any model
N ′ ∈Mod(SP ′) and any model morphism h:M ′

σ−→N ′ σ, there is a unique

morphism h#:M ′−→N ′ such that (h#) σ = h. By Proposition 2.10, we can
equally use just persistent freeness instead of strongly persistent freeness.

Free extensions allow one to express certain inductive properties in a con-
cise way. For example, the transitive closure of an arbitrary relation can be
specified using the free construct in Casl as follows:

Example 2.11
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spec BinaryRelation =
sort Elem
pred ∼ : Elem × Elem

end

spec TransitiveClosure [BinaryRelation] =
free
{ pred ∼∗ : Elem × Elem
∀ x , y , z : Elem
• x ∼ y ⇒ x ∼∗ y
• x ∼∗ y ∧ y ∼∗ z ⇒ x ∼∗ z

}
end 2

The corresponding structured specification is constructed as follows: Let 〈Σ′,Γ′〉
be the presentation consisting of all sorts, predicates and axioms declared in
either of BinaryRelation and TransitiveClosure, and let Σ be the sig-
nature of BinaryRelation. Then as denotation of the above specification,
we get

free 〈Σ′,Γ′〉 along σ

where σ is the inclusion of Σ into Σ′.

Another use of the free construct is in the generation of datatypes. For exam-
ples, consider the specification of finite sets over arbitrary elements in Casl:

Example 2.12

spec GenerateFiniteSet [sort Elem] =
free
{ type FinSet [Elem] ::= {}

| { }(Elem)
| ∪ (FinSet [Elem]; FinSet [Elem])

op ∪ : FinSet [Elem]× FinSet [Elem]→ FinSet [Elem],
assoc, comm, idem,unit {}

}
end

This expands to the following:

spec GenerateFiniteSet [sort Elem] =
free
{ sort FinSet [Elem]

ops {} : FinSet [Elem];
{ } : Elem → FinSet [Elem];
∪ : FinSet [Elem]× FinSet [Elem]→ FinSet [Elem]

forall x , y , z : Elem
• x ∪ (y ∪ z ) = (x ∪ y) ∪ z

13



• x ∪ y = y ∪ x
• x ∪ x = x
• x ∪ {} = x

}
end

The question whether free models actually exist leads to the notion of liberality
[33]:

Definition 2.13 Given an institution I = (Sign,Sen,Mod, |=),

• a theory morphism σ:T −→T ′ is said to be liberal if, for each T -model M ,
there is a T ′-model M ′ that is Mod(σ)-free over M ; it is called strongly
persistently liberal if, moreover, M ′ is strongly persistently Mod(σ)-free;
• the institution I is called liberal if each of its theory morphisms is liberal;
• given a class M of theory morphisms in I, I is called M-liberal if each

theory morphism in M is liberal. 2

The notion of (strongly persistent) liberality can easily be extended from the-
ory morphisms to specification morphisms.

One could guess that in a liberal institution, free SP along σ is consistent
whenever SP is. However, this is not the case, as the following counterexample
shows:

Example 2.14 The institution Eq= of equational logic is known to be lib-
eral 4 (see [33] and Theorem 4.16 below). Let Σ consist of one sort s and one
constant c : s, let Σ′ be Σ plus one unary function f : s−→s, and let σ: Σ−→Σ′

be the inclusion. Clearly 〈Σ′, ∅〉 is consistent. However, free 〈Σ′, ∅〉 along σ
is inconsistent: any Σ-model is freely extended by adding an ω-chain

{ f(a), f(f(a)), f(f(f(a))), . . . }

over each of its elements a. Thus, a Σ′-model can never be free over its own
σ-reduct. 2

To show consistency of free SP along σ, we need strongly persistent liberal-
ity:

Proposition 2.15 If σ: 〈Σ, ∅〉−→〈Σ′,Γ′〉 is strongly persistently liberal and
〈Σ′,Γ′〉 is consistent, then also

free 〈Σ′,Γ′〉 along σ

4 One has to allow empty carrier sets or restrict oneself to strict theory morphisms
to get this result, see Section 11.2.
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is consistent.

Proof. Let M ′
1 ∈ Mod(〈Σ′,Γ′〉) by consistency, and let M ′ be Mod(σ)-

free over M ′
1|σ with M ′ also being strongly persistently Mod(σ)-free. Then

M ′ ∈Mod(free 〈Σ′,Γ′〉 along σ), and hence, free 〈Σ′,Γ′〉 along σ is consis-
tent. 2

For specifications containing free, it is not so easy to obtain a normal form.
This is because in general free does not commute with the other specification
building operations.

2.4 Institution Representations

In order to relate sublanguages of Casl, we relate their underlying institu-
tions. We therefore use the notion of institution representation (also called
simple map of institutions) [47,74]. The idea behind an institution representa-
tion is to encode an institution I within an institution J . A simple institution
representation from an institution I to an institution J consists of the following
components:

• a translation Φ of I-signatures to J-presentations. Given an I-signature
Σ, the task is to find a J-encoding Φ(Σ) of Σ in some way. In particular,
the model category of Φ(Σ) should approximate the model category of Σ
somehow. Consider, for example, the translation of PFOL= to FOL= (cf.
Examples 2.3 and 2.4). Here, a partial function symbol can be encoded by
a total function symbol, assuming that undefinedness is encoded by extra
error values in the models. Thus, we would also need definedness predicates
(one for each sort) which distinguish the “defined” values from the “unde-
fined” values. Now let us assume that our partial logic is strict. Then we
have to assume that in the encoding, the total functions return a “defined”
result only for “defined” arguments. This can be expressed by an axiom,
which should be included into Φ(Σ). This explains why Φ(Σ) should be a
presentation, and not just a signature.
• a translation α of I-sentences to J-sentences. The reason why the sentence

translation goes along with the signature translation is similar to the rea-
son why the sentence translation within an institution goes along with the
signature morphism. Namely, if a signature Σ in I is encoded by the presen-
tation Φ(Σ) in J , it is expected that each symbol in Σ is translated to some
corresponding symbol in Φ(Σ). Now if we assume that a Σ-sentence ϕ is a
derivation tree decorated with some symbols from Σ, the translation αΣ(ϕ)
just keeps the structure of the tree and translates the symbols according to
the correspondence of symbols in Σ and Φ(Σ). In the example above, αΣ

would just replace partial function symbols by total function symbols.
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• a translation β of J-models to I-models, giving the above mentioned re-
lation between Σ-models in I and Φ(Σ)-models in J . Here, we again have
the contravariance of the model translation, as in the definition of insti-
tution. For example, we can extract a Σ-model βΣ(M ′) with strict partial
functions out of a Φ(Σ)-model M ′ with total functions reflecting “defined”
values as sketched above: we just take as carriers of the partial model the
interpretations of the definedness predicates in the total model, while the to-
tal functions are restricted to these new carriers, yielding partial functions.
Often it happens that there is also a model translation γ in the opposite
direction. In the example, one would totalize a partial model by adding
one element to each carrier, representing “undefined”. However, while β
can be formalized as a natural transformation, γ is not always natural (see
[44] for a counterexample). But naturality of β is essential if we want to
translate structured specifications along the institution representation (see
Theorems 2.31, 2.35, 2.36, 2.43, 2.45, 2.49 and 2.51 below). This explains
the direction of the model translation.

We also have a condition analogous to the satisfaction condition: we require
that a translated model satisfies a sentence iff the original model satisfies the
translated sentence. This is called the representation condition.

More formally, given institutions I and J , a simple institution representation
[74,54] (also called simple map of institutions [47]) µ = (Φ, α, β): I −→ J
consists of

• a functor Φ: SignI−→PresJ 5 ,
• a natural transformation α: SenI−→SenJ ◦ Φ,
• a natural transformation β: ModJ ◦ Φop−→ModI

such that the following representation condition is satisfied for all Σ ∈ SignI ,
M ′ ∈ModJ(Φ(Σ)) and ϕ ∈ SenI(Σ):

M ′ |=J
Sig(Φ(Σ)) αΣ(ϕ)⇔ βΣ(M ′) |=I

Σ ϕ.

In more detail, this means that each signature Σ ∈ SignI is translated to a
presentation Φ(Σ) ∈ PresJ , and each signature morphism σ: Σ−→Σ′ ∈ SignI

is translated to a presentation morphism Φ(σ): Φ(Σ) −→ Φ(Σ′) ∈ PresJ .
Moreover, for each signature Σ ∈ SignI , we have a sentence translation map
αΣ: SenI(Σ)−→SenJ(Φ(Σ)) and a model translation functor βΣ : ModJ(Φ(Σ))
−→ModI(Σ). Naturality of α and β means that for any signature morphism

5 Meseguer [47] requires Φ: ThI −→ThJ , but since µ is simple, both formulations
are equivalent using Meseguer’s α-extension (except for the fact that we use pre-
sentations instead of theories).
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σ: Σ−→Σ′ ∈ SignI ,

SenI(Σ)
αΣ //

SenI(σ)

��

SenJ(Φ(Σ))

SenJ (Φ(σ))

��
SenI(Σ′)

αΣ′ //SenJ(Φ(Σ′))

and

ModI(Σ) ModJ(Φ(Σ))
βΣoo

ModI(Σ′)

ModI(σ)

OO

ModJ(Φ(Σ′))

ModJ (Φ(σ))

OO

βΣ′oo

commute.

We illustrate this definition with some informal examples. They will be for-
mally introduced in Section 4.

Example 2.16 There is a simple institution representation going from equa-
tional logic to first-order logic with equality. An algebraic signature is trans-
lated to a first-order signature by just taking the set of predicates to be empty.
Sentence translation is just inclusion of equations into first-order sentences. A
first-order model with empty set of predicates is translated by just considering
it as an algebra. 2

Example 2.17 Institution representations capture the encoding of a richer
institution into a poorer one, as the following example (that has already been
sketched above) shows: Define a simple institution representation going from
partial first-order logic with equality to first-order logic with equality as fol-
lows: A partial first-order signature is translated to a total one by encoding
each partial function symbol as a total one, plus a (new) unary predicate D
(“definedness”) and a (new) function symbol ⊥ (“undefined”) for each sort
(this means that ⊥ and D are heavily overloaded). Furthermore, we add ax-
ioms stating that D does not hold on ⊥, and that (encoded) total functions
preserve (“totality”) and reflect (“strictness”) D, while partial functions only
reflect D (and the holding of predicates implies D to hold on the arguments).
Sentence translation is done by replacing all partial function symbols by the
total functions symbols encoding them, replacing strong equations t = u by
(D(t) ∨ D(u)) ⇒ t = u, existence equations by conjunctions of the equation
and the definedness (using D) of one of the sides of the equation, replacing
definedness with D, and leaving predicate symbols as they are. For a given
total model of the translated signature, we just take as carriers of the partial
model the interpretations of the definedness predicates in the total model,
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while the total functions are restricted to these new carriers, yielding partial
functions. 2

Definition 2.18 Given a simple institution representation µ = (Φ, α, β): I−→
J , we can extend it to a translation µ̂ of structured specifications, extending
the definition in [75,12]:

• If SP is a Σ-specification of form 〈Σ,Γ〉, then

µ̂(SP ) = 〈Sig(Φ(Σ)),Ax(Φ(Σ)) ∪ αΣ(Γ)〉.

• If SP is a Σ-specification of form SP1 ∪ SP2, then

µ̂(SP ) = µ̂(SP1) ∪ µ̂(SP2).

• If SP is a Σ-specification of form translate SP ′ by σ: Σ−→Σ′, then

µ̂(SP ) = (translate µ̂(SP ′) by Φ(σ)) ∪ Φ(Σ′).

• If SP is a Σ-specification of form derive from SP ′ by σ, then

µ̂(SP ) = derive from µ̂(SP ′) by Φ(σ).

• If SP is a Σ-specification of form free SP ′ along σ, then

µ̂(SP ′) = free µ̂(SP ′) along Φ(σ).

2

Note that Φ(σ) as used above is a morphism between presentations, but as such
it is also a signature morphism. Further note that the axioms in Ax(Φ(Σ))
are added for presentations and also for translations, since the latter lead to
an extension of the signature (while union, derive and free do not extend
the signature). This will be crucial for a good interaction with institution
representations (Theorem 2.31).

We now come to the interaction of µ̂ with normal forms.

Proposition 2.19 Let µ = (Φ, α, β): I−→J be an institution representation
and SP a flattenable specification in I. Then

NF (µ̂(SP )) = µ̂(NF (SP )).

Proof. By induction over the structure of SP .

• SP = 〈Σ,Γ〉:
NF (µ̂(SP )) = µ̂(SP ) = µ̂(NF (SP )).
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• SP = SP1 ∪ SP2:
Let NF (SPi) = 〈Σ,Γi〉 (i = 1, 2). By induction hypothesis, NF (µ̂(SPi)) =
µ̂(NF (SPi)) = 〈Sig(Φ(Σ)),Ax(Φ(Σ))∪αΣ(Γi)〉. Therefore, NF (µ̂(SP )) =
〈Sig(Φ(Σ)),Ax(Φ(Σ)) ∪ αΣ(Γ1) ∪ αΣ(Γ2)〉. But this is µ̂(NF (SP )).

• SP = translate SP1 by σ: Σ1−→Σ:
LetNF (SP1) = 〈Σ1,Γ1〉, thenNF (SP ) = 〈Σ, σ(Γ1)〉. By induction hypoth-
esis, NF (µ̂(SP1)) = µ̂(NF (SP1)) = 〈Sig(Φ(Σ1)),Ax(Φ(Σ1)) ∪ αΣ1(Γ1)〉.
From this, we getNF (µ̂(SP )) = NF (translate µ̂(SP1) by Φ(σ) ∪ Φ(Σ)) =
〈Sig(Φ(Σ)),Φ(σ)(Ax(Φ(Σ1))∪αΣ1(Γ1))∪Ax(Φ(Σ))〉. Since Φ(σ)(Ax(Φ(Σ1))) ⊆
Ax(Φ(Σ)) and α is natural, this is equal to 〈Sig(Φ(Σ)), αΣ(σ(Γ1))∪Ax(Φ(Σ))〉.
But this is just µ̂(NF (SP )). 2

In order to extend this result to non-flattenable specifications, we need a
preparatory lemma:

Lemma 2.20 Given institutions I and J and a functor Φ: SignI−→PresJ

preserving pushouts and a pushout

Σ
σ1

~~}}}}}}}}
σ2

  BBBBBBBB

Σ1

θ2   AAAAAAAA Σ2

θ1~~}}}}}}}}

Σ′

in SignI , then

Sig(Φ(Σ))
Φ(σ1)

wwnnnnnnnnnnnn
Φ(σ2)

''PPPPPPPPPPPP

Sig(Φ(Σ1))

Φ(θ2) ''PPPPPPPPPPPP Sig(Φ(Σ2))

Φ(θ1)wwnnnnnnnnnnnn

Sig(Φ(Σ′))

is a pushout in SignJ , and

Ax(Φ(Σ′)) = Φ(θ2)(Ax(Φ(Σ1))) ∪ Φ(θ1)(Ax(Φ(Σ2))).

Proof. Follows from the construction of colimits of presentationss, see [27,33]. 2

We now generalize a result from [12] to the case of institution representations
that map signatures to theories (and not just signatures):

Proposition 2.21 Let I and J be two institutions having weak amalgama-
tion, and let µ = (Φ, α, β) be an institution representation such that Φ pre-
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serves pushouts. Furthermore, let SP be a specification not containing free.
Then we have:

If SP ′ is a normal form of SP , then µ̂(SP ′) is a normal form of µ̂(SP ).

Proof. By induction over the structure of SP . Since the proof very much re-
sembles the proof of Theorem 5.14 in [12], we only treat the case of translation
here.

If SP = translate SP0 by σ1: Σ−→Σ1, let derive from 〈Σ2,Γ2〉 by σ2 be a
normal form of SP0. Now let

Σ
σ1

~~}}}}}}}}
σ2

  BBBBBBBB

Σ1

θ2   AAAAAAAA Σ2

θ1~~}}}}}}}}

Σ′

be a pushout. Then SP ′ = derive from 〈Σ′, θ1(Γ2)〉 by θ2 is w.l.o.g. the nor-
mal form of SP , and µ̂(SP ′) is

derive from 〈Sig(Φ(Σ′)),Ax(Φ(Σ′)) ∪ αΣ′(θ1(Γ2))〉 by Φ(θ2).

By induction hypothesis, µ̂(derive from 〈Σ2,Γ2〉 by σ2) =

derive from 〈Sig(Φ(Σ2)),Ax(Φ(Σ2)) ∪ αΣ2(Γ2)〉 by Φ(σ2)

is a normal form of µ̂(SP0). By Lemma 2.20,

derive from
〈Sig(Φ(Σ′)),Φ(θ1)(Ax(Φ(Σ2)) ∪ αΣ2(Γ2)) ∪ Φ(θ2)(Ax(Φ(Σ1)))〉

by Φ(θ2)

is a normal form of (translate µ̂(SP0) by Φ(σ1)) ∪ Φ(Σ1) = µ̂(SP). Since
we have Φ(θ1)(αΣ2(Γ2)) = αΣ′(θ1(Γ2)) by naturality of α and Ax(Φ(Σ′)) =
Φ(θ2)(Ax(Φ(Σ1))) ∪ Φ(θ1)(Ax(Φ(Σ2))) by Lemma 2.20, this normal form is
just µ̂(SP ′). 2

Occasionally, we also need the notion of conjunctive institution representation.

Let Pfin: Set−→Set be the covariant finite powerset functor, mapping each
set to the set of its finite subsets, and each function f to the function taking
a finite subset to its image along f . Given institutions I and J , a conjunctive
institution representation [54] µ = (Φ, α, β): I−→J consists of

• a functor Φ: SignI−→PresJ ,
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• a natural transformation α: SenI−→Pfin ◦ SenJ ◦ Φ, and
• a natural transformation β: ModJ ◦ Φop−→ModI ,

such that the representation condition is satisfied for all Σ ∈ SignI , M ′ ∈
ModJ(Φ(Σ)) and ϕ ∈ SenI(Σ):

M ′ |=J
Sig(Φ(Σ)) αΣ(ϕ)⇔ βΣ(M ′) |=I

Σ ϕ.

It is also possible to combine the sentence-theoretic property of being con-
junctive with the other, model-theoretic properties of representations that we
are going to introduce in the following subsections.

2.4.1 Borrowing

An important use of institution representations is the re-use (also called bor-
rowing) of proof calculi and theorem provers.

Definition 2.22 Let µ = (Φ, α, β): I−→J be an institution representation
and SP a class of I-specifications. We say that µ admits borrowing of entail-
ment for SP, if for any Σ-specification SP ∈ SP and any Σ-sentence ϕ in I,
we have

SP |=I
Σ ϕ iff µ̂(SP ) |=J

Sig(Φ(Σ)) αΣ(ϕ).

Moreover, we say that µ admits borrowing of refinement for SP, if for any
Σ-specifications SP1, SP2 ∈ SP , we have

SP1
/o/o/o /o/o/o +3 SP2 iff µ̂(SP1) /o/o/o /o/o/o +3 µ̂(SP2). 2

The importance of this definition lies in the following: If we have a sound
proof calculus for entailment in J , and if we have an institution representa-
tion µ: I −→ J admitting borrowing of entailment for SP, we can use the
proof calculus also for proving entailment concerning I-specifications in SP:
we just have to translate our proof goals using µ̂ and α. If, moreover, the
proof calculus is complete for proving entailment in J , then also its re-use for
proving entailment in I is complete. A similar remark holds for proof calculi
for refinement.

Since
SP |=Σ ϕ iff 〈Σ, {ϕ}〉 /o/o/o /o/o/o +3 SP,

µ admits borrowing of entailment for SP if µ admits borrowing of refinement
for SP (provided that SP contains all specifications of form 〈Σ, {ϕ}〉).

In the next subsections, we will study conditions under which an institution
representation admits borrowing. We therefore introduce various properties of
institution representations. A first property is the model expansion property:
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Definition 2.23 A simple institution representation (Φ, α, β) admits model
expansion if β is pointwise surjective on objects (i.e., each βΣ is surjective on
objects). 2

Example 2.24 The institution representations from Examples 2.16 and 2.17
admit model expansion. For the former one, this is trivial. For the latter
one, any partial model can be completed to a total model by adding one
element to each carrier (as interpretation of ⊥), representing “undefined”,
which is a fixpoint of all functions, while predicates do not hold on it. Then,
this one-point completion just generates the original model via the model
translation. 2

Proposition 2.25 Let µ = (Φ, α, β): I−→J be an institution representation
and SP a class of I-specifications.

(1) Assume that for each SP ∈ SP , ModI(SP ) = βSig(SP )(ModJ(µ̂(SP ))) 6 .
Then µ admits borrowing of entailment for SP.

(2) Assume that µ admits model expansion and that for each SP ∈ SP ,
β−1

Sig(SP )(ModI(SP )) = ModJ(µ̂(SP )) 7 . Then µ admits borrowing of
entailment and of refinement for SP.

(3) The assumption in (1) can be weakened to βSig(SP )(ModJ(µ̂(SP ))) ⊆
ModI(SP ), if additionally the simultaneous restriction and corestriction
βSig(SP ): ModJ(µ̂(SP ))−→ModI(SP ) is isomorphism-dense, and satis-
faction in I is closed under isomorphism.

(4) The assumption of model expansion in (2) can be replaced by assum-
ing that β is pointwise isomorphism-dense and for each SP ∈ SP ,
ModI(SP ) is isomorphism-closed.

Proof. (1) Let SP ∈ SP be a Σ-specification and ϕ be a Σ-sentence. Then

SP |=I
Σ ϕ

iff (by definition) M ∈ModI(SP ) implies M |=I
Σ ϕ

iff (by the assumption) M ′ ∈ModJ(µ̂(SP )) implies βΣ(M ′) |=I
Σ ϕ

iff (by the representation condition)
M ′ ∈ModJ(µ̂(SP )) implies M ′ |=J

Sig(Φ(Σ)) αΣ(ϕ)

iff (by definition) µ̂(SP ) |=J
Sig(Φ(Σ)) αΣ(ϕ).

(2) Concerning borrowing of entailment, by surjectivity of βΣ, we obtain
βΣ(β−1

Σ (M)) = M for any M ⊆ ModI(Σ). Thus, we obtain that the as-
sumption of (1) is fulfilled, and the result follows.

6 This includes the condition that βSig(SP ) is defined on ModJ(µ̂(SP )).
7 This precisely means βSig(SP )(M ′) is defined and a member of ModI(SP ) if and
only if M ′ ∈ModJ(µ̂(SP )).
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Concerning borrowing of refinement, let SP1, SP2 ∈ SP be Σ-specifications.
Assume that SP1

/o/o/o /o/o/o +3 SP2. If now M ′ ∈ ModJ(µ̂(SP2)), by the assumption
of the proposition, we get βΣ(M ′) ∈ ModI(SP2) and therefore βΣ(M ′) ∈
ModI(SP1). Again by the assumption of the proposition, we obtain M ′ ∈
ModJ(µ̂(SP1)). Hence, µ̂(SP1) /o/o/o /o/o/o +3 µ̂(SP2).

Conversely, assume that µ̂(SP1) /o/o/o /o/o/o +3 µ̂(SP2). If now M ∈ ModI(SP2), by
the assumptions of the proposition, we get some M ′ ∈ ModJ(µ̂(SP2)) with
βΣ(M ′) = M . Since then also M ′ ∈ModJ(µ̂(SP1)), by the assumption of the
proposition also βΣ(M ′) = M ∈ModI(SP1). Hence, SP1

/o/o/o /o/o/o +3 SP2.

(3) In the step of the proof of (1) where we use the assupmtion, we now only get
some M ′ ∈ModJ(µ̂(SP )) with βSig(SP )(M

′) ∼= M , instead of βSig(SP )(M
′) =

M . But this does no harm since satisfaction in I is closed under isomorphism.

(4) Similarly as (3). 2

Borrowing of entailment is strictly weaker than borrowing of refinement, see
[12] for an example.

2.4.2 Borrowing For Flat and Flattenable Specifications

For representations admitting model expansion, the well-known “Borrowing
theorem” [18,74] holds:

Theorem 2.26 Let I and J be two institutions and µ = (Φ, α, β): I −→ J
be an institution representation admitting model expansion. Then µ admits
borrowing of entailment and refinement for flat specifications.

Proof. Let SP = 〈Σ,Γ〉 be a flat specification. Then βΣ(M ′) is defined
and satisfies SP iff βΣ(M ′) is defined and satisfies Γ iff (by the representa-
tion condition) M ′ satisfies Ax(Φ(Σ)) ∪ αΣ(Γ) iff M ′ satisfies µ̂(SP ). Thus
β−1

Σ ModI(SP ) = ModJ(µ̂(SP )). The result now follows from Proposition 2.25
(2). 2

Corollary 2.27 Let I and J be two institutions and µ = (Φ, α, β): I −→ J
be an institution representation admitting model expansion. Then µ admits
borrowing of entailment and refinement for flattenable specifications.

Proof. By Proposition 2.19 and Fact 2.6.

That is, if we have a sound (and complete) theorem prover for flat(tenable)
specifications in the target institution of an institution representation admit-
ting model expansion, we can re-use it as a sound (and complete) theorem
prover for flat(tenable) specifications in the source institution. In a word:
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Institution representations admitting model expansion also admit borrowing
of entailment and refinement for flat(tenbale) specifications.

2.4.3 Borrowing For Structured Specifications (Excluding free)

If we want to re-use theorem provers not only for flat, but also for structured
specifications (excluding free, which will be studied in the next section), we
have to assume some additional property:

Definition 2.28 [12] Let µ = (Φ, α, β): I −→J be a simple institution rep-
resentation and let D be a class of signature morphisms in I. Then µ is said
to have the weak D-amalgamation property, if for each signature morphism
σ: Σ1−→Σ2 ∈ D, the diagram

ModI(Σ2)

ModI(σ)

��

ModJ(Φ(Σ2))

ModJ (Φ(σ))

��

βΣ2oo

ModI(Σ1) ModJ(Φ(Σ1))
βΣ1oo

admits weak amalgamation, i.e. any for any two models M2 ∈ModI(Σ2) and
M ′

1 ∈ModJ(Φ(Σ1)) with M2|σ = βΣ1(M ′
1), there is some M ′

2 ∈ModJ(Φ(Σ2))
with βΣ2(M ′

2) = M2 and M ′
2|Φ(σ) = M ′

1. 2

Example 2.29 The institution representation from Example 2.16 trivially
satisfies the weak D-amalgamation property, where D is the class of all signa-
ture morphisms in Eq=, since the model translations βΣ are isomorphisms. 2

Example 2.30 Let D be the class of all injective signature morphisms in
PFOL=. Weak D-amalgamation for the institution representation from Ex-
ample 2.17 can be seen as follows: Let σ: Σ1−→Σ2 ∈ D, let M2 be a Σ2-model
and M ′

1 be a Φ(Σ1)-model such that M2|σ = βΣ1(M ′
1). Extend M ′

1 to a Φ(Σ2)-
model M ′

2 as follows: For any sort s not in the image of σ, let the carrier for
sort σ(s) in M ′

2 just be (M2)s]{∗}, and let DM ′2
hold everywhere except on ∗.

⊥ is interpreted as ∗ in M ′
2. Given a function symbol f in Σ outside the image

of σ, σ(f) is interpreted in M ′
2 to be fM2 , except that the interpretation of ⊥

is delivered if the argument is outside M2 or the result is not defined due to
partiality of the function. Given a predicate symbol p in Σ outside the image
of σ, σ(p) is interpreted in M ′

2 to be pM2 , except that it is false if the argument
is outside M2. Then, we have that βΣ2(M ′

2) = M2 and M ′
2|Φ(σ) = M ′

1, showing
weak D-amalgamation. 2

The following theorem has been proved in [12]:
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Theorem 2.31 Let I and J be two institutions, and let µ = (Φ, α, β): I−→J
be an institution representation. Let SP be the set of structured specifications
in I not containing free, and containing derives only along morphisms in D.
Then

(1) For any specification SP not containing free,

βSig(SP )(ModJ(µ̂(SP ))) ⊆ModI(SP ).

(2) If µ has the weak D-amalgamation property, then for SP ∈ SP ,

β−1
Sig(SP )(ModI(SP )) = ModJ(µ̂(SP )).

(3) If µ admits model expansion and has the weak D-amalgamation property,
then for SP ∈ SP ,

βSig(SP )(ModJ(µ̂(SP ))) = ModI(SP ).

(4) If µ admits model expansion and has the weak D-amalgamation property,
then µ admits borrowing of entailment and refinement for SP. 2

The combination of (2) and (3) means that model classes (loose semantics) are
preserved and reflected. This is especially important since Casl (like many
other specification languages) has a model-theoretic semantics: a specification
denotes a signature together with a class or category of models.

Loose semantics for structured specifications without free and with hiding
only along D-morphisms can be lifted along and against institution repre-
sentations admitting model expansion and weak D-amalgamation.

Loose semantics in this context means taking just the class of all models of a
specification as its semantics. Of course, whether these are, e.g., all first-order
models or just the finitely generated ones, depends on the model functor of
the institution.

(4) means that tools for theorem proving within structured specifications in
the target institution can be re-used for theorem proving within structured
specifications in the source institution. That is:

Institution representations admitting model expansion and weak D-amalga-
mation admit borrowing of entailment and refinement for structured speci-
fications without free and with hiding only along D-morphisms.

Definition 2.32 A simple institution representation µ = (Φ, α, β): I−→J is
said to be model-bijective if for each Σ ∈ SignI , βΣ is a bijection on objects. 2

Example 2.33 The institution representation from Example 2.16 is model-
bijective, while that from Example 2.17 is not: for a given partial model, it is
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possible to add any number of “undefined” elements in a model representing
it. Hence, the model translation is not bijective. 2

Proposition 2.34 Any model-bijective institution representation both ad-
mits model expansion and has the weak D-amalgamation property for arbi-
trary D.

Proof. Admitting of model expansion is immediate. Concerning weak D-
amalgamation, let σ: Σ1−→Σ2 be a signature morphism and letM2 ∈ModI(Σ2)
and M ′

1 ∈ModJ(Φ(Σ1)) such that M2|σ = βΣ1(M ′
1). Then β−1

Σ2
(M2) is the de-

sired model M ′
2 ∈ModJ(Φ(Σ2)) with βΣ2(M ′

2) = M2 and M ′
2|Φ(σ) = M ′

1. 2

The above slogans can now be shortened:

Loose semantics for structured specifications without free can be lifted along
and against model-bijective institution representations.

Model-bijective institution representations admit borrowing of entailment
and refinement for structured specifications without free.

In [12], it is shown that admitting model expansion and weak D-amalgamation
are necessary to get Theorem 2.31. However, if we restrict ourselves to bor-
rowing of entailment, we can replace the requirement that derives in the
specification are along morphisms in D-amalgamation by the corresponding
requirement for translates.

Theorem 2.35 Let I and J be two institutions, and let µ = (Φ, α, β): I−→J
be an institution representation admitting both model expansion and weak
D-amalgamation. Let SP be the set of structured specifications SP in I sat-
isfying the following properties:

• SP does not contain free,
• all translates in SP are either flattenable (i.e. do not contain derive), or

the translation is along a morphism in D, and
• all unions in SP are flattenable (i.e. do not contain derive).

Then

(1) For SP ∈ SP ,

ModI(SP ) = βSig(SP )(ModJ(µ̂(SP ))).

(2) µ admits borrowing of entailment for SP.

Proof. (1) By induction over the structure of SP . Note that by Theo-
rem 2.31(1), we need only prove the inclusion from left to right.
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• SP = 〈Σ,Γ〉: From the proof of Theorem 2.26, we get β−1
Σ ModI(SP ) =

ModJ(µ̂(SP )). By model expansion, we get ModI(SP ) = βΣ(ModJ(µ̂(SP ))).
• SP = SP1 ∪ SP2: Since SP is flattenable, by Proposition 2.19 and Fact 2.6,

we can refer to the case of presentations.
• SP = translate SP1 by σ: Σ1−→Σ: If SP is flattenable, by Proposition 2.19

and Fact 2.6, we can refer to the case of presentations.
Otherwise, σ ∈ D. For M ∈ ModI(SP ), we have M |σ ∈ ModI(SP1).
By the induction hypothesis, there is some M ′

1 ∈ ModJ(µ̂(SP1)) with
βΣ1(M ′

1) = M |σ. By the weak D-amalgamation property, there is some
M ′ ∈ModJ(Φ(Σ)) with M ′|Φ(σ) = M ′

1 and βΣ(M ′) = M . By M ′|Φ(σ) = M ′
1,

M ′ ∈ModJ(translate µ̂(SP1) by Φ(σ) ∪ Φ(Σ)) = ModJ(µ̂(SP )). Hence,
M ∈ βΣ(ModJ(µ̂(SP ))).
• SP = derive from SP1 by σ: Σ−→Σ1: For M ∈ ModI(SP ), we have

some M1 ∈ ModI(SP1) with M1|σ = M . By induction hypothesis, we
get some M ′

1 ∈ ModJ(µ̂(SP1)) with βΣ1(M ′
1) = M1. This implies that

M ′
1|Φ(σ) ∈ ModJ(µ̂(SP )). But βΣ(M ′

1|Φ(σ)) = βΣ1(M ′
1)|σ = M1|σ = M.

Hence, M ∈ βΣ(ModJ(µ̂(SP ))).

(2) Follows from (1) by Proposition 2.25(1). 2

Theorem 2.36 Let I and J be two institutions having weak amalgamation,
and let µ = (Φ, α, β): I−→J be an institution representation admitting model
expansion such that Φ preserves pushouts. Let SP be the set of structured
specifications in I not containing free. Then

(1) For SP ∈ SP ,

ModI(SP ) = βSig(SP )(ModJ(µ̂(SP ))).

(2) µ admits borrowing of entailment for SP.

Proof. (1) Let SP ′ be a normal form of SP according to Definition 2.8. By
Proposition 2.21, µ̂(SP ′) is a normal form for µ̂(SP ). Hence by Fact 2.9 it
suffices to show ModI(SP ′) = βSig(SP )(ModJ(µ̂(SP ′))). Since normal forms
neither contain translate nor unions, this follows from Theorem 2.35.

(2) Follows from (1) by Proposition 2.25(1). 2

2.4.4 Borrowing For Structured Specifications (Including free)

It is easy to show borrowing for structured specifications including free under
the very strong assumption of a subinstitution representation:

Definition 2.37 A simple institution representation µ = (Φ, α, β): I −→ J
is said to be a subinstitution representation if Φ is an embedding of categories,
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α is a pointwise injection, and β is a natural isomorphism.

I is said to be a subinstitution of J if there is a subinstitution representation
from I to J . 2

Example 2.38 The institution representation from Example 2.16 is a subin-
stitution representation. 2

Theorem 2.39 Let µ = (Φ, α, β): I−→J be a subinstitution representation.
Then

• For any specification SP ,

β−1
Sig(SP )(ModI(SP )) = ModJ(µ̂(SP )).

• µ admits borrowing of entailment and refinement for all specifications.

Proof. (1) is straightforward. (2) follows with Proposition 2.25(2). 2

Thus

Subinstitution representations admit borrowing of entailment and refinement
for all structured specifications.

The subinstitution property is a rather strong property. Is there a weaker
property that suffices to ensure a good interaction with liberality and the
free construct? The answer is the following notion, which we have introduced
in [44] in a slightly stronger form under the name of categorical retractive
simulation:

Definition 2.40 A simple institution representation µ = (Φ, α, β): I −→ J
is called persistently liberal if for each Σ ∈ SignI , βΣ has a left adjoint 8 γΣ

such that also βΣ ◦ γΣ
∼= id. If we have even βΣ ◦ γΣ = id, then µ is called

strongly persistently liberal. We write (µ, γ) if we want to chose a particular
γ. 2

We here use the term liberal (in accordance with [24]) since it stresses the
connection with liberality of institutions. Meseguer [49] has introduced per-
sistently liberal representations under the name of extensions. He additionally
requires that the isomorphism id ∼= βΣ ◦ γΣ is the unit of the adjunction;
however, in the light of Proposition A.1, this requirement is superfluous.

Example 2.41 The institution representation from Examples 2.16 is strongly

8 Given a functor G: B−→A, a functor F : A−→B is called left adjoint to G, if
for each A ∈ A, F (A) is G-free over A, and, moreover, the universal arrows form a
natural transformation η: Id−→G ◦ F .
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persistently liberal: γΣ is just the inverse of the isomorphism βΣ. 2

Example 2.42 The institution representation from Example 2.17 is strongly
persistently liberal: γΣ totalizes a partial model by adding “undefined” values
freely (this is the free completion [14,15]). 2

Let us now study how persistently liberal institution representations interact
with liberality, strengthening a result of [44] (we can now drop the assumption
of the existence of ModI(σ)-free models).

Theorem 2.43 Let (µ, γ) = ((Φ, α, β), γ): I −→ J be a persistently lib-
eral institution representation such that additionally either satisfaction in I is
closed under isomorphism or (µ, γ) is even strongly persistently liberal. Then
free constructions can be lifted against (µ, γ) in the following sense:

(1) If σ: 〈Σ1,Γ1〉−→〈Σ2,Γ2〉 is a theory morphism in I,M1 ∈ModI(〈Σ1,Γ1〉),
and if M ′

2 ∈ModJ(µ̂(〈Σ2,Γ2〉)) is ModJ(Φ(σ))-free over γΣ1(M1), then
βΣ2(M ′

2) is ModI(σ)-free over M1.
(2) If σ: 〈Σ1,Γ1〉 −→ 〈Σ2,Γ2〉 is a theory morphism in I, then σ is liberal if

Φ(σ) is liberal.
(3) I is liberal if J is liberal.
(4) LetM be a class of signature morphisms in SignI . I isM-liberal if J is

Φ(M)-liberal.

In a word:

Free constructions can be lifted against persistently liberal institution repre-
sentations.

Proof.

ModI(〈Σ2,Γ2〉)
γΣ2 //

ModI(σ)

��

ModJ(µ̂(〈Σ2,Γ2〉))

ModJ (Φ(σ))

��

βΣ2

oo

ModI(〈Σ1,Γ1〉)
γΣ1 //

ModJ(µ̂(〈Σ1,Γ1〉))
βΣ1

oo

(1) By the representation condition, βΣi restricts to βΣi : ModJ(µ̂(〈Σi,Γi〉))−→
ModI(〈Σi,Γi〉) for i = 1, 2. We now show that similarly, γΣi restricts to
γΣi : ModI(〈Σi,Γi〉)−→ModJ(µ̂(〈Σi,Γi〉)): For M ∈ ModI(〈Σi,Γi〉), either
βΣi(γΣi(M)) = M , or βΣi(γΣi(M)) ∼= M and satisfaction in I is closed un-
der isomorphism. In both cases, βΣi(γΣi(M)) |=Σi Γi, and by the representa-
tion condition, γΣi(M) |= αΣi(Γi), hence γΣi(M) ∈ ModJ(µ̂(〈Σi,Γi〉)). We
now can apply Proposition A.2 (1) with U = ModI(σ), V = ModJ(Φ(σ)),
R = βΣ2 , L = γΣ2 , R′ = βΣ1 , and L′ = γΣ1 , B = M ′

2 and X = M1.
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(2), (3) and (4) directly follow from (1). 2

Example 2.55 below shows that the assumption of persistent liberality is
needed to get this result.

We now come to borrowing for specifications containing free.

Definition 2.44 Given institutions I and J , a persistently liberal institu-
tion representation (µ, γ) = ((Φ, α, β), γ): I −→ J and a signature morphism
σ: Σ1−→Σ2 in I, γ is called σ-natural, if γΣ1 ◦ModI(σ) = ModJ(Φ(σ))◦γΣ2 .

Theorem 2.45 Let (µ, γ) = ((Φ, α, β), γ): I −→ J be a persistently liberal
institution representation, such that additionally either satisfaction in I is
closed under isomorphism or (µ, γ) is even strongly persistently liberal. Let
SP consist of those I-specifications SP for which

• for each free SP ′ along σ: Σ−→Σ1 occurring in SP , either Φ(σ): Σ −→
SP ′ is strongly persistently liberal or γ is σ-natural, and moreover, γΣ is
surjective on objects,
• for each derive from SP1 by σ occurring in SP , γ is σ-natural,
• for each translate SP1 by σ occurring in SP , either γ is σ-natural, or SP1

is flattenable, i.e. contains neither free nor derive.

Then

(1) For SP ∈ SP ,

βSig(SP )(ModJ(µ̂(SP ))) ⊆ModI(SP ).

(2) For SP ∈ SP ,

γSig(SP )(ModI(SP )) ⊆ModJ(µ̂(SP )).

(3) µ admits borrowing of entailment for SP.

Proof. We prove (1) and (2) by simultaneous induction over the structure of
SP .

For (1), all cases except from free are treated as in the proof of Lemma 8.6
in [12] (cf. our Theorem 2.31).

• SP = 〈Σ,Γ〉: (2) Assume that M ∈ ModI(SP ), i.e. M |=Σ Γ. Now either
M = βΣ(γΣ(M)) or M ∼= βΣ(γΣ(M)) and satisfaction in I is closed under
isomorphism. In both cases, βΣ(γΣ(M)) |=Σ Γ. By the representation con-
dition, γΣ(M) |= αΣ(Γ). Since γΣ(M) ∈ dom βΣ, also γΣ(M) |= Ax(Φ(Σ)).
Hence, M ∈ModJ(µ̂(SP )).
• SP = SP1 ∪ SP2: (2) follows directly from the induction hyposthesis.
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• SP = translate SP1 by σ: Σ1−→Σ: (2) In the case that SP1 (and hence
SP) is flattenable, by Proposition 2.19 and Fact 2.6, we can refer to the case
of presentations. Otherwise, let M ∈ ModI(SP), i.e. M |σ ∈ ModI(SP1).
By induction hypothesis, γΣ1(M |σ) ∈ModJ(µ̂(SP1)). By γ-naturality of σ,
this is just γΣ(M)|Φ(σ). Since also γΣ(M) ∈ dom βΣ and therefore γΣ(M) |=
Ax(Φ(Σ)), altogether γΣ(M) ∈ModJ(µ̂(SP )).
• SP = derive from SP1 by σ: Σ−→Σ1: (2) Let M ∈ ModI(SP). Then

there is some M ′ ∈ ModI(SP1) with M ′|σ = M . By induction hypothe-
sis, γΣ1(M ′) ∈ ModJ(µ̂(SP1)). Since by γ-naturality of σ, γΣ1(M ′)|Φ(σ) =
γΣ(M ′|σ) = γΣ(M), γΣ(M) ∈ModJ(µ̂(SP)).
• SP = free SP ′ along σ: Σ−→Σ1: By induction hypothesis, βΣ1 restricts to
βΣ1 : ModJ(µ̂(SP ′))−→ModI(SP ′) and γΣ1 restricts to γΣ1 : ModI(SP ′)−→
ModJ(µ̂(SP ′)). We thus can apply Proposition A.2 in the sequel, with
U = ModI(σ), V = ModJ(Φ(σ)), R = βΣ1 , L = γΣ1 , R′ = βΣ, and
L′ = γΣ.

(1) Let M ∈ModJ(µ̂(SP)), i.e. M is strongly persistently ModJ(Φ(σ))-
free. By the assumption that γΣ is surjective on objects, we can apply Propo-
sition A.2(3) to get that βΣ1(M) is strongly persistently ModI(σ)-free, i.e.
βΣ1(M) ∈ModI(SP ).

(2) Let M ∈ ModI(SP). From M being ModI(σ)-free over M |σ, by
Proposition A.2(2) we get that γΣ1(M) is ModJ(Φ(σ))-free over γΣ(M |σ).
According to the assumption, there are two cases: If γ is σ-natural, we can
apply Proposition A.2(4) to get that γΣ1(M) is strongly persistently free.
If on the other hand, Φ(σ): Σ−→ SP ′ is strongly persistently liberal, then
there is some M ′ that is ModJ(Φ(σ))-free over γΣ(M |σ) = M ′|Φ(σ) with the
identity as unit. Since free objects are unique up to isomorphism, γΣ1(M) ∼=
M ′. Hence, the unit witnessing that γΣ1(M) is free is an isomorphism, and
so γΣ1(M) is persistently free. In both cases, by Proposition 2.10, γΣ1(M) ∈
ModJ(µ̂(SP)).

(3) Follows from (1) and (2) with Proposition 2.25(1) (in case that (µ, γ)
is strongly persistently liberal) or Proposition 2.25(3) (if satisfaction in I is
closed under isomorphism). 2

The following examples shows that the assumption of σ-naturality of γ resp.
strongly persistent liberality of Φ(σ) in Theorem 2.45 cannot be dropped.

Example 2.46 Consider the strongly persistently liberal institution repre-
sentation going from PFOL= to FOL= introduced in Section 4.1.4 below. Let
σ be the signature morphism that is the obvious inclusion of a signature Σ1

with just one sort into a signature Σ2 with additionally one partial operation
symbol. Clearly, σ is strongly persistently liberal: the free construction equips
any set with the everywhere undefined function. Consequently, a Σ2-model is
a model of free 〈Σ2, ∅〉 along σ iff the partial operation is everywhere unde-
fined.
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Now Φ(σ) is not persistently liberal: similarly to Example 2.14, any Φ(Σ1)-
model is freely extended by adding an ω-chain

{ f(a), f(f(a)), f(f(f(a))), . . . }

over each of its elements a. Thus, a Φ(Σ2)-model can never be free over its
own σ-reduct, and µ̂(free 〈Σ2, ∅〉 along σ) is inconsistent. Since anything is
implied by an inconsistent specifcation, obviously borrowing of entailment fails
here. 2

The following example shows that surjectivity of γΣ (for Σ occuring in “param-
eter position” in a free specification, i.e. in as in free SP ′ along σ: Σ−→Σ1)
is really needed in Theorem 2.45.

Example 2.47 Let ColouredFOL= be a variant of FOL= where each sym-
bol in a signature can be coloured either red or blue. Define a strongly per-
sistently liberal institution representation ((Φ, α, β), γ):ColouredFOL= −→
FOL= as follows:

Signatures The sorts and operation symbols and non-unary predicate sym-
bols of a ColouredFOL=-signature are left as they are, while unary predi-
cate symbols are translated to binary ones. Moreover, for each blue unary
predicate symbol, the corresponding binary relation is axiomatized to be
transitive.

Models A binary relation encoding a unary one is mapped to its reflexive
support (i.e. {x |R(x, x)}), while everything else is left unchanged by βΣ.
Vice versa, γΣ maps a unary relation R to {(x, x) |R(x)}. This easily is seen
to be left adjoint to βΣ.

Sentences Variables are mapped to pairs of variables (also quantification is
over both variables in the pair), and hence, terms have two possible trans-
lations: one using the first component of the variable pairs, and the other
one using the second one. Usually only the first way of translating terms is
used, except from the case of binary relations encoding unary ones: here,
the binary relation is applied to both the translations.

Satisfaction The representation condition can easily be checked.

Now consider the inclusion σ of Σ1 (consisting of a sort s and a red unary
predicate symbol p : s) into SP2 (consisting additionally of a blue unary
predicate symbol q : s, and an axiom ∀x : s • p(x) ⇒ q(x)). Further consider
its translation Φ(σ): Φ(Σ1)−→Φ(SP2). Consider the Φ(Σ1)-model with carrier
{1; 2} and relation {(1, 2); (2, 1)}. Its free extension along σ is the Φ(SP2)-
model with the same carrier and interpretation of p as {(1, 2); (2, 1)} and
of q as {(1, 1); (1, 2); (2, 1); (2, 2)}. Obviously, this free extension is strongly
persistently liberal, i.e. a model of µ̂(free SP2 along σ). However, this model
translated by β gives a model with carrier {1; 2} and interpretation of p as
∅ and of q as {1; 2}. But this is not free over its own σ-reduct, and therefore
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not a model of free SP2 along σ. Still, the (even strongly persistent!) free
model over this reduct exists: it interprets both p and q as ∅. Hence, β does
not preserve the semantics of specifications involving free. 2

The examples show that unfortunately persistent liberality does not suffice
for ensuring preservation of all specifications involving free 9 . We therefore
introduce the following stronger notion from [44]:

Definition 2.48 An institution representation µ = (Φ, α, β): I −→ J is
called an institution embedding if Φ is an embedding and for each Σ ∈ SignI ,
αΣ is injective and βΣ is an equivalence of categories. 2

Non-trivial examples of institution embeddings (i.e. other than subinstitution
representations) are given in Theorems 10.3, 10.8, and 10.9.

Theorem 2.49 Let I and J be institutions such that satisfaction in I is
closed under isomorphisms, and let µ = (Φ, α, β): I −→ J be an institution
embedding. Let SP consist of those I-specifications having neither free nor
derive occurring within a translate or a union. Then

(1) For SP ∈ SP ,

βSig(SP )(ModJ(µ̂(SP ))) ⊆ModI(SP ).

(2) For SP ∈ SP , βSig(SP ): ModJ(µ̂(SP ))−→ModI(SP ) is isomorphism-
dense.

(3) µ admits borrowing of entailment for SP.

Proof. We simultaneously prove (1) and (2) by induction over the structure
of SP .

• SP = 〈Σ,Γ〉: (1) follows from Theorem 2.31(1). Concerning (2), assume
M ∈ ModI(SP ) (i.e. M |=Σ Γ). Since βΣ: ModJ(Φ(Σ)) −→ModI(Σ) is
isomorphism-dense, there is some M ′ ∈ ModJ(Φ(Σ)) with βΣ(M ′) ∼= M .
Since satisfaction in I is closed under isomorphism, βΣ(M ′) |= Γ. By the
satisfaction condition, M ′ |=Sig(Φ(Σ)) αΣ(Γ). Hence, M ′ ∈ModJ(µ̂(SP )).
• SP = SP1 ∪ SP2: By assumption, SP is flattenable. By Proposition 2.19

and Fact 2.6, we can refer to the case of presentations.
• SP = translate SP1 by σ: Σ1−→Σ: Here, the same remark as for unions

applies.
• SP = derive from SP1 by σ: Σ−→Σ1: (1) is proved by the same inductive

argument as used in the proof of Lemma 8.6 in [12] (cf. our Theorem 2.31).

9 It seems that instead of left adjoint right-inverses to the model translations, we
need right adjoint left-inverses. We also have developed a notion of bi-liberality
with useful results. The practical examples of this, however, are all equivalences of
categories.
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Concerning (2), for M ∈ModI(SP ), we have some M1 ∈ModI(SP1) with
M1|σ = M . By induction hypothesis, we get some M ′

1 ∈ ModJ(µ̂(SP1))
with βΣ1(M ′

1) ∼= M1. By definition, M ′
1|Φ(σ) ∈ModJ(µ̂(SP )). Then we get

βΣ(M ′
1|Φ(σ)) = βΣ1(M ′

1)|σ ∼= M1|σ = M.
• SP = free SP ′ along σ: Σ−→Σ1: By induction hypothesis, we have that
βΣ: ModJ(µ̂(SP ′)) −→ ModI(SP ′) is isomorphism-dense. ModI(SP ′) is
a full subcategory of ModI(Σ), ModJ(µ̂(SP ′)) is a full subcategory of
ModJ(Φ(Σ)), and βΣ: ModJ(Φ(Σ))−→ModI(Σ) is full and faithful. There-
fore βΣ: ModJ(µ̂(SP ′))−→ModI(SP ′) is full and faithful as well. Hence,
it is an equivalence of categories (and it has an inverse up to natural isomor-
phism, which also is an equivalence of categories). The result now follows by
the fact that universal arrows (and isomorphisms) are preserved by equiva-
lences of categories, together with Proposition 2.10.

(3) Follows from (1) and (2) with Proposition 2.25(3). 2

The following example shows that the restriction to translates not containing
derives is really necessary in Theorem 2.49:

Example 2.50 Consider the reduction µ of the institution I of order-sorted
algebra to the institution J of many-sorted algebra in Theorem 10.3. While in
order-sorted algebra, subsorts are interpreted as set-theoretic inclusions, the
coding in many-sorted algebra uses injective functions. The model translation
β takes an injection model and uses a colimit of a diagram built up from the
injections to generate an inclusion model. This is an institution embedding.
Now let Σ1 be the I-signature
sorts s1 , s2 , s3 < t ;

s1 < s2 ;
s2 < s3 ;

ops f : s2 → s1 ;
g : s3 → s2 ;

and Σ2 be
sorts s1 , s2 < t ;

s1 < s2 ;

ops id1 : s1 → s1 ;
f : s2 → s1 ;
id2 : s2 → s2 ;

There are two obvious signature morphisms σ1, σ2: Σ1−→Σ2. σ1(t) = σ2(t) =
t, σ1(s1) = σ1(s2) = σ2(s1) = s1, σ1(s3) = σ2(s2) = σ2(s3) = s2, σ1(f) = id1,
σ1(g) = σ2(f) = f , σ2(g) = id2.

Let Γ2 consist of the Σ2-axioms id1(x1) = x1, id2(x2) = x2 and f(x2) = x2
in variables x1 : s1 and x2 : s2 (note that for f(x2) = x2, the left sides is
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implicitly injected in s2). Let SP be the specification

translate (derive from 〈Σ2,Γ2〉 by σ2) by σ1.

The peculiarity is now that for M ∈ ModI(SP ), we have Ms1 = Ms2, but
due to the use of subsort inclusions, this already holds for any 〈Σ2,Γ2〉-model
(while it does not hold for µ̂(〈Σ2,Γ2〉)-models). Let M ′ ∈ModJ(µ̂(〈Σ2,Γ2〉))
such that M ′

s1 6= M ′
s2. Then M ′ 6∈ModJ(µ̂(SP )), but βΣ2(M ′) ∈ModI(SP ),

because isomorphic subsorts of the same sort are identified by β. Thus

β−1
Sig(SP )(ModI(SP )) 6= ModJ(µ̂(SP )),

and if we would add sentences that can detect equality of sorts, µ would not
admit borrowing of entailment for SP .

Borrowing of refinement does not work either: Let Γ1 consist of the Σ1-axioms
f(x2) = x2 and g(x3) = x3 in variables x2 : s2 and x3 : s3. Then

derive from 〈Σ2,Γ2〉 by σ1
/o/o/o /o/o/o +3 〈Σ1,Γ1〉

but
µ̂(derive from 〈Σ2,Γ2〉 by σ1) 6 /o/o/o /o/o/o +3 µ̂(〈Σ1,Γ1〉).

where the latter can be seen by considering a µ̂(〈Σ1,Γ1〉)-model M with Ms1 6=
Ms2. 2

The counterexample and the rather intricate conditions of Theorem 2.49 show
that model translations which are equivalences of categories do not interact so
well with structured specification. This has its reason in the fact that model
classes need not be closed under isomorphism. Even if this property should
hold for flat specifications, the problem still comes in with derive. Namely, in
general the image of the reduct functor Mod(σ) is not closed under isomor-
phism (the reason for this behaviour is that the functor is not transportable
[1]). It would make much sense to close up model classes of specifications
under isomorphism. (Indeed, this would need to be done only for presenta-
tions and hidings — the other structuring operations preserve closedness un-
der isomorphism). Then, Theorem 2.49 would hold for all specifications, and
moreover, borrowing of proof calculi also for refinement would become appli-
cable, as it is for subinstitution representations (cf. Theorem 2.39). However,
we have refrained from closing up model classes under isomorphism, since this
is neither standard in the literature about structured specifications, nor it is
implemented in the semantics of Casl [23].

If we omit derive, things behave much better:

Theorem 2.51 Let I and J be institutions such that satisfaction in I is
closed under isomorphisms, and let µ = (Φ, α, β): I −→ J be an embedding.
Let SP consist of those I-specifications with no derive. Then
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(1) For SP ∈ SP ,

ModJ(µ̂(SP )) = β−1
Sig(SP )(ModI(SP )).

(2) For SP ∈ SP , ModI(SP ) is closed under isomorphism.
(3) µ admits borrowing of entailment and refinement for SP.

Proof. Again, we simultaneously prove (1) and (2) by induction over the
structure of SP .

• SP = 〈Σ,Γ〉: (1) follows from the representation condition. (2) follows from
satisfaction in I being closed under isomorphism.
• SP = SP1 ∪ SP2: (1) M ′ ∈ ModJ(µ̂(SP )) iff M ′ ∈ ModJ(µ̂(SP1)) ∩

ModJ(µ̂(SP1)) iff (by induction hypothesis) βSig(SP1)(M
′) ∈ModI(SP1)∩

ModI(SP2) iff βSig(SP1)(M
′) ∈ModI(SP ).

(2) The intersection of two isomorphism-closed model classes is isomorphism-
closed.
• SP = translate SP1 by σ: Σ1−→Σ: (1) M ′ ∈ ModJ(µ̂(SP )) iff M ′ ∈

ModJ(Φ(Σ)) and M ′|Φ(σ) ∈ ModJ(µ̂(SP1)) iff (by induction hypothesis)
βΣ(M ′)|σ = βΣ1(M ′|Φ(σ)) ∈ModI(SP1) iff βΣ(M ′) ∈ModI(SP ).

(2) If M ∈ModI(SP ) and M ′ ∼= M , then also M ′|σ ∼= M |σ. By induction
hypothesis, M ′|σ ∈ModI(SP1). Hence, M ′ ∈ModI(SP ).
• SP = free SP1 along σ: Σ−→Σ1: (1) To show that βΣ1 : ModJ(µ̂(SP1))−→

ModI(SP1) is isomorphism-dense, let M ∈ModI(SP1). By isomorphism-
denseness of βΣ1 : ModJ(Φ(Σ1))−→ModI(Σ1), there isM ′ ∈ModJ(Φ(Σ1))
with βΣ1(M ′) ∼= M . By induction hypothesis, ModI(SP1) is closed under
isomorphism, hence βΣ1(M ′) ∈ModI(SP ). Again by induction hypothesis,
M ′ ∈ModJ(µ̂(SP1)). The rest of the proof is as in Theorem 2.49.

(2) Freeness is a property that is closed under isomorphism. Together with
Proposition 2.10, this shows ModI(SP ) to be closed under isomorphism.

(3) Follows from (1) and (2) with Proposition 2.25(4). 2

2.4.5 Comparison Of Properties Of Institution Representations

We now briefly compare the different notions of representations that have been
introduced so far.

Proposition 2.52 Any strongly persistently liberal institution representa-
tion admits model expansion. Any model-bijective institution representation
admits model expansion and weak D-amalgamation for arbitrary D. Any em-
bedding is persistently liberal. Any subinstitution representation is an embed-
ding, strongly persistently liberal and a model-bijective institution represen-
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tation.

subinstitution
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��
embedding

��
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��ow ggggggggggggggggggg

ggggggggggggggggggg model-bijective

ow gggggggggggggggggggg

gggggggggggggggggggg

��
persistently liberal admits model expansion weak D-amalgamation

2

We now present a number of counterexamples showing that the above diagram
of implications is optimal.

Example 2.53 The institution representation from Examples 2.17 and 2.42
admits model expansion and it is strongly persistently liberal, but neither
model-bijective nor an embedding: for a given partial model, it is possible to
add any number of “undefined” elements in a model representing it. Hence,
the model translation is neither bijective nor isomorphism-dense. 2

Example 2.54 Modify the institution representation from Examples 2.17
and 2.42 by omitting the functions ⊥ and the axioms involving ⊥. Then the
resulting institution representation is still strongly persistently liberal, but it
does not admit weak D-amalgamation, where D is the class of all signature
morphisms adding a partial function symbol to a signature. Let σ: Σ−→Σ′ ∈
D. Take any Σ′-model M containing a truly partial function and such that all
functions in M |σ are total. Then M |σ can be represented by a model M ′ (i.e.
βΣ(M ′) = M |σ) that has no “undefined” elements at all. However, it is not
possible to represent M with an extension of M ′, since this would require the
presence of some “undefined” element in some carrier of M ′ (and hence also
M). 2

Example 2.55 Modify the institution representation from Example 2.17 as
follows: Add to Φ(Σ) a sentence ¬ x = ⊥s ⇒ Ds(x) (for each sort s in Σ).
Thus, ⊥s becomes the unique “undefined” element. Now a two-sided inverse of
the model translation can be constructed as follows: For a partial Σ-structure
M , form its one-point completion by just adding one element, ∗ (which is
the interpretation of ⊥s), to all carriers, let all functions map ∗ to itself and
behave as in M otherwise, where undefinedness of partial functions is mapped
to ∗. Predicates are false on ∗. The interpretation of the predicates D is fixed
by their defining axioms. This shows the representation to be model-bijective
(and hence it also admits model expansion).

The above defined inverse to the model translation defines a bijection on
model classes, but not an isomorphism of model categories. This is because
a Σ-homomorphism need only preserve definedness of partial functions, while
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a Φ(Σ)-homomorphism has to preserve and reflect “definedness” of the rep-
resentations of partial functions. Thus, the above inverse construction, being
the unique inverse construction on models, cannot be extended to a functor.
This shows that the above institution representation is neither a subinstitution
representation nor persistently liberal.

Now consider the PFOL=-signature Σ with one sort s and one partial function
symbol f : s−→?s, and let σ be the inclusion of the signature consisting just of
sort s into Σ. Given a set X, the σ-free Σ-model M over X is just X with f
interpreted as the everywhere undefined function. The unique representation
M ′ of M is X with one “undefined” element, and f yielding everywhere the
“undefined” element. Now M ′ is not free over X, since any homomorphism
starting from M ′ has to preserve the undefined element and thus there cannot
be a homomorphism from M ′ into some model where f is defined at some
point. This shows that the assumption of persistent liberality is really needed
in Theorem 2.43. 2

Example 2.56 Let D be the class of all signature isomorphisms in an insti-
tution I. Since functors preserve isomorphisms, any institution representation
starting from I admits weak D-amalgamation. Clearly, not every such repre-
sentation admits model expansion. 2

Example 2.57 The institution representation going from COS-SubCond=

to COSASC described in Theorem 10.4 is an embedding, but it does not
admit model expansion (just because there are COS-SubCond=-models that
have non-inclusions as subsort embeddings). 2

2.5 Intersections of Subinstitutions

In Section 3.4 below, we want to define subinstitutions of the Casl institution
by removing different features from it. Therefore, we need intersections of
subinstitutions.

Given a family (µk = (Φk, α
k, βk): Jk−→J)k∈K of subinstitutions, with Jk =

(Signk,Senk,Modk, |=k), their intersection I is defined as follows:

Signatures SignI :=
⋂
k∈K Φk(Signk). This is a category, since the Φk are

embeddings, and categories are closed under taking the image along embed-
dings and under intersection.

Models ModI(Σ) := ModJ(Σ).
Sentences SenI(Σ) :=

⋂
k∈K α

k
Φ−1
k

(Σ)
(Senk(Φ−1

k (Σ))), and SenI(σ: Σ−→Σ′) :

SenI(Σ) −→ SenI(Σ′) is the domain-codomain-restriction of SenJ(σ), which
exists by naturality of α. The injection of SenI(Σ) into Senk(Φ−1

k (Σ)) given
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by the appropriate restriction of (αk
Φ−1
k

(Σ)
)−1 is denoted by ιkΣ.

Satisfaction M |=I
Σ ϕ iff M |=J

Σ ϕ (i.e., the satisfaction condition is inherited
from J). 2

Note that the intersection is a limit in the category of institutions and simple
representations, with limit projections (Φ−1

k , ι, (βk ◦ Φ−1
k )−1): I −→ Jk (well,

injections would be a better name here, since they inject the intersection I in
the Jk).

2.6 Translating language constructs

As stated in the introduction, a specification language typically is based on an
institution; and the semantics of the language constructs is defined by mapping
the language constructs into mathematical concepts defined in terms of the
institution. In this paper, we mainly concentrate on the translation of basic
specifications, which correspond to presentations at the level of concepts.

Given two specification languages L1 and L2 with underlying institutions I1

and I2, and given an institution representation µ: I1−→I2, a translation from
L1 to L2 can be obtained as follows:

For a basic specification SP1 written in L1, apply the semantics of L1 to
obtain a presentation T1 in I1. Then use µ to obtain a presentation T2 in I2.
Finally, find a basic specification SP2 in L2 having semantics T2. This assumes
that every presentation can be represented in the language. The language
Casl fulfills this assumption. We do not know if other languages fulfill this
assumption as well, but we would be surprised if not. (The detailed study of
language constructs is beyond the scope if this paper.)

For structured specifications, this translation has to be extended inductively
according to Definition 2.18. Note that this assumes that L1 and L2 have the
same structuring mechanisms. The translation of different structuring mech-
anisms into each other is beyond the scope of this paper.

Since the mapping from basic specifications to presentations in the underlying
institution is not formally defined for many specification languages (and also
because it can become quite complex), we will only informally discuss how an
institution representation lifts to a translation of the corresponding language
constructs. In some cases, we also indicate how a better translation can be
obtained by not going the above way from SP1 to SP2 through the underlying
theories I1 and I2, but rather use a direct translation of SP1 to SP2. This
is advisable e.g. if L1 and L2 have similar language constructs for expressing
complex presentations in a concise way, while these constructs have rather
lengthy expansions in terms of the underlying institution.
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3 Casl

Casl is an expressive language combining subsorts, partiality, first-order logic
and induction (the latter is expressed using so-called sort generation con-
straints). The institution underlying Casl is introduced in two steps [23,17]:
first, we introduce many-sorted partial first-order logic with sort generation
constraints and equality (PCFOL=), and then, subsorted partial first-order
logic with sort generation constraints and equality (SubPCFOL=) is described
in terms of PCFOL=.

3.1 Partial First-Order Logic

Definition 3.1 The institution PCFOL=.

Signatures A many-sorted signature Σ = (S,TF ,PF , P ) in PCFOL= con-
sists of
• a set S of sorts,
• two S∗×S-sorted families TF = (TFw,s)w∈S∗,s∈S and PF = (PFw,s)w∈S∗,s∈S

of total function symbols and partial function symbols, respectively, such
that TFw,s ∩ PFw,s = ∅, for each (w, s) ∈ S∗×S (constants are treated as
functions with no arguments), and
• a family P = (Pw)w∈S∗ of predicate symbols.
Note that function and predicate symbols may be overloaded, occurring in
more than one of the above sets. To ensure that there is no ambiguity in
sentences, however, symbols are always qualified by profiles when used. In
the Casl language constructs (see Section 3.3), such qualifications may be
omitted when these are unambiguously determined by the context.

We now introduce some notation. We write f : w → s ∈ TF for f ∈ TFw,s

(including the special case f : s for empty w), f : w →? s ∈ PF for
f ∈ PFw,s (including the special case f :→? s for empty w) and p : w ∈ P
for p ∈ Pw. For a function symbol f ∈ TFw,s or f ∈ PFw,s, we call w → s
or w →? s, resp., its profile, w its argument sorts and s its result sort. For
predicate symbols p : w, we call w both its profile and its argument sorts.
Given a function f :A −→ B, let f ∗:A∗ −→ B∗ be its extension to finite
strings. Given a finite string w = s1 . . . sn and sets Ms1 , . . . ,Msn , we write
Mw for the Cartesian product Ms1 × . . .×Msn .

Given signatures Σ = (S,TF ,PF , P ) and Σ′ = (S ′,TF ′,PF ′, P ′), a sig-
nature morphism σ: Σ−→Σ′ consists of
• a map σS:S−→S ′,
• a map σFw,s: TFw,s ∪ PFw,s −→ TF ′σS∗ (w),σS(s) ∪ PF ′σS∗ (w),σS(s) preserving

totality, for each w ∈ S∗, s ∈ S, and
• a map σPw :Pw−→P ′

σS∗ (w)
for each w ∈ S∗.
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Identities and composition are defined in the obvious way. This gives us a
category of PCFOL=-signatures.

Models Given a many-sorted signature Σ = (S,TF ,PF , P ), a many-sorted
Σ-model M consists of:
• a non-empty carrier set Ms for each sort s ∈ S,
• a partial function (fw,s)M (also written just fM) from Mw to Ms for each

function symbol f ∈ TFw,s∪PFw,s, the function being total if f ∈ TFw,s,
and
• a predicate (pw)M (also written just pM) ⊆Mw for each predicate symbol
p ∈ Pw.
A many-sorted Σ-homomorphism h : M −→ N consists of a family of

functions (hs : Ms −→ Ns)s∈S with the property that for all f ∈ TFw,s ∪
PFw,s and (a1, . . . , an) ∈Mw with (fw,s)M(a1, . . . , an) defined, we have

hs((fw,s)M(a1, . . . , an)) = (fw,s)N(hs1(a1), . . . , hsn(an)),

and for all p ∈ Pw and (a1, . . . , an) ∈Mw,

(a1, . . . , an) ∈ (pw)M implies (hs1(a1), . . . , hsn(an)) ∈ (pw)N .

Identities and composition are defined in the obvious way.
Concerning reducts, if σ: Σ −→ Σ′ is a signature morphism with Σ =

(S,TF ,PF , P ), and M ′ is a Σ′-model, then M ′|σ is the Σ-model M with
• Ms := M ′

σS(s) (s ∈ S)

• (fw,s)M := (σFw,s(f))M ′ (f ∈ TFw,s ∪ PFw,s)
• (pw)M := (σPw (p))M ′ (p ∈ Pw)
This is well-defined since σFw,s preserves totality.

Given a Σ′-homomorphism h′:M ′
1−→M ′

2, its reduct h′|σ:M ′
1|σ −→M ′

2|σ
is the homomorphism defined by

(h′|σ)s := h′σS(s) (s ∈ S).

It is easy to see that the reduct w.r.t. an identity is the identity, and that
the reduct w.r.t. a composition is the composition of the reducts w.r.t. the
signature morphisms that are composed. Thus, Mod is a functor.

Sentences Let a many-sorted signature Σ = (S,TF ,PF , P ) be given. A
variable system over Σ is an S-sorted, pairwise disjoint family of variables
X = (Xs)s∈S. Let such a variable system be given.

The sets TΣ(X)s of many-sorted Σ-terms of sort s, s ∈ S, with variables
in X are the least sets satisfying the following rules:
(1) x ∈ TΣ(X)s, if x ∈ Xs,
(2) fw,s(t1, . . . , tn) ∈ TΣ(X)s, if ti ∈ TΣ(X)si(i = 1, . . . , n), f ∈ TFw,s ∪

PFw,s, w = s1 . . . sn.
Note that each term has a unique sort.
TΣ(X) can be made into a many-sorted Σ-algebra by putting

• (fw,s)TΣ(X)(t1, . . . , tn) = fw,s(t1, . . . , tn) for f ∈ TFw,s ∪ PFw,s,
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• (pw)TΣ(X) = ∅ for p ∈ Pw.
Variable assignments are total, but the value of a term w.r.t. a variable

assignment may be undefined, due to the application of a partial function
during the evaluation of the term. The evaluation of a term w.r.t. a variable
assignment is defined as follows (see [19]):

Given a variable valuation ν:X −→M for X in M , the term evaluation
ν#:TΣ(X)→?M is inductively defined by:
• ν#

s (x) = ν(x) for all x ∈ Xs and all s ∈ S,

• ν#
s (fw,s(t1, . . . , tn)) =


(fw,s)M(ν#

s1
(t1), . . . , ν#

sn(tn)),
if ν#

si
(ti) is defined (i = 1, . . . , n) and

(fw,s)M(ν#
s1

(t1), . . . , ν#
sn(tn)) is defined

undefined, otherwise
for all f ∈ TFw,s ∪ PFw,s, where w = s1 . . . sn, and ti ∈ TΣ(X)si , for
i = 1, . . . , n.
Given a term t, we say that t is ν-interpretable, if t ∈ dom ν# and in this

case we call ν#(t) ∈Ms the value of t in M under the valuation ν.
A many-sorted atomic Σ-formula with variables in X is either (1) an

application of a qualified predicate symbol to terms of appropriate sorts, (2)
an existential equation between terms of the same sort, (3) a strong equation
between terms of the same sort, or (4) an assertion about definedness of a
term:

The set AFΣ(X) of many-sorted atomic Σ-formulas with variables in X
is the least set satisfying the following rules:
(1) pw(t1, . . . , tn) ∈ AFΣ(X), if ti ∈ TΣ(X)si , p ∈ Pw, w = s1 . . . sn ∈ S∗,
(2) t

e
= t′ ∈ AFΣ(X), if t, t′ ∈ TΣ(X)s, s ∈ S (existential equations),

(3) t = t′ ∈ AFΣ(X), if t, t′ ∈ TΣ(X)s, s ∈ S (strong equations),
(4) def t ∈ AFΣ(X), if t ∈ TΣ(X)s, s ∈ S (definedness assertions).

The set FOΣ(X) of many-sorted first-order Σ-formulas with variables in
X is the least set satisfying the following rules:
(1) AFΣ(X) ⊆ FOΣ(X),
(2) F ∈ FOΣ(X) (read: false),
(3) (ϕ ∧ ψ) ∈ FOΣ(X) and (ϕ⇒ ψ) ∈ FOΣ(X) for ϕ, ψ ∈ FOΣ(X),
(4) (∀x : s • ϕ) ∈ FOΣ(X) for ϕ ∈ FOΣ(X ∪ {x : s}), s ∈ S.

We omit brackets whenever this is unambiguous and use the usual abbre-
viations: ¬ϕ for ϕ⇒ F , ϕ∨ψ for ¬(¬ϕ∧¬ψ), T for ¬ F and ∃x : s •ϕ for
¬∀x : s • ¬ϕ.

A sort generation constraint states that some set of sorts is generated by
some set of functions. Technically, sort generation constraints also contain a
signature morphism component; this is needed to be able to translate them
along signature morphisms without sacrificing the satisfaction condition.

Formally, a sort generation constraint over a signature Σ is a triple (
•
S,
•
F

, θ), where θ: Σ̄−→Σ, Σ̄ = (S̄, T̄F , P̄F , P̄ ),
•
S⊆ S̄ and

•
F⊆ ¯TF ∪ P̄F .

Now a Σ-sentence is a closed many-sorted first-order Σ-formula (i.e. a
many-sorted first-order Σ-formula in the empty set of variables), or a sort
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generation constraint over Σ.
Given a signature morphism σ: Σ−→Σ′ and variable system X over Σ,

we can get a variable system σ(X) over Σ′ by putting

σ(X)s′ =
⋃

σS(s)=s′

Xs

Since the term algebra is total, the inclusion ζσ,X :X−→TΣ′(σ(X))|σ (con-
strued as a variable valuation) leads to a term evaluation function

ζ#
σ,X :TΣ(X)−→TΣ′(σ(X))|σ

that is total as well. This can be inductively extended to a translation of
Σ-first order formulas along σ:
• σ(t) = ζ#

σ,X(t), if t is a Σ-term in variables X,
• σ(pw(t1, . . . , tn)) = σPw (p)σS∗ (w)(σ(t1), . . . , σ(tn)),

• σ(t
e
= t′) = σ(t)

e
= σ(t′),

• σ(t = t′) = σ(t) = σ(t′),
• σ(def t) = def σ(t),
• σ(F ) = F ,
• σ(ϕ ∧ ψ) = σ(ϕ) ∧ σ(ψ),
• σ(∀x : s • ϕ) = ∀x : σS(s) • σ(ϕ).

The translation of a Σ-constraint (
•
S,
•
F, θ) along σ is the Σ′-constraint

(
•
S,
•
F, σ ◦ θ).

It is easy to see that the sentence translation along the identity signa-
ture morphism is the identity, and that the sentence translation along a
composition of two signature morphisms is is the composition of the sen-
tence translations along the individual signature morphisms. Hence, sen-
tence translation functorial.

Satisfaction Relation Even though the evaluation of a term w.r.t. a variable
assignment may be undefined, the evaluation of a formula is always defined
(and it is either true or false). That is, we have a two-valued logic. The
application of a predicate symbol p to a sequence of argument terms holds
w.r.t. a valuation ν:X−→M iff the values of all the terms are defined under
ν# and give a tuple belonging to pM . A definedness assertion concerning a
term holds iff the value of the term is defined. An existential equation holds
iff the values of both terms are defined and identical, whereas a strong
equation holds also when the values of both terms are undefined; thus both
notions of equation coincide for defined terms.

More formally, satisfaction of a formula ϕ ∈ FOΣ(X) by a variable valu-
ation ν:X−→M is defined inductively over the structure of ϕ:
• ν `̀ Σ pw(t1, . . . , tn) iff ν#(ti) is defined (i = 1, . . . , n) and, moreover,

(ν#(t1), . . . , ν#(tn)) ∈ (pw)M
• ν `̀ Σ t1

e
= t2 iff ν#(t1) and ν#(t2) are both defined and equal,

• ν `̀ Σ t1 = t2 iff ν#(t1) and ν#(t2) are either both defined and equal, or
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both undefined,
• ν `̀ Σ def t iff ν#(t) is defined,
• not ν `̀ Σ F
• ν `̀ Σ (ϕ ∧ ψ) iff ν `̀ Σ ϕ and ν `̀ Σ ψ
• ν `̀ Σ (ϕ⇒ ψ) iff ν `̀ Σ ϕ implies ν `̀ Σ ψ
• ν `̀ Σ (∀x : s • ϕ) iff for all valuations ξ:X ∪ {x : s}−→M which extend
ν on X \ {x : s} (i.e., ξ(x) = ν(x) for x ∈ X \ {x : s}), we have ξ `̀ Σ ϕ.

A formula ϕ is satisfied in a model M (written M |= ϕ) iff it is satisfied
w.r.t. all variable valuations into M .

A Σ-constraint (
•
S,
•
F, θ) satisfied in a Σ-model M , if the carriers of M |θ

of the sorts in
•
S are generated by the function symbols in

•
F , i.e. for every

sort s ∈
•
S and every value a ∈ (M |θ)s, there is a Σ̄-term t containing only

function symbols from
•
F and variables of sorts not in

•
S such that ν#(t) = a

for some assignment ν into M |θ.
For a sort generation constraint (

•
S,
•
F, θ) we can assume without loss of

generality that all the result sorts of function symbols in
•
F occur in

•
S. If

not, we can just leave out from
•
F those function symbols not satisfying this

requirement. The satisfaction of the sort generation constraint in any model
will not be affected by this: in the Σ̄-term t witnessing the satisfaction of the

constraint, any application of a function symbol with result sort outside
•
S

can just be replaced by a variable of that sort, which gets then as assigned
value the evaluation of the function application.

Concerning the satisfaction condition, we need the following two lemmas:
Lemma 3.2 Let a signature morphism σ: Σ−→Σ′, a Σ′-model M ′, and a
variable system X over Σ be given. Then for each valuation ν:σ(X)−→M ′,
there is valuation ν|σ:X−→M ′|σ such that ν#|σ ◦ ζ#

σ,X = (ν|σ)#. Moreover,
this is a one-one correspondence.

|TΣ(X)|

ζ#
σ,X

��

(ν|σ)#

''OOOOOOOOOOO

|M ′|σ|

|TΣ′(σ(X))|σ|

ν#|σ
77ppppppppppp

Proof. We put

(ν|σ)s(x) := νσ(s)(x) for x ∈ Xs.

The inverse is given by

(( |σ)−1(ν))s′(x) := νs(x),

where s is the unique s ∈ S with x ∈ Xs and σ(s) = s′.
The property ν#|σ ◦ ζ#

σ,X = (ν|σ)# follows by induction over TΣ(X). 2
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Lemma 3.3 Given a signature morphism σ: Σ −→ Σ′, a Σ′-model M , a
variable system X over Σ, and a formula ϕ ∈ FOΣ(X), we have

ν|σ `̀ ϕ iff ν `̀ σ(ϕ)

Proof. Induction over ϕ.
E.g. for strong equations, we have ν|σ `̀ t1 = t2

iff (ν|σ)#(t1) = (ν|σ)#(t2) (or both sides are undefined)
iff (by Lemma 3.2) ν#◦ζ#

σ,X(t1) = ν#◦ζ#
σ,X(t2) (or both sides are undefined)

iff (by definition) ν#(σ(t1)) = ν#(σ(t2)) (or both sides are undefined)
iff ν `̀ σ(t1 = t2).

For quantifications, we have ν|σ `̀ ∀x : s • ψ iff for all ξ:X ∪ {x : s}−→
M ′|σ extending ν|σ on X \ {x : s}, ξ `̀ ψ iff (by induction hypothesis) for
all ξ:X ∪ {x : s}−→M ′|σ extending ν|σ on X \ {x : s}, ( |σ)−1(ξ) `̀ σ(ψ)
iff (since |σ is one-one) for all ρ:σ(X ∪ {x : s}) −→ M ′ extending ν on
σ(X) \ {x : σ(s)}, ρ `̀ σ(ψ) iff ν `̀ ∀x : σ(s) • σ(ψ).

The other cases are treated similarly. 2

The satisfaction condition for first-order formulas now follows easily from
Lemma 3.3 (noting that by Lemma 3.2 σ is surjective on valuations).

The satisfaction condition for sort generation constraints is obvious (in-
deed, the extra signature morphism component in the sort generation con-
straints has been introduced to make it work).

This completes the definition of the institution PCFOL=. 2

3.2 Subsorted Partial First-Order Logic

Subsorted partial first-order logic is defined in terms of partial first-order logic.
The basic idea is to reduce subsorting to injections between sorts. While in the
subsorted institution, these injections have to occur explicitly in the sentences,
in the Casl language, they may be left implicit. Apart from the injections,
one also has partial projection functions (one-sided inverses of the injections)
and membership predicates.

Definition 3.4 The institution SubPCFOL=.

Signatures The notion of subsorted signatures extends the notion of order-
sorted signatures as given by Goguen and Meseguer [36], by allowing not
only total function symbols, but also partial function symbols and predicate
symbols:

A subsorted signature Σ = (S,TF ,PF , P,≤S) consists of a many-sorted
signature (S,TF ,PF , P ) together with a reflexive transitive subsort relation
≤S on the set S of sorts. Note that ≤S is not required to be antisymmetric;
this allows to declare isomorphic sorts, where the injections correspond to
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change of representations.
The relation ≤S extends pointwise to sequences of sorts. We drop the

subscript S when obvious from the context.
For a subsorted signature, Σ = (S,TF ,PF , P,≤S), we define overloading

relations (also called monotonicity orderings), ∼F and ∼P , for function and
predicate symbols, respectively:

Let f : w1 −→ s1, f : w2 −→ s2 ∈ TF ∪ PF , then

f : w1 −→ s1 ∼F f : w2 −→ s2

iff there exist w ∈ S∗ with w ≤ w1 and w ≤ w2 and s ∈ S with s1 ≤ s and
s2 ≤ s.

Let p : w1, p : w2 ∈ P , then p : w1 ∼P p : w2 iff there exists w ∈ S∗ with
w ≤ w1 and w ≤ w2.

A signature morphism σ : Σ → Σ′ is a many-sorted signature morphism
that preserves the subsort relation and the overloading relations. Note that,
due to preservation of subsorting, the preservation of the overloading rela-
tions can be simplified to:

f : w1 −→ s1 ∼F f : w2 −→ s2 implies σFw1,s1
(f) = σFw2,s2

(f)

p : w1 ∼P p : w2 implies σPw1
(p) = σPw2

(p)

With each subsorted signature Σ = (S,TF ,PF , P,≤S) we associate a
many-sorted signature Σ̂, which is the extension of the underlying many-
sorted signature (S,TF ,PF , P ) with
• a total injection function symbol inj : s → s′, for each pair of sorts
s ≤S s′,
• a partial projection function symbol pr : s′ →? s, for each pair of sorts
s ≤S s′, and
• a unary membership predicate symbol ∈s: s′, for each pair of sorts s ≤S s′.
We assume that the symbols used for injection, projection and membership
are not used otherwise in Σ. In formulas, we also write t ∈ s instead of
∈ss′ (t) if s′ is clear from the context.

Given a signature morphism σ: Σ−→Σ′, we can extend it to a signature
morphism σ̂: Σ̂−→ Σ̂′ by just mapping the injections, projections and mem-
berships in Σ̂ to the corresponding injections, projections and memberships
in Σ̂′. This turns ˆ into a functor ˆ: SignSubPCFOL

=−→SignPCFOL
=

.
Models Subsorted Σ-models are ordinary many-sorted Σ̂-models satisfying

the following set of axioms Ĵ(Σ) (where the variables are all universally
quantified):
inj(s,s)(x)

e
= x (identity)

inj(s,s′)(x)
e
= inj(s,s′)(y)⇒ x

e
= y for s ≤S s′ (embedding-injectivity)

inj(s′,s′′)(inj(s,s′)(x))
e
= inj(s,s′′)(x) for s ≤S s′ ≤S s′′ (transitivity)

pr(s′,s)(inj(s,s′)(x))
e
= x for s ≤S s′ (projection)

pr(s′,s)(x)
e
= pr(s′,s)(y)⇒ x

e
= y for s ≤S s′ (projection-injectivity)
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∈ss′ (x)⇔ def pr(s′,s)(x) for s ≤S s′ (membership)

inj(s′,s)(fw′,s′(inj(s1,s′1)(x1), . . . , inj(sn,s′n)(xn))) =

= inj(s′′,s)(fw′′,s′′(inj(s1,s′′1 )(x1), . . . , inj(sn,s′′n)(xn)))

for fw′,s′ ∼F fw′′,s′′ , where w ≤ w′, w′′, w = s1 . . . sn, w′ = s′1 . . . s
′
n,

w′′ = s′′1 . . . s
′′
n and s′, s′′ ≤ s (function-monotonicity)

pw′(inj(s1,s′1)(x1), .., inj(sn,s′n)(xn))⇔ pw′′(inj(s1,s′′1 )(x1), .., inj(sn,s′′n)(xn))

for pw′ ∼P pw′′ , where w ≤ w′, w′′, w = s1 . . . sn, w′ = s′1 . . . s
′
n, and

w′′ = s′′1 . . . s
′′
n (predicate-monotonicity)

Σ-homomorphisms are Σ̂-homomorphisms.
Lemma 3.5 Let σ: Σ−→Σ′ be a subsorted signature morphism. Then

SenPCFOL
=

(σ̂)(Ĵ(Σ)) ⊆ Ĵ(Σ′)

Proof. σ̂ preserves subsorting, injections, projections, membership and the
overloading relations ∼F and ∼P . Now the sentences in Ĵ(Σ) and Ĵ(Σ′) just
correspond to these. 2

To obtain a reduct of a subsorted Σ′-model M ′ along a subsorted sig-
nature morphism σ: Σ −→ Σ′, take the the many-sorted reduct M ′|σ̂ =
ModPCFOL

=

(σ̂)(M ′) of M ′ along σ̂: Σ̂ −→ Σ̂′. By definition of subsorted
model, M ′ |=PCFOL=

Σ̂′
Ĵ(Σ′). By the lemma,

M ′ |=PCFOL=

Σ̂′
SenPCFOL

=

(σ̂)(Ĵ(Σ)).

From this, we get by the satisfaction condition for PCFOL=

ModPCFOL
=

(σ̂)(M ′) |=PCFOL=

Σ̂
Ĵ(Σ).

Thus, ModPCFOL
=

(σ̂)(M ′) is a subsorted Σ-model, and hence, we can define
ModSubPCFOL

=

(σ)(M ′) to be ModPCFOL
=

(σ̂)(M ′).
Sentences Subsorted Σ-sentences are ordinary many-sorted Σ̂-sentences. Sen-

tence translation along a subsorted signature morphism σ is just sentence
translation along the many-sorted signature morphism σ̂.

Satisfaction Since models and sentences are taken from PCFOL=, satis-
faction, as well as the satisfaction condition, can also be inherited from
PCFOL=.

This completes the definition of the institution SubPCFOL=. 2

3.3 Casl Language Constructs

Since the level of constructs will be treated only informally in this work, we
just give a brief overview of the constructs for writing basic specifications (i.e.
specifications in-the-small) in Casl. A detailed description can be found in
the Casl Language Summary [22] and the Casl semantics [23].
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The Casl language provides constructs for writing sort, subsort, operation 10

and predicate declarations that contribute to the signature in the obvious
way. Operations, predicates and subsorts can also be defined; this leads to a
corresponding declaration plus a defining axiom.

Operation and predicate symbols may be overloaded; this may lead to am-
biguities in the formulas. A formula is well-formed only if it has a unique
fully-qualified expansion up to equivalence w.r.t. the overloading relations ∼F
and ∼P .

For operations and predicates, a mixfix syntax is provided. Precedence and
associativity annotations may help to disambiguate terms containing mixfix
symbols. There is also a syntax for literals such as numbers and strings, which
allows the specification of the usual datatypes purely in Casl, without the
need of magic built-in modules.

Binary operations can be declared to be associative, commutative, idempotent,
or to have a unit. This leads to a corresponding axiom, and, in the case of
associativity, to an associativity annotation.

The type, free type and generated type constructs allow the concise de-
scription of datatypes. They are expanded into the declaration of the corre-
sponding constructor and selector operations and axioms relating the selectors
and constructors. In the case of generated and free datatypes, also a sort gen-
eration constraint is produced. Free datatypes additionally lead to axioms that
state the injectivity of the constructors and the disjointness of their images.

A typical Casl specification is shown in Fig. 1. Its translation to a presenta-
tion in SubPCFOL=, the institution underlying Casl, is shown in Fig. 2. The
translation has been generated with the CASL tool set [51] and uses the Casl

notation to display theories in SubPCFOL=. However, the notations are so
close to each other that it should be easy to understand Fig. 2. The transla-
tion of Casl constructs to the underlying mathematical concepts is formally
defined in the Casl semantics [23]. Since such a formal semantics is missing
for most other languages, we discuss language constructs only informally in
this paper.

3.4 Subinstitutions of Casl

Despite being first-order, Casl is a quite rich and complex language. When
relating Casl to other languages, it is quite useful to single out sublanguages
of Casl. Here, we define a number of subinstitutions of the Casl institution

10 At the level of constructs, functions are called operations.

48



%list [ ], nil , ::
%prec { :: } < { ++ }

spec List [sort Elem] =
free type List [Elem] ::= nil | :: (head :? Elem; tail :? List [Elem]);
sort NEList [Elem] = {L : List [Elem] • ¬L = nil};
op ++ : List [Elem]× List [Elem]→ List [Elem];
forall e : Elem; K ,L : List [Elem]

• nil ++L = L %(concat nil)%
• (e :: K ) ++L = e :: K ++L %(concat cons)%

end

Fig. 1. Specification of lists over an arbitrary element sort in Casl.

SubPCFOL=. The corresponding restriction of the Casl language is then
straightforward, see [56].

Below, we define subinstitutions of SubPCFOL= by just imposing restrictions
on the signatures and/or axioms. This implicitly means that we take the full
subcategory of signatures satisfying the restriction, and restrict the model and
sentence functors and the satisfaction relation to this signature subcategory.
A restriction on sentences further leads to the replacement of the sentence
functor by a subfunctor. In each case, it is quite obvious to construct the
corresponding subinstitution representation into SubPCFOL=.

3.4.1 A Number of Features of Casl

In this section, we describe a number of Casl’s features negatively by spec-
ifying, for each feature, the subinstitution of Casl that leaves out exactly
that feature. This is possible since Casl is already the combination of all its
features. A combination of only some of Casl’s features can then be obtained
by intersecting all those subinstitutions that exclude exactly one of the unde-
sired features. (Note that the combination of features from scratch is far more
complicated [62].)

3.4.1.1 Partiality The institution SubCFOL= is the restriction of the
institution SubPCFOL= to those signatures with an empty set of partial
function symbols and those sentences that do not involve partial projection
symbols. Note that SubCFOL=, like SubPCFOL=, is still defined via a reduc-
tion to PCFOL=, which involves signatures Σ̂ containing partial projection
symbols. However, these symbols are not used in the sentences, and they are
redundant in the models (meaning that leaving them out leads to isomorphic
model categories). Thus, it is justified to call SubCFOL= an institution of
total algebras.
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spec List[sort Elem] =
sorts NEList [Elem] < List [Elem]
ops + + : List [Elem]× List [Elem]→ List [Elem];

:: : Elem × List [Elem]→ List [Elem];
head : List [Elem]→? Elem;
nil : List [Elem];
tail : List [Elem]→? List [Elem]

generated
{ sort List [Elem]

ops :: : Elem × List [Elem]→ List [Elem];
nil : List [Elem] }

forall X0 : Elem; X1 : List [Elem]
• X0 =

(op head : List [Elem]→? Elem)(
(op :: : Elem × List [Elem]→ List [Elem])(X0 ,X1 ))

%(selector head)%
forall X0 : Elem; X1 : List [Elem]
• X1 : List [Elem] =

(op tail : List [Elem]→? List [Elem])(
(op :: : Elem × List [Elem]→ List [Elem])(X0 ,X1 ))

%(selector tail)%
forall Y0 : Elem; Y1 : List [Elem]
• ¬ (op nil : List [Elem]) =

(op :: : Elem × List [Elem]→ List [Elem])(Y0 ,Y1 )
%(disjoint nil :: )%

forall X0 : Elem; X1 : List [Elem]; Y0 : Elem; Y1 : List [Elem]
• (op :: : Elem × List [Elem]→ List [Elem])(X0 ,X1 ) =

(op :: : Elem × List [Elem]→ List [Elem])(Y0 ,Y1 )
⇒ X0 = Y0 ∧ X1 = Y1 %(injective :: )%

forall L : List [Elem]
• L ∈ NEList [Elem] ⇔ ¬ L = (op nil : List [Elem])

%(subsort defn NEList [Elem])%
forall K : List [Elem]
• (op + + : List [Elem]× List [Elem]→ List [Elem])(

(op nil : List [Elem]),L) = L %(concat nil)%
forall e : Elem; K : List [Elem]; L : List [Elem]
• (op + + : List [Elem]× List [Elem]→ List [Elem])(

(op :: : Elem × List [Elem]→ List [Elem])(e,K ),L) =
(op :: : Elem × List [Elem]→ List [Elem])(e,
(op + + : List [Elem]× List [Elem]→ List [Elem])(K ,L))

%(concat cons)%
end

Fig. 2. Translation of the specification List to a presentation in SubPCFOL=.
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3.4.1.2 Predicates The institution SubPCFOAlg= is the restriction of
SubPCFOL= to those signatures with an empty set of predicate symbols.
Note that the signatures Σ̂ and therefore the sentences in SubPCFOAlg=

do involve membership predicate symbols. In the OBJ community, these are
called “sort constraints”. That is, SubPCFOAlg= includes subsorting with
sort constraints. In Section 10, we will also consider subsorting without sort
constraints. (Note that sort constraints should not be confused with sort gen-
eration constraints.)

3.4.1.3 Subsorting The institution PCFOL= has already been defined.
It can be made into a subinstitution of SubPCFOL= by extending each sig-
nature with the trivial subsort relation (i.e., the subsort relation which is the
identity relation on the set of sorts).

3.4.1.4 Sort Generation Constraints The institution SubPFOL= is
the restriction of the institution SubPCFOL= to those sentences that are not
sort generation constraints.

3.4.1.5 Equality The institution SubPCFOL is the restriction of the in-
stitution SubPCFOL= to those sentences that involve neither strong nor ex-
istential equality.

3.4.2 A Number of Levels of Axiom Expressiveness

In the sequel, we introduce a number of subinstitutions of SubPCFOL= that
correspond to different levels of expressiveness of the axioms. In contrast to
the previous subsection, these are not orthogonal features, but rather we get
a hierarchy of expressiveness.

3.4.2.1 First-order Logic This is given by SubPCFOL=, which trivially
is a subinstitution of itself.

3.4.2.2 Positive Conditional Logic Positive conditional logic more pre-
cisely means: universally quantified positive conditional logic. Usually this
means that formulas are restricted to universally quantified implications that
consist of a premise that is a conjunction of atoms, and a conclusion that is
an atom:

∀x1 : s1 . . . ∀xk : sk • ϕ1 ∧ . . . ∧ ϕm ⇒ ϕ
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Positive conditional means that the ϕi must not implicitly contain negative
parts. Usually, this condition is satisfied by atomic formulas. However, strong
equations are implicit implications (if one side is defined, then so is the other,
and they are equal), and the premise of an implication is a negative part of
a formula. Hence, strong equations may not occur in the premises of positive
conditional axioms (they are harmless in the conclusion, since the implicit
premise can be thought of as an additional premise of the whole implication).
The main motivation for this is that we want to use proof techniques such
as conditional term rewriting and paramodulation [67] and semantical con-
structions such as initial models. These work only if strong equations are not
allowed in the premises (see [16,5]).

Let SubPCHorn= be the restriction of SubPCFOL= to sentences of form

∀x1 : s1 . . . ∀xk : sk • ϕ1 ∧ . . . ∧ ϕm ⇒ ϕ

where the ϕi and ϕ are atomic formulas such that none of the ϕi is a strong
equation.

3.4.2.3 Generalized Positive Conditional Logic In the following, we
generalize the above form of positive conditional formulas. Each formula of
this more general kind is equivalent to a set of formulas of the standard con-
ditional kind. Thus, there is an easy transformation from generalized positive
conditional logic to plain positive conditional logic.

Within generalized positive conditional formulas, we also allow

• conjunctions of atoms in the conclusion (they can be removed by writing,
for each conjunct, an implication with the original premise and the conjunct
as conclusion), and
• equivalences instead of implications (an equivalence is equivalent to two

implications).

Thus, let SubPCGHorn= be the restriction of SubPCFOL= to sentences of
form

∀x1 : s1 . . . ∀xk : sk • ϕ1 ∧ . . . ∧ ϕm ⇒ ψ1 ∧ . . . ∧ ψn
where the ϕi and ψj are atomic formulas such that none of the ϕi is a strong
equation, or of form

∀x1 : s1 . . . ∀xk : sk • ϕ1 ∧ . . . ∧ ϕm ⇔ ψ1 ∧ . . . ∧ ψn

where the ϕi and ψj are atomic formulas that are not strong equations.
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3.4.2.4 Atomic Logic Let SubPCAtom= be the restriction of SubPCFOL=

to sentences of form

∀x1 : s1 . . . ∀xn : sn • ϕ
where ϕ is an atomic formula not being a strong equation.

This is the restriction of conditional logic to unconditional formulas. Strong
equations are removed due to their conditional nature: in [53] it is proved that
strong equations can simulate positive conditional formulas.

3.4.3 A Terminology for Naming Casl Subinstitutions

We now give a two-component name to the various subinstitutions that can
be obtained by combining Casl’s features. The first component is a vector
of tokens. The presence (or absence) of a token denotes the presence (or ab-
sence) of a corresponding feature (cf. Section 3.4.1). The second component
determines the level of expressiveness due to Section 3.4.2.

We assign the following tokens to the features:

• Sub stands for subsorting,
• P stands for partiality,
• C stands for sort generation constraints, and
• an equality symbol (=) stands for equality.

There is a naming problem with the predicate feature. Firstly, the letter P
already stands for partiality. Secondly, FOL for first-order logic or Horn for
Horn clause logic have become quite standard, but do not contain a token
corresponding to predicates. Therefore, we deal with the predicate feature
together with the levels of expressiveness from Section 3.4.2:

With predicates, we have the following endings:

• FOL stands for the unrestricted form of axioms (first-order logic),
• GHorn stands for the restriction to generalized positive conditional logic,
• Horn stands for the restriction to positive conditional logic,
• Atom stands for the restriction to atomic logic.

Without predicates, we have the following endings:

• FOAlg stands for the unrestricted form of axioms (first-order logic),
• GCond stands for the restriction to generalized positive conditional logic,
• Cond stands for the restriction to positive conditional logic,
• Eq stands for the restriction to atomic logic.

Any subset of the set of the four tokens Sub, P , C and =, followed by any of
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the eight above introduced endings now denotes the subinstitution obtained
by intersecting

• the subinstitution of SubPCFOL= corresponding to the ending with
• the intersection of all the subinstitutions of SubPCFOL= associated to

those letters not occurring in the set of tokens.

We finally adopt the convention that the equality sign = is always put at the
end, as a superscript.

3.4.4 Some Interesting Subinstitutions of Casl

This section shall help to understand what the above naming scheme means
in practice.

SubPCFOL= (read: subsorted partial constraint first-order logic with equal-
ity). This is the logic of Casl itself!

SubPFOL= (read: subsorted partial first-order logic with equality). Casl

without sort generation constraints. This is described in [17].
FOL= Standard many-sorted first-order logic with equality.
PFOL= Partial many-sorted first-order logic with equality.
FOAlg= First-order algebra (i.e., no predicates).
SubPHorn= This is the positive conditional fragment of Casl. It has two

important properties:
(1) Initial models and free extensions exist (see Theorem 4.16).
(2) Using a suitable encoding of subsorting and partiality, one can use con-

ditional term rewriting or paramodulation [67] for theorem proving.
SubPCHorn= The positive conditional fragment plus sort generation con-

straints. Compared with SubPHorn=, one has to add induction techniques
to the theorem proving tools.

PCond= These are Burmeister’s partial quasi-varieties [14] modulo the fact
the Burmeister does not have total function symbols. But total function
symbols can be easily simulated by partial ones, using totality axioms, as
in the partly total algebras of [15]. A suitable restriction leads to Reichel’s
HEP-theories [70]. Meseguer’s Rewriting Logic [48] can be embedded into
PCond=.

Horn= This is Eqlog [34,67]. By further restricting this we get Membership
Equational Logic MEqtl [49], Equational Type Logic [46] and Unified Alge-
bras [63]. Of course, Membership Equational Logic, Equational Type Logic
and Unified Algebras are not just restrictions of Horn=, but all have been
invented in order to represent more complex logics within a subset ofHorn=.

Horn Logic Programming (Pure Prolog) [45].
SubCond= Subsorted conditional logic. This is similar but not equal to OBJ

[38], see Section 10.
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Cond= This is many-sorted conditional equational logic [76] .
SubPAtom The atomic subset of Casl. Unconditional term rewriting be-

comes applicable.
SubPCAtom The atomic subset plus sort generation constraints.
Eq= This is the classical equational logic [37].
CEq= Equational logic plus sort generation constraints.

In the literature, some of the above institutions are typically defined in a way
allowing empty carrier sets, while Casl excludes empty carriers. This problem
is discussed in Section 11.2.

4 Representations Among Subinstitutions of Casl

In order to relate subinstitutions of Casl, we relate their underlying institu-
tions. We therefore use the notion of institution representations (also called
simple maps of institutions) [47,74] introduced in Section 2.

4.1 The First-Order Level

The diagram in Fig. 3 shows that the first-order subinstitutions of Casl have
all the same expressiveness, except from FOL, which is a bit weaker (FOL=

can be represented in FOL only with a representation admitting model ex-
pansion, but not as a subinstitution). Some of the arrows are labeled with
numbers in brackets; this refers to later subsections where the corresponding
representations are described in detail. Obvious subinstitution representations
are not labeled.

Another diagram, shown in Fig. 4, can be obtained by adding a “C” to each
institution in Fig. 3. We also have added the institution SOL= (second-order
logic with equality), a superinstitution of FOL=, which is strong enough to ex-
press sort generation constraints directly. The institutions in Fig. 4 are strictly
more expressive than those in Fig. 3, since sort generation constraints cannot
be expressed within first-order logic (since sort generation constraints can be
used to specify the natural numbers up to isomorphism, this follows from
Gödel’s incompleteness theorem).

The institution SOL= of second-order logic can be described as follows:

Signatures Signatures and signature morphisms are those of FOL=.
Models Models, model homomorphisms and reducts are that of FOL=.
Sentences Σ-sentences may contain variables that may be typed not only

with sorts, but also with function types w −→ s or predicate types pred(w),
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� � // 5. Subinstitution: Borrowing of entailment and refinement for all

structured specifications

Fig. 3. The first-order level

where w ∈ S∗, s ∈ S. Quantification within sentences over variables of these
higher types is also allowed. Variables of function or predicate types may
be applied to arguments, like function and predicate symbols in FOL=.

Satisfaction The satisfaction is defined much as in FOL=, with the exception
that valuations map variables of a function type to functions of that type,
and variables of a predicate type to predicates of that type. 2

4.1.1 (1): Mapping FOL= to FOL

The idea here is simply to replace equality by a congruence relation.

Signatures A FOL=-signature Σ is mapped to the FOL−presentation Φ(Σ)
that extends Σ by adding predicate symbols ≡: s × s (overloaded for each
sort s) that are axiomatized to be a congruence (also w.r.t. the predicates).

Models A model M is translated by factoring its carriers w.r.t. ≡. The func-
tions and predicates can act on the equivalence classes because≡ is a congru-
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Fig. 4. The first-order level with sort generation constraints (index: see Fig. 3).

ence. A homomorphism h:M−→M ′ is translated to h̄ with h̄([a]) = [h(a)]
(where [a] is the congruence class of a). This is well-defined since a ≡M a′

implies h(a) ≡M ′ h(a′) (predicates are preserved by homomorphisms).
Sentences Sentence translation is done by replacing = by ≡.
Satisfaction To prove the representation condition, define a mapping on val-

uations as follows: Given a Φ(Σ)-model M ′ and a valuation ν:X −→M ′,
define β(ν):X−→βΣ(M ′) by

β(ν)s(x) := [ν(x)] for x ∈ Xs.

We then have
β(ν)#(t) = [ν#(t)],

which can be easily proved by induction over t, using the congruence axioms.
By induction over ϕ ∈ Sen(Σ), we can now show that

ν `̀ αΣ(ϕ) iff β(ν) `̀ ϕ.

Concerning e.g. strong equations, we have ν `̀ αΣ(t1 = t2) iff ν `̀ t1 ≡ t2
iff ν#(t1) ≡M ′ ν#(t2) iff [ν#(t1)] = [ν#(t2)] iff β(ν)#(t1) = β(ν)#(t2) iff
β(ν) `̀ t1 = t2.

Concerning predicate applications, ν `̀ αΣ(p(t1, . . . , tn)) iff ν `̀ p(t1, . . . , tn)
iff (ν#(t1), . . . , ν#(tn)) ∈ PM ′ iff (by the congruence axiom for p) ([ν#(t1)], . . . ,
[ν#(tn)]) ∈ PβΣ(M ′) iff ((β(ν))#(t1), . . . , (β(ν))#(tn)) ∈ PβΣ(M ′) iff β(ν) `̀
p(t1, . . . , tn).

Concerning quantification, ν `̀ ∀x : s •αΣ(ψ) iff for all ξ:X ∪{x : s}−→
M ′ extending ν on X \ {x : s}, ξ `̀ αΣ(ψ) iff (by induction hypothesis)
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for all ξ:X ∪ {x : s} −→M ′ extending ν on X \ {x : s}, β(ξ) `̀ ϕ iff for
all ρ:X ∪ {x : s} −→ βΣ(M ′) extending β(ν) on X \ {x : s}, ρ `̀ ϕ iff
β(ν) `̀ ∀x : s • ϕ.

The other cases are treated similarly. The representation condition now
follows by noting that β is surjective on valuations. 2

The representation can be seen to admit model expansion as follows: Given a
Σ-model M in FOL=, turn it into a Φ(Σ)-model by letting ≡ be interpreted as
the identity relation. This model is a pre-image of M under the model trans-
lation. However, the representation is not persistently liberal: for example, let
Σ consist of just one sort, let M be the Σ-model consisting of two points, and
let M ′ be the Φ(Σ)-model consisting of two equivalent points. Then there is
just one homomorphism from M to βΣ(M ′). If the representation were per-
sistently liberal, there would have to be just one homomorphism from γΣ(M)
to M ′ as well. But this is impossible, since then γΣ(M) would have to be
empty (even if empty carriers were allowed, this still would contradict the
requirement βΣ(γΣ(M)) = M).

Note that the representation cannot be generalized to the level of sort gen-
eration constraints in a straightforward way, because these are not preserved
along taking quotients: Let Nat be the signature consisting of a sort Nat
and two total function symbols 0 : Nat and suc:Nat −→ Nat. Let M ′ be
the Φ(Nat)-model consisting of two copies of the natural numbers, which are
identified by the congruence relation. Since the constant 0 yields the zero only
of one copy of the naturals, M is not term-generated. However βΣ(M) consist
of just one copy of the naturals and therefore is term-generated.

4.1.2 (2) and (2′): Mapping (C)FOL= to (C)FOAlg=

Here, the idea is to replace predicates by Boolean-valued functions. Note that
the Booleans can be axiomatized monomorphically in FOAlg=.

Signatures A signature is mapped by adding the presentation Bool and
replacing each predicate symbol p : w by a total function symbol fp:w−→
Bool

spec Bool =
sort Bool
ops True,False : Bool
forall b : Bool
• b = True ∨ b = False
• ¬ True = False

end
Strictly speaking, Bool has to be renamed in order to become disjoint with
the signature.
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Models A model is translated by replacing each Bool-valued function by the
corresponding predicate.

Sentences Sentence translation is done by replacing atomic formulas

pw(t1, . . . , tn)

by

(fp)w,Bool(t1, . . . , tn) = TrueBool.

Sort generation constraints are left unchanged.
Satisfaction The representation condition is proved in a straightforward

way. 2

It is also straightforward to show that this gives a model-bijective institution
representation. Note, however, that we do not get a subinstitution represen-
tation. This is because homomorphisms in FOL= need to preserve just truth
(but not falsehood) of predicates, while homomorphisms in the representa-
tion in FOAlg= need to preserve both truth and falsehood of (represented)
predicates.

Indeed, we conjecture that there cannot be a subinstitution representation
from FOL= to FOAlg= since FOL= is strictly more expressive than FOAlg=

w.r.t. a construct that actually exploits the homomorphisms: with the free
construct, it is possible to express the transitive closure of an arbitrary (pa-
rameter) relation, while we conjecture that this is not possible in FOAlg=.

4.1.3 (3) and (3′): Mapping SubP (C)FOL= to P (C)FOL=

The translation of SubP (C)FOL = to P (C)FOL = is trivial, since SubPCFOL=

is defined in terms of PCFOL=:

Signatures A signature Σ is mapped to the presentation (Σ̂, Ĵ(Σ)).
Models Model translation is the identity.
Sentences Sentence translation is the identity.
Satisfaction The representation condition follows immediately. 2

This trivially gives a subinstitution representation.

4.1.4 (4) and (4a): Mapping PFOL= to FOL=

A translation of PFOL= into FOL= is described in [19]. We refine this transla-
tion here. The main idea is to use a definedness predicate to divide each carrier
into “defined” and “undefined” elements. The “defined” elements represent
ordinary values, while the “undefined” elements all represent the undefined.
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Partial functions thus can be totalized: they possibly yield an “undefined” el-
ement. We specify that there is at least one “undefined” element ⊥; however,
it may be not the only one.

Signatures A PFOL=-signature Σ = (S, TF, PF, P ) is translated to a FOL=-
presentation having the signature

Sig(Φ(Σ)) = (S, TF ] PF ] {⊥ : s | s ∈ S}, P ] {D : s | s ∈ S})

and the set of axioms Ax(Φ(Σ)):
∃x : s •Ds(x) s ∈ S (1)
¬Ds(⊥s) s ∈ S (2)
Ds(f(x1, . . . , xn))⇔ ∧

i=1..nDsi(xi) f : s1, . . . , sn → s ∈ TF (3)
Ds(g(x1, . . . , xn))⇒ ∧

i=1..nDsi(xi) g : s1 . . . sn →? s ∈ PF (4)
p(x1, . . . , xn)⇒ ∧

i=1..nDsi(xi) p: s1 . . . sn ∈ P (5)
D plays the role of a definedness predicate: the elements inside D are

called “defined”, those outside D are called “undefined”. The axioms in the
signature translation state that there is at least one “defined” element (1),
that ⊥ is an “undefined” element (2), total functions are indeed total (3)
and all functions ((3), (4)) and predicates (5) are strict.

A signature morphism σ is translated to a presentation morphism Φ(σ)
which acts as σ on those parts of Φ(Σ) being included from Σ, while it maps
the added structure for a signature component to the added structure for a
mapped component.

Models A Φ(Σ)-structureM (in FOL=) is translated to the partial Σ-structure
βΣ(M) = M ′ (in PFOL=) with
• M ′

s = (Ds)M for s ∈ S,
• fM ′ is fM restricted to M ′

w for f : w → s ∈ TF (this is a total function
by (3)),

• gM ′(a1, . . . , an) =

{
gM(a1, . . . , an), if gM(a1, . . . , an) ∈M ′

s

undefined, otherwise
for g : w →?

s ∈ PF ,
• pM ′ = pM ∩M ′

w for p:w ∈ P .
Homomorphisms are translated by restricting them to the carriers of M ′.

This is well-defined since predicates are preserved by homomorphisms.
Sentences The sentence translation keeps the structure of the sentences and

maps strong and existential equality to appropriate circumscriptions using
the definedness predicate D. Definedness is mapped to D, and quantifiers
are relativized to the set of all defined elements.

Formally, a Σ-sentence ϕ (in PFOL=) is translated to the Φ(Σ)-sentence
αΣ(ϕ):
αΣ(def (t)) = Ds(t) αΣ(t1 = t2) = ((Ds(t1) ∨Ds(t2))⇒ t1 = t2)

αΣ(ϕ ∧ ψ) = αΣ(ϕ) ∧ αΣ(ψ) αΣ(t1
e
= t2) = t1 = t2 ∧Ds(t1)

αΣ(p(t1, . . . , tn)) = p(t1, . . . , tn) αΣ(F ) = F
αΣ(ϕ⇒ ψ) = αΣ(ϕ)⇒ αΣ(ψ) αΣ(∀x : s•ϕ) = ∀x : s•Ds(x)⇒ αΣ(ϕ)
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Satisfaction To prove the representation condition, we need to talk about
partial variable valuations. This is necessary since a valuation in a Φ(Σ)-
model M ′ may assign an “undefined” element to a variable. In the Σ-model
M = βΣ(M ′), this should correspond to a truly undefined variable. Thus, we
consider partial variable valuations ν:X→?M . The evaluation ν# of terms
and the satisfaction ν `̀ of formulas is defined as before (see Section 3.1),
with the following two exceptions:

• ν#
s (x) =

{
ν(x), if this is defined
undefined, otherwise

for all x ∈ Xs and all s ∈ S;

• ν `̀ Σ (∀x : s • ϕ) iff for all valuations ξ:X ∪ {x : s}−→M which extend
ν on X \ {x : s} and are defined on x : s, we have ξ `̀ Σ ϕ.
Note that the new definitions of ν# and `̀ coincide with the old ones

for total valuations. To achieve this, it is crucial to require the extended
valuation ξ to be defined on x in the clause for satisfaction of quantified
formulas above.

We now have the following lemma:
Lemma 4.1 For each Σ-formula ϕ and each (total) valuation ν:X−→M ′

into a Φ(Σ)-model M ′, define the partial valuation ρ:X−→βΣ(M ′) to be

ρ(x) =

{
ν(x), if ν(x) ∈ (Ds)M ′
undefined, otherwise

(x ∈ Xs)

Then we have
(a) ρ#(t) is defined iff ν#(t) ∈ (Ds)M ′ for all Σ-terms t of sort s.
(b) In the case that one of the sides of (1) holds, we have

ρ#(t) = ν#(t).

(c) ρ `̀ PFOL=

Σ ϕ iff ν `̀ FOL=

Sig(Φ(Σ)) αΣ(ϕ).
Proof. (a) and (b): By induction over the structure of t. For variables, we

need just use the definition of ρ. For applications of total or partial function
symbols, use axioms (3) or (4) in Φ(Σ).

(c): By induction over the structure of ϕ. Considering existence equations,
we have

ρ `̀ PFOL=

Σ t1
e
= t2

iff ρ#(t1) and ρ#(t2) are defined and equal
iff ν#(t1) ∈ (Ds)M and ν#(t2) ∈ (Ds)M and ν#(t1) = ν#(t2)
iff ν `̀ FOL

Sig(Φ(Σ)) t1 = t2 ∧Ds(t1)

iff ν `̀ FOL
Sig(Φ(Σ)) αΣ(t1

e
= t2).

Considering universally quantified formulas, we have
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ρ `̀ PFOL
Σ ∀x : s • ϕ

iff for all ξ:X ∪ {x : s} −→ βΣ(M ′) extending ρ on X \ {x : s} and
being defined on {x : s}, ξ `̀ PFOL

Σ ϕ
iff for all τ :X ∪ {x : s}−→M ′ extending ν on X \ {x : s} for which

x ∈ (Ds)M ′ ,
τ `̀ FOL

Sig(Φ(Σ)) αΣ(ϕ)

iff ν `̀ FOL
Sig(Φ(Σ)) ∀x : s •Ds(x)⇒ αΣ(ϕ)

iff ν `̀ FOL
Sig(Φ(Σ)) αΣ(∀x : s • ϕ).

The other cases are treated similarly. 2

The representation condition can now be shown as follows. Let ϕ be
a Σ-sentence and ν: ∅ −→ M ′ and ρ: ∅ −→ βΣ(M ′) be the unique empty
valuations. Then

βΣ(M ′) |=PFOL=

Σ ϕ
iff ρ `̀ PFOL=

Σ ϕ
iff ν `̀ FOL=

Sig(Φ(Σ)) αΣ(ϕ)

iff M ′ |=FOL=

Sig(Φ(Σ)) αΣ(ϕ). 2

The model translation can be easily shown to be surjective: For a partial Σ-
structure M , form its one-point completion by just adding one element, ∗, to
all carriers, which is the interpretation of ⊥. The functions map ∗ to itself
and behave as in M otherwise, where undefinedness of partial functions is
mapped to ∗. Predicates are false on ∗. The predicate D is true everywhere
except on ∗. Thus, our institution representation admits model expansion.
Moreover, with the argument of Example 2.30, the representation also has the
weak D-amalgamation property, where D is the class of all injective signature
morphisms.

Proposition 4.2 The above constructed institution representation is strongly
persistently liberal.

Proof. Define γ as follows. Put (γΣ(M))s := Ms ] M̄s, where

• M̄ ⊆ TSig(Φ(Σ))(|M |)) is the least sorted set satisfying
· ⊥ ∈ M̄s

· f(a1, . . . , an) ∈ M̄s for f ∈ TFw,s ∪ PFw,s, w = s1 . . . sn,
(a1 . . . an) ∈ (Mw ] M̄w) \ domfM

• (Ds)γΣ(M) := Ms,
• (⊥s)γΣ(M) := ⊥,

• fγΣ(M)(a1, . . . , an) :=

{
fM(a1, . . . , an), if (a1, . . . , an) ∈ domfM
f(a1, . . . an), otherwise

for f :w−→s ∈ TF ∪ PF ,
• pγΣ(M) = pM for p : w ∈ P .

Now (1) of Φ(Σ) above is satisfied since the carriers of M are non-empty. (2)
holds by definition of (DγΣ(M))s, and (3) and (4) hold by definition of fγΣ(M).
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(5) holds by definition of pγΣ(M).

Clearly, we have βΣ(γΣ(M)) = M . To show the universal property of

M
id // βΣ(γΣ(M)) ,

let h:M −→ βΣ(N) be a homomorphism. Since βΣ(N)s ⊆ Ns, we can define
h#: γΣ(M)−→N by

h#
s (a) =

{
h(a), if a ∈Ms

ν#(a), if a ∈ M̄s

where ν: |M |−→N is defined by ν(a) = h(a). The first case is determined by
the requirement that βΣ(h#) = h, while the second case is determined by the
requirement that h# is a homomorphism. Thus, h# is the unique homomor-
phism from γΣ(M) to N that is mapped to h under βΣ. 2

Concerning model-bijectivity, by adding to Φ(Σ) the sentences ¬ x = ⊥s ⇒
Ds(x) (for each s ∈ S), ⊥ becomes the unique “undefined” element. With this,
we get an institution representation (4a) that is model-bijective. Moreover, the
translation of strong equations can be simplified by translating them just to
ordinary equations. However, the representation then is no longer persistently
liberal.

4.1.5 (4b): Mapping PFOL= to FOL= via functions as graphs

The representations of the previous section are quite good. However, in some
cases, one needs a representation with stronger properties (like being an em-
bedding or a subinstitution representation). Indeed, it is possible to represent
PFOL= within FOL= as a subinstitution. This is achieved by representing
functions by their graphs. The benefit of obtaining a subinstitution represen-
tation comes at a high price, however: the translation of sentences will turn
out to be rather clumsy.

Signatures A PFOL=-signature (S,TF ,PF , P ) is translated to the FOL=-
presentation 〈(S,TF , P ]G),Γ〉, where G contains a predicate symbol

Gf : s1 . . . sn s

and Γ contains an axiom

∀x1 : s1, . . . , xn : sn; y, z : s •Gf (x1, . . . , xn, y) ∧Gf (x1, . . . , xn, z)⇒ y = z

for each f : s1 . . . sn −→ s ∈ PF . The predicate Gf shall hold the graph of
the partial operation f , and the axiom states that Gf is right-unique, that
is, the graph of a partial operation.
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Models βΣ takes a Φ(Σ)-model M and replaces each relation Gf
M by the

partial operation with graph Gf
M .

Sentences Following Burmeister [13, p. 325], we translate sentences into a
relational form. αΣ is defined inductively as follows:
• αΣ(f(t1, . . . , tn)

e
= t0) =

∃y0 : s0 . . . yn : sn •Gf (y1, . . . , yn, y0) ∧ αΣ(t0
e
= y0) ∧ · · · ∧ αΣ(tn

e
= yn)

for f : s1 . . . sn−→s0 ∈ PF , where y0, . . . , yn are new variables,
• αΣ(f(t1, . . . , tn)

e
= t0) =

∃y0 : s0 . . . yn : sn • f(y1, . . . , yn) = y0 ∧ αΣ(t0
e
= y0) ∧ · · · ∧ αΣ(tn

e
= yn)

for f : s1 . . . sn−→s0 ∈ TF , where y0, . . . , yn are new variables,
• αΣ(x

e
= t) = αΣ(t

e
= x), if t is not a variable,

• αΣ(x
e
= y) = x = y,

• αΣ(t1 = t2) = (αΣ(x
e
= t1)⇒ αΣ(x

e
= t2)) ∧ (αΣ(x

e
= t2)⇒ αΣ(x

e
= t1)),

where x is a new variable,
• αΣ(p(t1, . . . , tn)) =

∃y1 : s1 . . . yn : sn • p(y1, . . . , yn) ∧ (t1
e
= y1) ∧ · · · ∧ αΣ(tn

e
= yn)

for p : s1 . . . sn ∈ P , where y1, . . . , yn are new variables,
• αΣ(def (t)) = ∃x : s • αΣ(t

e
= x), where x is a new variable and t is of

sort s,
• αΣ(F ) = F ,
• αΣ(ϕ ∧ ψ) = αΣ(ϕ) ∧ αΣ(ψ),
• αΣ(ϕ⇒ ψ) = αΣ(ϕ)⇒ αΣ(ψ),
• αΣ(∀x : s•ϕ) = ∀x : s•αΣ(ϕ).

Satisfaction The representation condition essentially is the proposition on
page 326 of [13].

4.1.6 (4′), (4a′) and (4b′): Mapping PCFOL= to CFOL=

The representation (4a′) extends the model-bijective institution representation
(4a) described above. Due to the need to translate sort generation constraints,
we must be able to generate also the “undefined” elements in the CFOL=-
models. In order to be able to correctly model generatedness w.r.t. to partial
functions, we have to ensure generatedness of the “undefined” elements. This
is ensured by the axioms ¬ x = ⊥s ⇒ Ds(x) (for each s ∈ S). Since then
there is just one “undefined” element, namely ⊥, the “undefined” elements
are now term generated. However, this method leads to a loss of the persistent
liberality of the representation.

Signatures Signatures are translated as in (4a).
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Models Models are translated as in (4a).
Sentences First-order sentences are translated as in (4a). A Σ-sort generation

constraint (
•
S,
•
F, θ: Σ̄ −→ Σ) is translated to (

•
S,
•
F ∪{⊥s : s|s ∈ S}, θ′),

where θ′: Φ(Σ̄) −→ Φ(Σ) is the extension of θ to Φ(Σ̄) that is defined by
mapping the added symbols in Φ(Σ̄) to the corresponding added symbols
in Φ(Σ).

Satisfaction The representation condition for formulas is proved as in (4a).
Concerning sort generation constraints, note that model translation just re-

moves the interpretation of ⊥ from the carriers. Since ⊥ cannot occur in
•
F

and moreover all functions are strict, generatedness w.r.t.
•
F in the model

βΣ(M ′) (where interpretations of ⊥s have been removed) is the same as gen-

eratedness w.r.t.
•
F ∪{⊥s : s|s ∈ S} in the model M ′ (where interpretations

of ⊥s are not removed). 2

If one wants to have a strongly persistently liberal representation (call it (4′),
since it extends (4)) also translating sort generation constraints, one can re-
strict sort generation constraints in PCFOL= to those including total function
symbols only: in this case, the introduction of a unique undefined element is
not necessary.

The same restriction of sort generation constraints in PCFOL= also has to
be done if we want to extend (4b) to (4b′): sort generation constraints can just
be left as they are in this case.

4.1.7 (5), (5a) and (5b): Mapping SubPFOL= to SubFOL=

The idea here is again to add new elements (among them ⊥) that represent
“undefined”, but to retain the old sorts without the undefined elements. That
is, the sort set is doubled: each sort s now gets a companion supersort s?,
which contains all values of s plus undefined elements. Since we keep the old
sorts, the definedness predicate is just membership in the old sorts. Moreover,
we add the companion supersort only to those sorts for which it is necessary,
i.e. for those where a term involving partial function symbols exists.

In the signature translation, we introduce two versions for each function and
predicate symbol: the original one and its (overloaded) strict extension that
just propagates the undefined element. The strict extension is necessary if
we want to apply a function or predicate symbol to a term involving partial
function symbols, since this term can be translated only to a term of sort s?.

Since all partial functions with result sort s are totalized to functions with
result sort s?, also the partial projections have to be totalized. For them, we
introduce new special function symbols proj. We do not need an axiom like
∃x : s•Ds(X) in (4), because subsorts are interpreted with non-empty carriers
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anyway.

Signatures Let Σ = (S,TF ,PF , P,≤S) be a SubPFOL=-signature. Let
• S? = {s ∈ S | there exists a variable system X and a Σ(X)-term of sort s

built using at least one partial function symbol or projection cast},

• S ′ = S ∪ {s? | s ∈ S?} 11 and Q(s) =

{
s?, if s ∈ S?

s, otherwise
Then Σ is translated to the SubFOL=-signature Sig(Φ(Σ)) consisting of
the sort set S ′, ordered by
• s ≤′ s′ iff s ≤ s′ (s, s′ ∈ S);
• s ≤′ s′? iff s ≤ s′ (s, s′ ∈ S);
• s? 6≤′ s′ (s, s′ ∈ S), and
• s? ≤′ s′? iff s ≤ s′, (s, s′ ∈ S);

augmented by the following total function symbols:
⊥ : s? for s ∈ S?

f : s1, . . . , sn → s for f : s1, . . . , sn → s ∈ TF
f : s1, . . . , sn → s? for f : s1, . . . , sn →? s ∈ PF ,
f :Q(s1), . . . , Q(sn)→ s? for f : s1, . . . , sn−→s ∈ TF ∪ PF ,

{s1, . . . , sn} ∩ S? 6= ∅
proj: s→ s′? for s′ ≤ s

proj: s? → s′? for s′ ≤ s

the following predicate symbols:
p: s1, . . . , sn for p: s1, . . . , sn ∈ P,
p:Q(s1), . . . , Q(sn) for p: s1, . . . , sn ∈ P, {s1, . . . , sn} ∩ S? 6= ∅

and the following axioms Ax(Φ(Σ)):
¬⊥ ∈ s for s ∈ S? (1)
∀x : s′ • proj(s′,s?)(x) ∈ s⇔ x ∈ s for s ≤ s′ (2)
∀x : s • proj(s′,s?)(inj(s,s′)(x)) = inj(s,s?)(x) for s ≤ s′ (3)
∀x, y : s′ • proj(s′,s?)(x) = proj(s′,s?)(y) ∧ proj(s′,s?)(x) ∈ s⇒ x = y

for s ≤ s′ (4)
∀x1 : Q(s1), . . . , xn : Q(sn) • f(x1, . . . , xn) ∈ s⇔ ∧

si∈ S? xi ∈ si
for f : s1, . . . , sn → s ∈ TF (5)

∀x1 : Q(s1), . . . , xn : Q(sn) • f(x1, . . . , xn) ∈ s⇒ ∧
si∈ S? xi ∈ si

for f : s1, . . . , sn →? s ∈ PF (6)
∀x1 : Q(s1), . . . , xn : Q(sn) • p(x1, . . . , xn)⇒ ∧

si∈ S? xi ∈ si
for p: s1, . . . , sn ∈ P (7)

The axioms of form (1) state that ⊥ is an “undefined” element. (2),
(3) and (4) express the membership, projection and projection-injectivity
axioms – these are those of the axioms used in the definition of SubPCFOL=

11 We assume that S does not contain sorts of the form s?. In a higher-order exten-
sion of Casl, there could be a type constructor “?” behaving like our “?”.
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(see Section 3.2) that refer to the partial projections. (5), (6) and (7) state
strictness of the functions and predicates, while (5) additionally expresses
totality of the total functions.

Signature morphisms are translated in a way analogous to that of Sec-
tion 4.1.4.

Models A Φ(Σ)-structure M (in SubFOL=) is translated to the partial Σ-
structure βΣ(M) (in SubPFOL=) having carrier sets Ms for s ∈ S and total
functions and predicates inherited from M , while partial functions gβΣ(M)

are the corestrictions of gM to Ms (where s is the result sort of g).
Again, we have a straightforward inverse: a Σ-structure M is extended

by adding new carriers Ms? = Ms ] {∗}, interpreting ⊥ as ∗ and adding
the strict extensions that map ∗ to itself. Thus, we have an institution
representation that admits model expansion.

Sentences A Σ-sentence in SubPFOL= is translated to a Φ(Σ)-sentence in
SubFOL= inductively as follows:
• αΣ(x : s) = x : s
• αΣ(f(s1,...,sn,s)(t1, . . . , tn)) = (f : s1, . . . , sn → s ∈ TF ){

f〈s1,...,sn,s)(αΣ(t1), . . . , αΣ(tn)〉 if for i = 1 . . . n, αΣ(ti) is of sort si
f(Q(s1),...,Q(sn),(s?))(αΣ(t1), . . . , αΣ(tn)), otherwise

• αΣ(f(s1,...,sn,s)(t1, . . . , tn)) = (f : s1, . . . , sn →? s ∈ PF ){
f(s1,...,sn,(s?))(αΣ(t1), . . . , αΣ(tn)) if for i = 1 . . . n, αΣ(ti) is of sort si
f(Q(s1),...,Q(sn),(s?))(αΣ(t1), . . . , αΣ(tn)), otherwise

• αΣ(ps1,...,sn(t1, . . . , tn)) = (p : s1, . . . , sn ∈ P ){
ps1,...,sn(αΣ(t1), . . . , αΣ(tn)) if for i = 1 . . . n, αΣ(ti) is of sort si
pQ(s1),...,Q(sn)(αΣ(t1), . . . , αΣ(tn)), otherwise

• αΣ(pr(s1,s2)(t)) =

{
proj(s?1,s

?
2)(αΣ(t)), if αΣ(t) is of sort s?

1

proj(s1,s?2)(αΣ(t)), otherwise
(s2 ≤ s1)

• αΣ(def (t)) =

{
αΣ(t) ∈ s, if αΣ(t) is of sort s?, s ∈ S?

T, otherwise

• αΣ(t ∈ s1) =

{
t ∈ s?

1, if αΣ(t) is of sort s?
2

t ∈ s1, otherwise

• αΣ(t1 = t2) =


(αΣ(t1) ∈ s ∨ αΣ(t2) ∈ s)⇒ αΣ(t1) = αΣ(t2),

if αΣ(t1), αΣ(t2) are of sort s?

αΣ(t1) = αΣ(t2), otherwise

• αΣ(t1
e
= t2) =


αΣ(t1) = αΣ(t2) ∧ αΣ(t1) ∈ s,

if αΣ(t1), αΣ(t2) are of sort s?

αΣ(t1) = αΣ(t2), otherwise
Note that in the last two cases, if the translation of only one term is of a
“question mark” sort, the translation of the other one has to be made to
be of “question mark” sort as well (by inserting an appropriate injection).
The translation can easily be extended from atomic to all formulas.

Apart from mapping definedness and projection to the special symbols
introduced above, the translation mainly checks whether the original version
of a function or predicate symbol can be used, or if we have to use its strict
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extension that propagates the undefined element. The strict extension is
necessary whenever an argument term involves a partial function symbol.

Satisfaction The representation condition can be proved in a way similar to
the proof of that of (4). 2

With the argument of Example 2.30, the representation has the weak D-
amalgamation property, where D is the class of all injective signature mor-
phisms.

Proposition 4.3 The above constructed institution representation is strongly
persistently liberal.

Proof. For a SubPFOL=-signature Σ = (S,TF ,PF , P,≤), let Φ′(Σ) be the
SubPFOL=-presentation resulting from removing the axioms of form (1) from
Φ(Σ), while adding the partial function symbols from PF and the axioms

∀x1 : s1, . . . xn : sn • fs1...sn,s?(x1, . . . xn) ∈ s⇔ def fs1...sn,s(x1, . . . xn) (8)
∀x1 : s1, . . . xn : sn • def fs1...sn,s(x1, . . . xn)

⇒ inj(s,s?)(fs1...sn,s(x1, . . . xn)) = fs1...sn,s?(x1, . . . xn) (9)

for each f : s1, . . . , sn →? s ∈ PF . The axioms relate the partial functions with
their total encoding, in such a way that a partial function is uniquely deter-
mined by its total encoding, and moreover, the way in which it is determined
corresponds to the action of βΣ.

In this way, Φ′(Σ) includes both Σ and Φ(Σ) (except from the axioms of form
(1)). Let ιΣ and κΣ be the inclusions of Σ and Φ(Σ) into Φ′(Σ). By Theo-
rem 4.16 12 , the free functor FιΣ : Mod(Σ)−→Mod(Φ′(Σ)) exists. Moreover,
since ⊥ ∈ s does not follow from Φ′(Σ), models constructed by this free functor
also satisfy the axioms of form (1).

We can now define γΣ to act as follows: Given a Σ-model M ,

γΣ(M) := FιΣ(M)|κΣ
.

It is tedious but not difficult to check that ιΣ is sufficiently complete, i.e.

M ∼= FιΣ(M)|ιΣ

via the unit of the adjunction. By Lemma 8.14 of [28], we can choose FιΣ such
that the identity is the unit of the adjunction, i.e. M = FιΣ(M)|ιΣ . But then,
since the unique determination of a partial function through (8) and (9) is the

12 Though this is a forward reference, it is not circular: Theorem 4.16 depends
on several subinstitution representations presented in Section 4.2, but not on the
institution representation currently being considered.
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same as the construction of the partial function through βΣ, we get

βΣ(γΣ(M)) = M.

To show the universal property of M
id // βΣ(γΣ(M)) , let h:M −→ βΣ(N)

be a Σ-homomorphism. Let N ′ ∈ Mod(Φ′(Σ)) be the expansion of N with
new partial functions (uniquely determined by (8) and (9)). We thus have
N ′|κΣ

= N and, since the expansion acts like β, βΣ(N) = N ′|ιΣ . By the
universal property of FιΣ , we get h#:M −→ N ′|ιΣ with h#|ιΣ = h. Hence,
h#|κΣ

: γΣ(M)−→N is the required extension of h with βΣ(h#|κΣ
) = h#|ιΣ =

h. 2

Also, by modifying (5) (similar to the passage from (4) to (4a)), we get a
representation (5a) that is model-bijective. The exact axioms are described in
(5a′) below.

Further, we can extend the representation (4b) to get a representation (5b)
of SubPFOL= in SubFOL= that is even a subinstitution representation. For
signatures and models, the extension of (4b) is quite straightforward: the sub-
sorting structure is just kept. Sentence translation is extended as follows:

• αΣ(pr(s′,s)(t)
e
= t0) = ∃x : s • αΣ(inj(s,s′)(x)

e
= t) ∧ αΣ(x

e
= t0), where x is

a new variable,
• αΣ(t ∈ s) = ∃x : s • αΣ(t

e
= x) ∧ x ∈ s, where x is a new variable.

Due to the presence of subsorting, we also can replace the represention of
partial functions as graphs by another one: we can, for each partial function,
introduce a new (sub)sort holding its domain, and thus making the function
total. However, note that sentence translation will become equally clumsy as
for (5b) above, since it will involve existential quantifiers over the domains.
Moreover, since the domain generally is a subsort of a product and SubFOL=

lacks products, we have to introduce products explicitly.

4.1.8 (5′), (5a′) and (5b′): Mapping SubPCFOL= to SubCFOL=

Again, the translation (5a′) is very similar to that of the previous section.
As in (4a′), due to the need to translate sort generation constraints, we must
be able to generate also the “undefined” elements in the SubCFOL=-models.
One could think of using the sorts without a question mark for the translation
of sort generation constraints. However, this does not work for sort generation
constraints involving partial function symbols: partial function symbols are
always translated to a function symbol with result sort of form s?. Also, the
projection symbols do not help to get back to s: the also have result sort s?.
This forces us to consider generation of the s? sorts.
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In order to be able to do this, we again restrict the models to those with
exactly one “undefined” element. This leads to a loss of persistent liberality
of the representation.

Signatures A signature is translated as in (5), with the addition that the
sentences ¬ x = ⊥ ⇒ x ∈ s (for each s ∈ S) are added to the presentation.
Thus, ⊥s becomes the unique “undefined” element.

Models Models are translated exactly as in (5).
Sentences First-order sentences are translated as in (5). A Σ-sort generation

constraint (
•
S,
•
F, θ: Σ̄ −→ Σ) is translated to (

•
S,
•
F
′
∪{⊥s : s|s ∈ S}, θ′),

where
•
F
′
is
•
F with all function symbols of form pr(s,s′) replaced by proj(s,s′?)

and θ′: Φ(Σ̄) −→ Φ(Σ) is the extension of θ to Φ(Σ̄) that is defined by
mapping the added symbols in Φ(Σ̄) to the corresponding added symbols
in Φ(Σ).

Satisfaction The representation condition for formulas is proved as in (4a′). 2

As in (4′), we can restore strongly persistent liberality by a restriction of sort
generation constraints in SubPCFOL= to those not involving partial function
symbols: in this case, the extra axioms for the ⊥ functions are not needed. We
thus get a representation (5′).

Moreover, with the same restriction of SubPCFOL=, we also can extend (5b)
to (5b′) by just leaving sort generation constraints unchanged.

4.1.9 (6) and (6′): Mapping Sub(C)FOL= to (C)FOL=

Here we can use a restriction of the translation of Sub(C)PFOL= to P (C)FOL=

described in Section 4.1.3 above, which leaves out the partial projection sym-
bols and those axioms from Ĵ(Σ) involving these. There is one problem con-
nected with this: the membership predicate was originally axiomatized using
partial projections and definedness:

∀x : s′• ∈ss′ (x)⇔ def pr(s′,s)(x)

for s ≤ s′. Now we cannot just leave out these axioms, since then the member-
ship predicates could be interpreted in an unintended way. Therefore, these
axioms have to be replaced by

∀x : s′• ∈ss′ (x)⇔ ∃y • inj(s,s′)(y) = x

4.1.10 Comparison of (4)◦(3) with (6)◦(5)

Comparing both ways of encoding SubPFOL= into FOL=, we can see that the
way via SubFOL= has the disadvantage that many new sorts are introduced,
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but the advantage than the original sort system and its interpretation are
kept. Moreover, many-sorted total specifications are left unchanged (but the
encoding via PFOL= may also be adapted to have this property).

4.1.11 (7): Mapping CFOL= to SOL=

CFOL= adds sort generation constraints to FOL=. These cannot be expressed
within FOL=, but can be translated to induction schemes, which can be ex-
pressed in second-order logic with equality (SOL=) by second-order quantifi-
cation over predicates.

Signatures Signatures and signature morphisms are translated identically.
Models Models, model homomorphisms and reducts are translated identi-

cally.
Sentences First-order sentences are translated identically. For a sort gener-

ation constraint
(
•
S,
•
F, θ: Σ̄−→Σ)

we assume without loss of generality that all the result sorts of function

symbols in
•
F occur in

•
S (see the corresponding remark in Section 3.1 where

sort generation constraints have been introduced). Let

•
S= {s1; . . . ; sn},

•
F= {f1: s1

1 . . . s
1
m1
−→s1; . . . ; f1: sk1 . . . s

k
mk
−→sk}

The sort generation constraint is now translated to the SOL=-sentence
∀Ps1 : pred(θ(s1)) . . . ∀Psn : pred(θ(sn))

• (ϕ1 ∧ · · · ∧ ϕk)⇒
∧
j=1,...,n ∀x : θ(sj) • Psj(x)

where
ϕj = ∀x1 : θ(sj1), . . . , xmj : θ(sjmj)

•
(∧

i=1,...,mj ; s
j
i∈
•
S
Psji

(xi)
)
⇒ Psj

(
θ(fj)(x1, . . . , xmj)

)
Satisfaction To prove the representation condition, let a Σ-model M and a

Σ-sort generation constraint (
•
S,
•
F, θ: Σ̄−→Σ) be given. Call an S̄-sorted set

P̄ ⊆ |M |θ| (
•
S,
•
F, θ)-closed iff it is closed under the application of functions

θ(f)M with f ∈
•
F and the filling in of arbitrary values of Mθ(s) for s 6∈

•
S.

Lemma 4.4 Let X be the variable system {Ps1 : pred(θ(s1)), . . . , Psn :
pred(θ(sn))}. Given an assignment ξ:X −→M , consider the S̄-sorted set

P̄(ξ) consisting of ξ(Ps) for s ∈
•
S and of Mθ(s) for s 6∈

•
S.

Then we have

ξ `̀ ϕ1 ∧ · · · ∧ ϕk iff P̄(ξ) is (
•
S,
•
F, θ)-closed.

Proof. This directly follows from the form of the ϕj. Note that the filling

in of arbitrary values of Mθ(s) for s 6∈
•
S is captured by the condition sji ∈

•
S

in the conjunction in the premise of ϕj: for sji 6∈
•
S, nothing is required. 2
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Now M satisfies the sort generation constraint (
•
S,
•
F, θ: Σ̄−→Σ)

iff the smallest (
•
S,
•
F, θ)-closed set is |M |θ|

iff for all ξ:X−→M , P̄(ξ) is (
•
S,
•
F, θ)-closed implies P̄(ξ) = |M |θ|

iff for all ξ:X−→M ,
ξ `̀ ϕ1 ∧ · · · ∧ ϕk implies ξ `̀ ∧

j=1,...,n ∀x : θ(sj) • Psj(x)
iff M satisfies the translation of the sort generation constraint. 2

4.2 The Positive Conditional Level

At the positive conditional level (see Fig. 5), we have used generalized condi-
tional logic (GCond=, GHorn= etc.). The reason for this is that we want to be
able to use equivalences (and not just implications) in the translations of sen-
tences, which would not be possible within ordinary conditional logic (Cond=,
Horn= etc.). However, note that there is a conjunctive subinstitution repre-
sentation from any of the generalized conditional logics to the corresponding
ordinary conditional logic. Note also that in most cases, the diagram remains
the same if the G is deleted everywhere (only a few arrows become conjunctive
representations).

MEqtl denotes Meseguer’s Membership Equational Logic, see [49], where also
the arrows to and from MEqtl are described. Also, Equational Type Logic
[46] and Unified Algebras [63] and similar frameworks could be added at the
same corner of the diagram (however, the arrow from GHorn= will not be
persistently liberal in all these cases).

At the positive conditional level, we have the following levels of expressiveness:

(1) The institutions SubPGHorn=, PGHorn=, SubPGCond= and PGCond=

(all involving partiality) are all subinstitutions of each other. They form
the strongest level of expressiveness. By using more complicated repre-
sentations, one also can count SubGHorn= and SubGCond= to belong
to this level, see [53]. We have not included these representations here,
since they are based on a weaker notion of embedding, which is too weak
to be practically useful for borrowing.

(2) The next level of expressiveness is GHorn=. Here, we lose the ability of
specifying conditional generation of data using partial functions within
free specifications, as shown in [52].

(3) Then comes GCond=. As shown in [52], due to lack of predicates, we
cannot specify conditional generation of relations using free, as in the
transitive closure example (see Example 2.11).

(4) The lowest level is Eq=, where we have no conditional axioms.

All these levels are separated from each other in Theorem 5.1.
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Fig. 5. The positive conditional level

We now come the the description of the representations.

4.2.1 (1): Mapping SubPGHorn= to SubPGCond=

Here, we cannot directly use the idea of representation (2) from the first-order
level of replacing predicates by Boolean functions, since the set of Booleans
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cannot be axiomatized monomorphically in positive conditional logic. 13 How-
ever, what we can do is to axiomatize a single-valued set Bool1 of truth-values
and map predicates to partial functions into Bool1.

Signatures A signature is translated by adding disjointly to it the presenta-
tion

spec Bool1 =
sort Bool
op True1 : Bool1
axiom ∀x , y : Bool1 • x = y

end
and replacing each predicate symbol p : w by a partial function symbol

p : w −→?Bool1.
Models A modelM is translated by replacing each partial function (pw,Bool1)M

by its domain, considered as a predicate. Note that model homomorphisms
can be translated identically, since they behave in the same way for domains
of partial functions and for predicates.

Sentences A sentence is translated by replacing each occurrence of a predi-
cate symbol application pw(t1, . . . , tn) by the equation pw,Bool1(t1, . . . , tn) =
True1.

Satisfaction The representation condition is straightforward to show. 2

It is easy to show this representation is a subinstitution representation.

4.2.2 (2): Mapping PGHorn= to PGCond=

Here, we can use the same representation as in (1), just restricted to signatures
with trivial subsort relation.

4.2.3 (3): Mapping SubGHorn= to SubGCond=

Here, we can use a representation similar to that in (1). The only differ-
ence is that predicate symbols p : w are translated to total function symbols
p : w −→ Bool1. (Note that we cannot represent predicates by subsorts, since
predicates may be empty, while subsorts may not.) This leads to a loss of the
subinstitution property, but we still have a strongly persistently liberal repre-
sentation, which can be seen as follows: Let Σ = (S,TF , P,≤) be a signature
in SubGHorn=. Given a Σ-model M , γΣ(M) extends M by interpreting Bool1

13 Actually, since positive conditional logic is closed under products by the well-
known Mal’cev theorem, any theory having a model with a two-valued Boolean
carrier set has also models where the Boolean carrier set exceeds any given cardi-
nality.
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as

{true} ] {pw(a1, . . . , an) | p : w ∈ P, a1, . . . , an ∈Mw \ pM}
True1 is interpreted with true, and

(pw)γΣ(M)(a1, . . . , an) =

{
true, if (a1, . . . , an) ∈ pM
pw(a1, . . . , an), otherwise

Clearly, βΣ(γΣ(M)) = M . Now let h:M −→ βΣ(N) be a Σ-homomorphism.
Then h can be uniquely extended to a Φ(Σ)-homomorphism h#: γ(M)−→N
with βΣ(h#) = h by putting

(h#)Bool1(true) = True1N
(h#)Bool1(pw(a1, . . . , an)) = (pw)N(h(a1), . . . , h(an))

4.2.4 (4): Mapping GHorn= to GCond=

Here, we can use the same representation as in (3), just restricted to signatures
with trivial subsort relation. Again, the representation is strongly persistently
liberal.

4.2.5 (5): Mapping SubPGHorn= to SubGHorn=

This strongly persistently liberal representation works like the representation
(5) from the first-order level, except that the constants ⊥ and their axiomati-
zations are omitted: then, all axioms in Φ(Σ) are in Horn form. The omission
of ⊥ leads to a loss of the weak (injective)-amalgamation property.

4.2.6 (6): Mapping PGHorn= to GHorn=

This representation works similar to the representation (4) from the first-order
level. As in (5), we have to remove the constants ⊥ and their axiomatizations
which are not in Horn form (thereby losing the weak (injective)-amalgamation
property). Moreover, the axioms ∃x : s • Ds(x) are not in Horn form either.
These axioms have to be replaced by the introduction of new constants cs : s
(for each s ∈ S). The new constant has essentially the same effect as the
existential axiom, except that homomorphisms have to preserve it, which leads
to a loss of persistent liberality (but the representation still admits model
expansion).

4.2.7 (7): Mapping SubPGCond= to SubGCond=

This works like the (strongly persistently liberal) representation (5) above.
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4.2.8 (8): Mapping PGCond= to GCond=

Here, we cannot restrict (4) from the first-order level, since we need to elimi-
nate the definedness predicates. Therefore, we use the composition

PGCond= � � //PGHorn= (6) //___ GHorn= (4) //GCond=

which is a representation admitting model expansion.

4.2.9 (9): Mapping SubPGHorn= to PGHorn=

This subinstitution representation works exactly as the representation (3) from
the first-order level: all axioms in Φ(Σ) are already in Horn form.

4.2.10 (10): Mapping SubPGCond= to PGCond=

This representation works similar to (9). The difference it that the membership
predicates have to be deleted, Now when looking at the axioms in Ĵ , one
can see that the membership predicates are just the domains of the partial
projections. Thus, all occurrences of

t ∈ s

in sentences have to be translated to

def pr(s′,s)(t).

4.2.11 (11): Mapping SubGHorn= to GHorn=

When setting up this representation, we encounter the difficulty to axiomatize
the membership predicates. In Ĵ , they are axiomatized as the domains of
the partial projections. Now we do not have partial functions at hand. In
the representation (6) at the first-order level this problem is solved by the
axiomatization

∀x : s′• ∈ss′ (x)⇔ ∃y • inj(s,s′)(y) = x

But this axiom is not in Horn form. The best that we can do at the moment
instead of this is just to use the composition

SubGHorn= � � //SubPGHorn= � � (9) //PGHorn= (6) //___ GHorn=

which is a representation admitting model expansion.
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4.2.12 (12): Mapping SubGCond= to GCond=

For the same reasons as for (11) above, we use the composition

SubGCond= � � //SubPGCond= � � (10) //PGCond= (8) //___ GCond=

which again is a representation admitting model expansion.

4.3 Theorem proving and liberality

We can now combine the results of the previous subsections with the general
results about institution representations in Section 2 to obtain specific results
about theorem provers and liberality.

Fact 4.5 Cond= allows conditional term rewriting and paramodulation as
sound and complete proof systems.

Proof. See e.g. [67]. 2

Theorem 4.6 Each of the institutions shown in Fig. 5 allows the re-use of
conditional term rewriting and paramodulation as sound and complete proof
systems for flat specifications.

Proof. By chasing the diagram in Fig. 5 and using the remark at the be-
ginning of Section 4.2 about the representation of GCond= in Cond=, one
can see that each of the institutions in Fig. 5 can be represented in Cond=

with a representation admitting model expansion. The result now follows from
Fact 4.5 and Theorem 2.26. 2

Theorem 4.7 Each of the institutions shown in Fig. 3 (except SOL=) allows
the re-use of a first-order theorem prover for flat specifications.

Proof. By chasing the diagram in Fig. 3, one can see that each of the institu-
tions in Fig. 3 except SOL= can be represented in FOL= with a representation
admitting model expansion. The result now follows from Theorem 2.26. 2

Theorem 4.8 Each of the institutions shown in Fig. 4 (except SOL=) allows
the re-use of a first-order theorem prover with induction (or second-order, or
higher-order prover) for flat specifications.

Proof. By chasing the diagram in Fig. 4, one can see that each of the institu-
tions in Fig. 4 can be represented in CFOL= with a representation admitting
model expansion. The result now follows from Theorem 2.26. 2

Theorem 4.9 Each of the institutions shown in Fig. 3, except from SOL=,
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COSASC⊗-Bool, and COSASC⊗-Bool allows the re-use of first-order logic
theorem provers for both entailments and refinements concerning structured
specifications without free.

Proof. By chasing the diagram in Fig. 3, one can see that the above men-
tioned institutions have a model-bijective representation in FOL=. The result
now follows from Proposition 2.52 and Theorem 2.31. 2

Theorem 4.10 Each of the institutions shown in Fig. 4 except from SOL=

and LSL-Bool allows the re-use of first-order theorem provers with induction
(or second-order, or higher-order provers) for both entailments and refinements
concerning structured specifications without free.

Proof. By chasing the diagram in Fig. 4, one can see that each of the above
mentioned institutions has a model-bijective representation in CFOL=. The
result now follows from Propositions 2.52 and Theorem 2.31. 2

Theorem 4.11 For each of the institutions shown in Fig. 4 except LSL-Bool
and SOL=, take the subinstitution obtained by forbidding sort generation con-
straints with partial function symbols. Each of the thus obtained institutions
allows

• the re-use of a checker for CFOL= that determines whether presentation
morphisms are liberal, and
• the re-use of first-order theorem provers with induction (or second-order, or

higher-order provers) for entailments concerning structured specifications
SP (including free), such that for the strongly persistently liberal repre-
sentation (Φ, α, β), γ) into CFOL=,
· for each free SP ′ along σ: Σ−→Σ1 occurring in SP , either Φ(σ): Σ−→

SP ′ is strongly persistently liberal or γ is σ-natural, and moreover, γΣ is
surjective on objects,
· for each derive from SP1 by σ occurring in SP , γ is σ-natural,
· for each translate SP1 by σ occurring in SP , either γ is σ-natural, or

SP1 is flattenable, i.e. contains neither free nor derive.

Proof. By chasing the diagram in Fig. 4, one can see that each of the above
mentioned institutions is a subinstitution of SubPCFOL= with sort genera-
tion constraints restricted to total functions. Representation (4′) ◦ (3′) of the
first-order level describes a strongly persistently liberal institution representa-
tion from the thus restricted SubPCFOL= to CFOL=. The result now follows
from Theorems 2.43 and 2.45. 2

Theorem 4.12 Consider the restriction of the Casl institution SubPCFOL=

to sort generation constraints only with total function symbols. This institu-
tion can be represented in CFOL= in such a way that it is possible to
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• re-use of first-order theorem provers with induction (or second-order, or
higher-order provers) for both entailments and refinements concerning struc-
tured specifications without free, and with derive only along injective sig-
nature morphisms,
• re-use of a checker for CFOL= that determines whether presentation mor-

phisms are liberal, and
• re-use first-order theorem provers with induction (or second-order, or higher-

order provers) for entailments concerning structured specifications SP (in-
cluding free), where SP obeys the restrictions listed in Theorem 4.11 above.

Proof. Compose representations (6′) and (5′) in Fig. 4, thus obtaining a
strongly persistently liberal institution representation admitting weak (injective)-
amalgamation going from (the restricted) SubPCFOL= to CFOL=. The re-
sult now follows from Proposition 2.52 and Theorems 2.31, 2.43 and 2.45. 2

Of course, the question arises whether the above semantic restrictions on the
specifications that include free can be reformulated in more syntactic terms.

Concerning surjectivity of γΣ on objects, this can be ensured by simply letting
the parameter signature Σ have no partial operations and no subsorts 14 , since
then both βΣ and γΣ are isomorphisms.

Concerning strongly persistent liberality of Φ(σ): Σ−→ SP ′, this can be en-
sured if SP ′ is a presentation and only introduces new operation symbols that
are specified in a sufficiently complete way (i.e. such that each new term can be
reduced to an old term). The crucial point is here that this must also hold (in
the encoding) for terms containing partial operation symbols. That is, we have
to specify their behaviour also in the undefined case (with ¬def f(t1, . . . , tn)).
However, in general this would destroy the existence of free models. But we
can use a trick: namely, we can make sentences of form ¬def t parts of signa-
tures, and as parts of signatures, we can translate them to t = ⊥ (while doing
so at the sentence level would destroy the representation condition). β and γ
can be easily adapted to work also with these new signatures.

Concerning σ-naturality of γ: this always holds if σ is an isomorphism. Hence,
bijective renamings are covered. If we want to hide something, with each oper-
ation symbol, we also have to hide its result sort: this also implies σ-naturality
of γ, but it is of course a rather strong restriction.

If we want to overcome these restrictions, we can use the following:

Theorem 4.13 Each of the institutions shown in Fig. 4 except from SOL=

14 Since subsorts lead to partial projection functions, we have to exclude them as
well. An alternative is to allow subsorts without the possibility to use partial pro-
jections.
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and LSL-Bool allows the re-use of first-order theorem provers with induction
(or second-order, or higher-order provers) for both entailments and refinements
concerning structured specifications including free.

Proof. By chasing the diagram in Fig. 4, one can see that each of the above
mentioned institutions has a subinstitution representation in CFOL=. The
result now follows from Theorem 2.39. 2

Note, however, that the sentence translation involved in this result is rather
clumsy. Therefore, in practice, one will use the weaker results (Theorems 4.10,
4.11) above in order to get a better sentence translation, and fall back to the
clumsier sentence translation only if dealing with specifications involving uses
of free that are not covered by Theorem 4.11.

Definition 4.14 In any of the institutions introduced so far, a signature Σ is
called strict, if for each sort, there is a total ground (i.e. variable-free) Σ-term
of that sort. A theory is called strict if its signature is. A theory morphism is
called strict if its target theory is. 2

Fact 4.15 In PCond=, every strict theory morphism is liberal, i.e. PCond=

is (strict)-liberal.

Proof. For a modification of PCond= with empty carriers in the models
allowed, this is quite standard and follows e.g. from the very general results
in [73]. The restriction to strict theory morphisms ensures that the free model
has non-empty carriers, thus it is always contained in the full subcategory of
models without empty carriers. Since free objects in a full subcategory are
again free, the result follows. 2

Theorem 4.16 Each of the institutions shown in Fig. 5 is (strict)-liberal.

Proof. By chasing the diagram in Fig. 5 and using the remark at the be-
ginning of Section 4.2 about the representation of PGCond= in PCond=, one
can see that each of the institutions in Fig. 5 can be represented strongly per-
sistently liberally (even as an embedding) in PCond=. By Fact 4.15, PCond=

is (strict)-liberal, and by Theorem 2.43, this is lifted against strongly per-
sistently liberal institution representations (noting that all representations in
Fig. 5 map strict theory morphisms to strict theory morphisms). 2

5 Hierarchy Theorems

In this section, at the positive conditional level, some negative results will
be proved. This yields a strict hierarchy of institutions and shows that the
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different levels introduced in the previous section really are different levels of
expressiveness.

Hierarchy theorems are usually proved by finding some property which holds
for all objects in some class, but which does not hold for some objects in a
more expressive class, which then turns out to be strictly more expressive.
Here, we use properties of the model categories of institutions, to show that
some model category which is definable in a more expressive institution is not
definable in a less expressive institution, showing that the more expressive
institution is not a subinstitution of (and even cannot be embedded into) the
less expressive institution. In [52], we also use properties of parameterized
abstract data types specifiable with free and derive to separate the same
levels of expressiveness.

Both ways lead to a hierarchy of five levels.

Theorem 5.1 The five institutions we consider form a proper hierarchy:

Institution Properties of
model categories

Separating example

1 Eq= has effective equiva-
lence relations

2 Atom= subobjects commute
with coequalizers

graphs = binary rela-
tions

3 GCond= forgetful functors
preserve regular epis

some special theory

4 GHorn= (regular epi, mono)-
factorizable

transitive binary re-
lations

5 SubPGHorn= locally finitely pre-
sentable

transitive multi-
graphs or small
categories

The proof is split into four parts, each of which is presented in one of the
subsequent subsections. Before coming to that, we quote the following char-
acterization of model categories at level 5:

Theorem 5.2 [53]

(1) All model categories specifiable in SubPGHorn= (or any of its subinsti-
tutions) are locally finitely presentable.

(2) If we extend SubPGHorn= to infinite signatures (consisting of infinite
sets of sorts, infinite sets of (finitary) operation and predicate symbols),
then exactly the locally finitely presentable categories can be specified as
model categories of theories. 2
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5.1 Level 5 versus Level 4: partial conditional logic and horn clause logic

The essential difference between level 4 and level 5 is that in the former, the
theorem of homomorphisms holds, while in the latter, it fails. Categorically,
the theorem of homomorphisms means that there exist (regular epi, mono)-
factorizations.

Proposition 5.3 There is no institution embedding from PGHorn= toGHorn=.
Thus, PGHorn= (and therefore also SubPGHorn=) is strictly more expres-
sive than GHorn=.

Proof. For a theory T = 〈Σ,Γ〉 in PGHorn= and a model morphism f :A−→
B in Mod(T ), we can try to get a factorization of f through its image by the
following procedure: first, take the kernel of f , that is, the pullback

ker f
e1 //

e2

��

A

f

��
A f

//B

(By Theorem 5.2 and Proposition B.3, Mod(T ) is complete and cocomplete.)
Then, take the coequalizer of e1 and e2 to get the image f [A]:

ker f
e1 //

e2
//A

e //

f
��>>>>>>>> f [A]

m
}}

B

By the universal property of the coequalizer, there exists a unique m: f [A]−→
B with f = m ◦ e.

By remarks 3.4(2) and 5.13(2) of [2], if T belongs to GHorn=, e is surjec-
tive, which implies that m is injective, hence a monomorphism, and (e,m)
is a (regular epi,mono)-factorization of f . This is the well-known theorem of
homomorphisms, generalized to GHorn=.

In contrast to this, in SubPGHorn= and even in PGHorn=, e may be not
surjective and m no monomorphism, that is, there is no (regular epi,mono)-
factorization of f . In [70, 3.4], a counterexample very similar to Example 5.11
is discussed in detail. For factorizations in PGCond= and PGHorn=, we have
to iterate the construction of kernels and coequalizers (taking e instead of f
and so on) possibly infinitely often.
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Now (regular epi,mono)-factorizability clearly is preserved by equivalences of
categories. So there cannot be an institution representation from PGHorn=

to GHorn= with model translation being a pointwise equivalence of cate-
gories. 2

Corollary 5.4 SubPHorn= and PHorn= are strictly more expressive than
Horn=.

5.2 Level 4 versus Level 3: horn clause logic and conditional equational logic

The difference between level 3 and level 4 is that in the latter, there are quo-
tient homomorphisms which are not closed, while in the former all homomor-
phisms are closed. Categorically this means that forgetful functors preserve
regular epis.

Proposition 5.5 GHorn= cannot be embedded into GCond=. Therefore,
GHorn= is strictly more expressive than GCond=.

Proof. A difference between GHorn= and GCond= is that in GHorn=, there
are quotients which are not closed. This cannot happen in GCond=, where
all homomorphisms are closed. Consider the theories BinaryRelation and
TransitiveClosure from Example 2.11.

Now in TransitiveClosure, if we identify the elements b and c in

A = { a ≤ b; c ≤ d }

we get the quotient

Q = { [a] ≤ [b, c] ≤ [d] }
with [a] ≤ [d]. The quotient homomorphism q:A−→Q with q(x) = [x] is not
closed: we have q(a) ≤ q(d), but not a ≤ d. On the other hand, in BinaryRe-

lation the quotient q′:A−→Q′ with Q′ = { [a] ≤ [b, c] ≤ [d] } is closed, since
we do not have q(a) ≤ q(d) in Q′.

To be able to use this for the theory of institution representations, we have
to switch to a categorical formulation. We observe that q is a regular epi-
morphism in TransitiveClosure, but not in BinaryRelation (since it
does not factor through q′). So the forgetful functor Modσ associated to the
inclusion σ: BinaryRelation −→ TransitiveClosure does not preserve
regular epis.

On the other hand, in GCond=, the regular epis are precisely the surjective
homomorphisms (this follows from [1], 7.72(1), 23.39 and 24.9). Since all for-
getful functors in GCond= preserve surjectivity, they also preserve regular
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epis.

Now, preservation of regular epis by reduct functors is a categorical property
inherited against embeddings (this follows from the model translations being
categorical equivalences and being natural). So GHorn= cannot be embedded
into GCond=.

Other categorical properties used to separate GCond= from GHorn= use es-
sentially the same intuition. In GCond=, all model categories have a dense
set of regular projectives, whereas GHorn= lacks this property (see [2, 3.19,
3.21]; see [6] for a similar property). 2

5.3 Level 3 versus Level 2: conditional equational logic and partial equational
logic

The difference of level 3 and level 2 lies in the presence of conditional axioms
at level 3. These imply that the construction of quotients (categorically: co-
equalizers) is more complex: We cannot take just the algebraic quotient, but
have to factor it by new equations which may be derived using the conditional
axioms from the elements of the congruence relation. In contrast to this, at
level 2, quotients are just algebraic quotients.

To be able to formulate this categorically, we need to compare two different
quotient constructions, one of which is done on a subalgebra. Now at level 2,
quotients commute with subalgebras in the following sense: Given a congru-
ence relation R on an algebra A and a subalgebra A′ of A, then R induces a
congruence relation R′ on A′. Then A′/R′ is a subalgebra of A/R in a natural
way, while at level 3, this is not the case.

Definition 5.6 For a category having coequalizers and pullbacks, we say
that subobjects commute with coequalizers in this category, if the following

holds: Given an equivalence relation R
p //
q
//A on an object A and a subobject

m:A′−→A of A (i.e. m is a monomorphism), taking the pullback

R
〈p,q〉 //A× A

R′

mR

OO

〈p′,q′〉 //A′ × A′

m×m

OO

and then taking the coequalizers R
p //
q
//A

e //Q and R′
p′ //
q′
//A′

e′ //Q′ has

the result that the unique factorization mQ:Q−→Q′ of e◦m through e′ (which
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exists by the universal property of the coequalizer) is a monomorphism.

R
p //
q

//A
e //Q

R′

mR

OO

p′ //
q′

//A′

m

OO

e′ //Q′

mQ

OO

Lemma 5.7 For all theories T = (Σ,Γ) in PEq=, coequalizers in Mod(T )
are just quotients.

Proof. Surjective homomorphisms preserve existence equations by Table 8.1
of [14]. Therefore, the quotient taken in Mod(Σ) satisfies Γ. The coequalizing
property now follows from the diagram completion lemma (Lemma 2.7.1 of
[14]). 2

Proposition 5.8 For all theories T = (Σ,Γ) in PEq=, categorical intersec-
tions in Mod(T ) are constructed by taking the relative subalgebra on the
intersection of the carriers.

Proof. By 4.2.4 of [14], pullbacks in Mod(Σ) are constructed upon the
pullbacks of the underlying sets. In particular, intersections are constructed
by taking the relative subalgebra on the intersection of the carriers. Now if
t1

e
= t2 ∈ Γ and ν:X−→A1 ∩ A2 is a valuation into the intersection,

A1

m1

��@@@@@@@@

X
ν //A1 ∩ A2

i1

::uuuuuuuuu

i2 $$IIIIIIIII A

A2

m2

??~~~~~~~~

then we know that (i1 ◦ ν)#(t1) and (i1 ◦ ν)#(t2) are defined and equal, and
similarly for i2. Thus, assuming w. l. o. g. that i1 and i2 are inclusions, we
have that (i1 ◦ ν)#(t1) = (i2 ◦ ν)#(t1) = ν#(t1), and similarly for t2. Thus
ν#(t1) = ν#(t2). 2

Proposition 5.9 For all theories T = 〈Σ,Γ〉 in PEq=, in Mod(T ), subob-
jects commute with coequalizers.

Proof. Let R
p //
q
//A be a relation on A and m:A−→A′ be a subobject of

A. By Lemma 5.7, coequalizers are just quotients. Thus mQ is given by

mQ([a]〈p′,q′〉) = [m(a)]〈p,q〉
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for a ∈ A′ (here, [a]≡ is the ≡-congruence class of a). By Proposition 5.8,

R′
p′ //
q′
//A′ is R

p //
q
//A restricted to A′. Thus, mQ is injective. 2

A counterexample showing that in GCond=, not for all model categories sub-
objects commute with coequalizers, is the following. Let T = 〈Σ,Γ〉 be the
presentation

spec T =
sort s
ops f : s → s ;

a, b : s ;
forall x : s
• f (x ) = x ⇒ a = b

end

Let A be the T -algebra with As = { 1, 2, 3, 4 }, aA = 1, bA = 2, fA(1) =
2, fA(2) = 1, fA(3) = 4, and fA(4) = 3. Let A′ be the subalgebra on
the set { 1, 2 }. Now let ≡ be the congruence generated by 3 ≡ 4. Then
A/≡ does not satisfy the T -axioms: in order to do enforce this, we have
to identify 1 and 2. This then is the corresponding coequalizer, having car-
rier set { [1, 2], [3, 4] }. ≡ restricted to A′ is the diagonal relation ∆A′, and
A′/∆A′ ∼= A′ is the corresponding coequalizer. The unique homomorphism
mQ:A′/∆A′ −→ F(Σ,∅)−→(Σ,Γ)(A/≡ ) is not injective, since it identifies 1 and
2. 2

5.4 Level 2 versus Level 1: partial equational logic and total equational logic

The difference of level 2 and level 1 concerns the role of congruence relations:
while at level 1, the algebraic structure of a congruence relation (considered
as an algebra) is determined already by the set-theoretical relation, at level 2,
there is more flexibility, i.e. there are several algebras with the same congruence
relation as carrier, but only one of them is “effectively” generated as a kernel
of some homomorphism.

Proposition 5.10 In Eq=, each model category has effective equivalence
relations (for the category-theoretic definition of effective equivalence relation,
see Definition C.1).

Proof. See Remarks 3.4(8) and 3.6(7) in [2]. 2

Example 5.11 Consider the signature Graph consisting of one sort symbol
and one binary relation symbol. This is clearly a signature in Atom=. In the
sequel, we identify the models of Graph with graphs. Now Mod(Graph), the
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category of graphs, does not have effective equivalence relations: Consider the
graph G

076540123 BCEDGF��
// 176540123

Then G×G is

0, 0GFED@ABCBCEDGF��
//

�� !!CCCCCCCC 1, 0GFED@ABC

0, 1GFED@ABC 1, 1GFED@ABC
and ∆G ⊆ G×G, the diagonal 〈idG, idG〉:G−→G×G is

0, 0GFED@ABCBCEDGF��

!!CCCCCCCC

1, 1GFED@ABC

Now consider the relation R on G:

0, 0GFED@ABCBCEDGF��

!!CCCCCCCC 1, 0GFED@ABC

0, 1GFED@ABC 1, 1GFED@ABC

It is given by the inclusion m:R −→ G × G, and is represented by the pair
〈π1 ◦m,π2 ◦m〉. Now ∆G is contained in R, so R

m //G is reflexive.

Define flip:R−→R by just flipping (1, 0) and (0, 1). Then flip is an isomor-
phism from the subobject of G represented by 〈π1◦m,π2◦m〉 to the subobject
represented by 〈π2 ◦m,π1 ◦m〉. Thus R

m //G is symmetric.

Composing R
m //G with itself by pulling back yields the diagonal relation

(as a subobject of G × G × G, but this plays no role), which is contained in

R
m //G by reflexivity above. Thus R

m //G is transitive.

Now suppose that for some graph homomorphism f :G−→G′ the inner square
in

G
f //G′

R

π1◦m

OO

π2◦m //G

f

OO

G×G

π1

CC�����������������������
π2

33ggggggggggggggggggggggggg

h

77
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is a pullback. Since m is the identity on the underlying sets, the outer dia-
gram commutes as well. By the pullback property, there has to exists a graph
homomorphism h:G×G−→R with π1 ◦m ◦ h = π1 and π2 ◦m ◦ h = π2. By
the uniqueness property of the product, m◦h = id, so h has, like m, to be the
identity on the underlying sets. But this violates the graph homomorphism
property.

Therefore, R
m //G is an equivalence relation which cannot be given by a ker-

nel pair. Thus Mod(Graph) does not have effective equivalence relations. 2

Corollary 5.12 Atom= cannot be embedded into Eq=.

Proof. Clearly, effective equivalence relations are preserved by equivalences
of categories. 2

A very similar counterexample can be constructed in the category of unary
relations, but we found the above example more instructive. In general, pred-
icates introduce some kind of flexibility: information which is not represented
by data elements. This kind of flexibility is present in Atom=, but not in Eq=.

After these more theoretical studies, we now come to the examination of dif-
ferent specification languages.

6 The Larch Shared Language

Larch [40] consists of a family of languages supporting a two-tiered approach of
specification. A specification consists of programming language-independent
parts, formulated in the Larch Shard Language (LSL), and of programming
language-specific parts, formulated in one of the Larch interface languages.
Since the relation of Casl to programming languages has not been worked
out yet, we here can treat the Larch Shared Language only.

6.1 The LSL Institution and Its Translation to CFOAlg=

There is no explicit logic given in the Larch report [39]. Therefore, we here
introduce an institution LSL that fits to interpret the LSL constructs, mostly
following [8]. Most of LSL will be inherited from Eq=.

Signatures LSL-signatures and signature morphisms are those of Eq=.
Models LSL-models and reducts are those of Eq=.
Sentences Let Σ = (S,TF ) be an LSL-signature. A Σ-sentence is one of the

following:
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(1) a Σ-sentence in Eq=,
(2) a sentence

s generated by TF ′wrt θ

where θ: Σ̄ −→ Σ is a signature morphism, Σ̄ = (S̄, ¯TF ), s ∈ S̄ and
TF ′ ⊆ ¯TF

(3) a sentence
s partitioned by TF ′

where s ∈ S and TF ′ ⊆ TF such for that each function symbol in TF ′,
s occurs exactly once as an argument sort.

Concerning sentence translation,

s generated by TF ′ wrt θ

is translated along a signature morphism σ to

s generated by TF ′ wrt σ ◦ θ,

and
s partitioned by TF ′

is translated to
σS(s) partitioned by σ(TF ′),

where
σ(TF ′)w′,s′ :=

⋃
w∈S∗,s∈S,σS∗ (w)=w′,σS(s)=s′

σFw,s(TF ′w,s).

Satisfaction Satisfaction of an equation from Eq= is defined as in Eq=. Sat-
isfaction of

s generated by TF ′ wrt θ

is the same as satisfaction of ({s},TF ′, θ) in CEq=. Finally, satisfaction of

s partitioned by TF ′

is the same as satisfaction of
∀x1, x2 : s •

(
∧
i=1,...,n ∀y1 : si1; . . . ; ymi−1 : simi−1, s, ymi+1 : simi+1, . . . , yni : sini •

fi(y1, . . . , ymi−1, x1, ymi+1, . . . , yni) = fi(y1, . . . , ymi−1, x2, ymi+1, . . . , yni))
⇒ x1 = x2

where TF ′ =
{op1: s1

1, . . . , s
1
m1−1, s, s

1
m1+1, . . . , s

1
n1
−→s1,

. . . ,
opk: s

k
1, . . . , s

k
mk−1, s, s

k
mk+1, . . . , s

k
nk
−→sk} 2

LSL has no logical connectives in the standard sense, but rather a sort Boolean
with the usual connectives is built-in, and one can use equations over Boolean
to simulate the logical connectives. We do not introduce this built-in Boolean
into the institution, since we think that this is better dealt with at the level of
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structured specification: One can think of an LSL-specification Boolean that
is automatically included into each user-defined specification.

There is an obvious institution representation from LSL to CFOAlg=:

Signatures Signatures are translated identically.
Models Models are translated identically as well.
Sentences Equations are translated identically. Sentences of form

s generated by TF ′wrt θ

or
s partitioned by TF ′

are translated into the corresponding CFOAlg=-sentences that were used
above for the definition of their satisfaction.

Satisfaction The representation condition is obvious. 2

6.2 Translating LSL Language Constructs Into Casl Constructs

Overloading, disambiguation of terms and operation symbols, and mixfix op-
eration symbols are treated in the same way in both LSL and Casl. Thus,
there should be no difficulty with the translation. LSL’s built-in precedences
can be specified using Casl’s precedence annotations (note, however, that
it is necessary for if then else to override the standard Casl precedence
scheme between infix and prefix operations).

Enumeration types are expanded to LSL-theories in the Larch report. How-
ever, when translating LSL to Casl, it would be more advisable to translate
them directly for Casl’s free types. That is,

s enumeration of c1 . . . cn

is translated to
free type

s ::= c1 | . . . | cn ;
op succ : s → s ;
axioms succ(c1 ) = c2 ;

. . .
succ(cn−1 ) = cn ;

An LSL union type like

s union of f1 : s1 . . . fn : sn

is translated to
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generated type
s ::= f1 ( .f1 : s1 ) | . . . | fn( .fn : sn);

Both of the above translations directly correspond to the LSL expansion
scheme. However, note that both the selectors .fi as well as the successor
operation succ are total, which generally leads to unwanted error elements.
If one does not want to have this rather strange behaviour of LSL, one also
could use partial operations here. This would lead to the translations

free type
s ::= c1 | . . . | cn ;

op succ : s →? s ;
axioms succ(c1 ) = c2 ;

. . .
succ(cn−1 ) = cn ;
¬def succ(cn);

and
generated type

s ::= f1 ( .f1 :?s1 ) | . . . | fn( .fn :?sn);

This would, however, require to extend the target institution to PCFOAlg=.

7 ACT ONE

ACT ONE originally has been based on equational logic [28] and later was
extended to conditional equational logic [20]. Thus, the underlying institution
is Cond=, modulo the problem of empty carriers, which is treated in Section 11.

The ACT ONE languages constructs can be translated very easily to Casl.
Overloading in ACT ONE is a special case of overloading in Casl. ACT ONE’s
let definitions can be translated to Casl’s operation definitions. Note that
strictly speaking, one has to hide the locally defined operation afterwards; this
would require an in-the-large construct of Casl.

ACT ONE distinguishes constructor and function declarations. Both lead to
declarations of operations in Casl. However, the constructors additionally
lead to special axioms concerning the equality predicate eq. These axioms also
have to be included in the Casl translation, of course. An alternative way of
dealing with constructors is described in Section 11.1.
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8 ASF

The language ASF [11] is based on conditional equational logic. Thus, again
the underlying institution is Cond=, modulo the problem of empty carriers,
which is treated in Section 11. ASF has an initial semantics for the modules.
Initial semantics can be chosen in Casl by writing a free { . . . } around a
specification.

Concerning the language constructs of ASF, the prefix and infix syntax is a
special case of Casl’s mixfix syntax. Now there is a syntax definition for-
malism (called SDF) built on top of ASF, which is much more flexible. SDF
definitions of context free syntax can be translated to mixfix syntax decla-
rations in Casl. SDF’s priorities and associativity attributes are available as
annotations in Casl as well (in fact, the Casl design followed the SDF design
at this point). Concerning lexical syntax, Casl is not as flexible as SDF: it is
not possible to redefine the lexical syntax in Casl: one has to use the fixed
built-in lexical syntax. However, Casl provides a means to define special lit-
eral syntaxes for numbers, strings and list-like structures. This should already
cover many applications of redefinition of lexical syntax in SDF.

ASF allows product types as result types of functions and provides a tupling
notation for terms. In [11], a translation of this into extra product sorts and
explicit tupling functions is described; this translation has to be applied when
translating ASF to Casl.

Overloading in ASF is a special case of overloading in Casl. ASF’s if function
can be translated to Casl’s when else construct (indeed, the expansion
of these two constructs to formulas of the underlying institution is essentially
the same in ASF and in Casl).

A further informal comparison of Casl and ASF can be found in [64].

9 HEP Theories

HEP theories (for Hierarchical Equationally Partial Theories) have been in-
troduced by Reichel [70]. The idea was to introduce the domains of partial
functions in a structured way.

Signatures HEP -signatures are of form Σ = (S,TF ,PF , �,Def ) such that
• (S,TF ,PF ) is a signature in PCond=,
• � is a well-founded partial order on PF , and
• Def is a mapping that assigns to each f : s1, . . . , sn−→?s ∈ PF a finite set
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of existence equations over the variables x1 : s1, . . . , xn : sn, such that all
partial function symbols occurring in Def (f) are strictly less than f w.r.t.
�.
Signature morphisms are those from PCond= with the additional require-

ment that

Def (σ(f)) = σ(Def (f))

Models Σ-models are (S,TF ,PF )-models A in PCond= such that dom fA
equals
{(ν(x1), . . . , ν(xn)) ∈ Aw

| ν:X−→A with ν `̀ t1
e
= t2 for all t1

e
= t2 ∈ Def (f)}

for each f :w−→?s ∈ PF , w = s1 . . . sn.
Reducts are defined as in PCond=.

Sentences Σ-sentences are (S,TF ,PF )-sentences in PCond=.
Satisfaction Satisfaction is defined as in PCond=. 2

Note that Reichel’s theory morphisms defined in [70] are slightly more general
than theory morphisms in our HEP . However, Reichel does not define an
institution. Indeed, from the definitions in [70], one can only extract a specifi-
cation frame (i.e., a category of theories Th and a contravariant model functor
Mod: Thop−→CAT into the quasicategory of categories). If signatures and
sentences have to be separated, our slight restriction has to be made.

Now there is an easy institution representation from HEP to PCond=:

Signatures AHEP -signature Σ = (S,TF ,PF ,�,Def ) is sent to the PCond=-
presentation consisting of the signature (S,TF ,PF ) and of an axiom

∀x1 : s1, . . . , xn : sn • def f(x1, . . . , xn)⇔
∧

t1
e
=t2∈Def (f)

t1
e
= t2

for each partial function symbol f : s1, . . . , sn−→?s ∈ PF .
Models The model translation is just the identity.
Sentences The sentence translation is the identity as well.
Satisfaction The representation condition is obvious. 2

In [53], we also have set up a so-called weak institution representation in the
other direction, i.e. from PCond= to HEP . It uses an encoding of partial
function as sorts and of axioms as partial functions. This leads to rather
complex translated theories. We therefore do not go into the details here.

Reichel also defines canons that can be used to restrict subtheories of a given
theory to an initial interpretation. This can be easily translated to the free
{. . . } construct in Casl. However, we do not show this translation here: Since
the free {. . . } construct belongs to the level of specification in-the-large, this
is beyond the scope of this paper.
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10 OBJ3 and functional CafeOBJ

OBJ3 [31] is a specification and high-level programming language support-
ing subsorting. The logic is similar to SubCond=, but has some differences.
Apart from the empty carrier problem, OBJ has a different way of overload
resolution. Furthermore, casts from a supersort to a subsort, which are partial
functions in Casl, are total functions called retracts in OBJ. Moreover, mem-
bership formulas are not present in OBJ, though there are attempts to extend
OBJ with sort constraints [77], which are nothing but Casl’s membership
formulas (do not confuse them with Casl’s sort generation constraints).

CafeOBJ [26] is a successor of OBJ3 extending OBJ3 with hidden algebra
(for modeling object orientation) and rewriting logic (for modeling concur-
rency). Now the comparison of these features with some corresponding (object-
oriented resp. concurrent) extension of Casl is beyond the scope of this pa-
per. We therefore concentrate on the functional part of CafeOBJ, called fun-
CafeOBJ to be short. With respect to subsorting, the CafeOBJ report [26]
leaves open the details, and states only some very general constraints on the
logic. However, it is expected [25] that the subsorting in fun-CafeOBJ will be
some kind of Meseguer’s Membership Equational Logic MEqtl [49] (it seems
that also sorts in fun-CafeOBJ always have error supersorts; but this is more
a question of language constructs). Since MEqtl already has been treated in
Section 4.2, we here concentrate on OBJ3. See [66] for further comparison of
Casl and CafeOBJ (also at the in-the-large level) and more examples.

10.1 The Institution of Order-Sorted Algebra

The OBJ3 manual [31] claims that OBJ3 is based on order-sorted algebra
as developed in [36]. We here describe the institution COSASC of coherent
order-sorted algebra enriched with sort constraints, as introduced by Goguen
and Meseguer [36,50,30], in some detail, since it appears that there is no
complete detailed description of it in the literature 15 .

Definition 10.1 The institution COSASC.

Signatures Order signatures are triples Σ = (S,TF ,≤), where ≤ is a partial
order on S and (S,TF ) is a many-sorted signature, such that the following
conditions are satisfied:
• f ∈ TFw,s ∩ TFw′,s′ and w ≤ w′ imply s ≤ s′ (signature monotonicity)

15 Han Yan [77] comes closest to describing such an institution, but [77] is not
publicly available.
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• for each f ∈ TFw,s and w0 ≤ w ∈ Sn, there is a least arity for f that is
greater than or equal to w0 (regularity). This condition implies that there
also is a least rank (i.e. arity and coarity) for f with arity greater than or
equal to w0, see [36].
• each connected component of (S,≤) is filtered, i. e. any two elements (of

the connected component) have a common upper bound (local filtration).
(The conjunction of regularity and local filtration is called coherence.)

We further assume that each signature is strongly locally filtered [57], which
means that any two elements of a connected component have a least upper
bound. This assumption is needed for setting up the institution representa-
tions, but it might be omitted when translating the language constructs.

Given two signatures Σ = (S,TF ,≤) and Σ′ = (S ′,TF ′,≤′), an OSA-
signature morphism σ: Σ−→Σ′ consists of
• a map σS:S−→S ′,
• a family of maps σFw,s: TFw,s−→TF ′σS(w),σS(s) for each w ∈ S∗, s ∈ S
such that
• σS(s) ≤′ σS(s′) whenever s ≤ s′ (morphism monotonicity),
• for w ≤ w′, f ∈ TFw,s∩TFw′,s′ , we have σFw,s(f) = σFw′,s′(f) (preservation

of overloading) 16 ,
• for each f ∈ TFw,s and w0 ≤ w, (σS)n applied to the least arity for
f which is ≥ w0 yields the least arity for σFw,s(f) which is ≥ (σS)n(w0)
(preservation of regularity). 17

We further assume that least upper bounds of connected sorts are preserved
by signature morphisms.

Models Given Σ = (S,TF ,≤), an order-sorted Σ-algebra is a many sorted
(S,TF )-algebra M such that
(1) s ≤ s′ implies Ms ⊆Ms′ (subsort inclusion),
(2) f ∈ TFw,s∩TFw′,s′ and w ≤ w′ imply fM :Mw−→Ms equals fM :Mw′−→

Ms′ on Mw (algebra monotonicity).
Homomorphisms h:M−→N are many-sorted homomorphisms h:M−→N
such that s ≤ s′ and a ∈ Ms imply hs(a) = hs′(a). Reducts are defined
as for many-sorted algebras. Since many-sorted reducts preserve inclusions
and signature morphisms preserve overloading, the resulting many-sorted
algebra is again an order-sorted algebra.

Sentences An variable system X over Σ = (S,TF ,≤) is a family of sets
X = (Xs)s∈S with the Xs pairwise disjoint. Given such a variable system,
the set TΣ(X)s of Σ(X)-terms of sort s is inductively defined:
(1) x ∈ TΣ(X)s for x ∈ Xs,
(2) f(t1, . . . , tn) ∈ TΣ(X)s for f : s1, . . . , sn −→ s ∈ TF and ti ∈ TΣ(X)si ,

16 This condition is needed to ensure that reduct functors preserve monotonicity of
models (cf. Lemma 3.5, [41]). In [77], this condition is missing, while the condition
of [32] is too weak.
17 This condition is needed to ensure that the least sort parse algorithm described
below is compatible with signature morphisms.
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i = 1, . . . , n,
(3) TΣ(X)s ⊆ TΣ(X)s′ for s ≤ s′.
It is straightforward to make TΣ(X) into an order-sorted Σ-algebra. More-
over we have the following Lemma from [36], holding for regular signatures.
Lemma 10.2 Each valuation ν:X−→M has a unique homomorphic ex-
tension ν#:TΣ(X)−→M .

Proof. Given a variable valuation (i.e. an S-sorted map) ν:X −→M
into a Σ-algebra M , the homomorphism ν#:TΣ(X)−→M is defined by
• ν#

s (x) = νs(x) for x ∈ Xs, s ∈ S,
• ν#

s (f(t1, . . . , tn)) = fM(ν#
s1

(t1), . . . , ν#
sn(tn)) for f ∈ TF s1...sn,s, ti ∈ TΣ(X)si ,

• ν#
s (t) = ν#

s′ (t) for s′ ≤ s, t ∈ TΣ(X)s′ .
By regularity, this is well-defined, and moreover, ν# is the unique homomor-
phism from TΣ(X) to M extending ν. By the last equation, we can omit the
sort index and write just ν#(t) instead of ν#

s (t) whenever t ∈ TΣ(X). 2

A Σ-sentence in OSA is a conditional formula

∀X • e1 ∧ . . . ∧ en ⇒ e

where X is a variable system over Σ and the atomic formulas e and ei are
of two kinds: Either equations

t1 = t2

where t1 ∈ TΣ(X)s1 , t2 ∈ TΣ(X)s2 and s1, s2 are in the same connected
component of (S,≤), or sort constraints

t : s

where t ∈ TΣ(X)s′ and s is a sort in the same connected component as s′.
Given a signature morphism σ: Σ−→Σ′ and a variable system X over Σ,

we can get a variable system σ(X) over Σ′ by putting

σ(X)s′ =
⋃

σS(s)=s′

Xs

The inclusion ζσ,X :X−→TΣ′(σ(X))|σ has a unique homomorphic extension

ζ#
σ,X :TΣ(X)−→TΣ′(σ(X))|σ. Now a Σ-atomic formula t1 = t2 is translated

to ζ#
σ,X(t1) = ζ#

σ,X(t2), and a Σ-atomic formula t : s is translated to ζ#
σ,X(t1) :

σS(s). This easily extends to conditional formulas.
Satisfaction A Σ-algebra M satisfies a conditional axiom, if all valuations

which satisfy the premises also satisfy the conclusion. A valuation ν:X−→
M satisfies an equation t1 = t2 if ν#(t1) = ν#(t2), and it satisfies a sort
constraint t : s if ν#(t) ∈ Ms. The satisfaction condition can be proved by
noting that (similarly as in Lemma 3.2) valuations ν:σ(X) −→M are in
a one-one-correspondence to valuations ν|σ:X −→M |σ with the property
that ζ#

σ,X ◦ ν#|σ = (ν|σ)#. The satisfaction condition for sort constraints is
proved in [77]. 2
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We will also need the reduction theorem from [36], which translates order-
sorted to many-sorted algebra.

In COSASC, terms are not disambiguated; they can have many different
sorts. In contrast to this, terms in SubPFOL= are always fully qualified.

Recall from Section 3.2 that the many-sorted signature Σ̂ is obtained from a
subsorted signature Σ by adding injection, projection and membership sym-
bols. Following Goguen and Meseguer in [36], let Σ# be the subsignature of
Σ̂ without projection and membership symbols, and let J(Σ) be the subset of
Ĵ(Σ) consisting of the identity, embedding-injectivity and transitivity axioms
and of those function monotonicity axioms for which w = w′ ≤ w′′ in the
condition. Further, let µΣ: Σ#−→ Σ̂ be the inclusion. We will write J for J(Σ)
and Ĵ for Ĵ(Σ) if Σ is clear from the context.

Theorem 10.3 A reduction from order-sorted to many-sorted algebra, can
be formalized as a simple institution representation from COSA (coherent
order-sorted algebra as introduced above, but without sort constraints) to
Cond= (many-sorted algebra), as follows.

Signatures A COSA-signature Σ is mapped to the Cond=-presentation 〈Σ#, J〉.
A signature morphism σ: Σ−→Σ′ in COSA is mapped to its obvious ex-
tension σ#: Σ#−→Σ′#.

Models By Theorem 4.2 of [36], there is an equivalence of categories ( )•

between ModCond
=〈Σ#, J〉 and ModCOSA(Σ). Basically, given a 〈Σ#, J〉-

model N , the subsort injections are replaced by set inclusions in N• using
colimits of filtered diagrams built up by the injections. Vice versa, any Σ-
algebra M can be mapped to a 〈Σ#, J〉-algebra M# by just taking the
inclusions as injections. Since viewing the inclusions as injections and then
going back to the injections is the identity, the representation is strongly
persistently liberal. Since we have an equivalence of categories, it is also an
embedding.

Sentences Each COSA-term t ∈ TΣ(X) has a least sort LSΣ(t) [36, 2.10]
and a least sort parse LPΣ(t) ∈ TΣ#(X) [36, p. 252]. They are defined
inductively as follows: If t = x is a variable, it has a unique sort LSΣ(x)
due to the disjointness condition for variable systems, and LPΣ(x) = x. If
t = f(t1, . . . , ts) ∈ TΣ(X)s, then by induction hypothesis, ti has least sort
si. Take w0 = s1 . . . sn. Then by the term formation rules, f ∈ TFw′,s′ for
some w′, s′ with s′ ≤ s and w0 ≤ w′. By regularity, there is a least rank w′, s′

for f such that w′ ≥ w0. This least s′ is the desired least sort of t, while
inj(s′,s)(fw′,s′(inj(s1,s′1)(LPΣ(t1)), . . . , inj(sn,s′n)(LPΣ(tn)))) is the least sort
parse of t.

Given an equation t1 = t2, let s1 = LS(t1), s2 = LS(t2) and s =
lub(s1, s2), the least upper bound of s1 and s2 which exists by strong lo-

97



cal filtration. Then LPΣ(t1 = t2) is

inj(s1,s)
(LPΣ(t1)) = inj(s2,s)

(LPΣ(t2))

This can easily be extended to conditional equations, giving translations
LPΣ: SenCOSA(Σ) −→ SenCond

=

(Σ#). Since signature morphisms preserve
regularity and least upper bounds, the construction is natural in Σ.

Satisfaction The representation condition follows from Theorem 4.4 of [36]. 2

We also have a representation in the converse direction:

Theorem 10.4 Let COS-SubCond= be the restriction of SubCond= to co-
herent signatures. There is an embedding institution representation from COS-SubCond=

to COSASC.

Proof. The representation works follows:

Signatures A coherent Casl signature (morphism) obviously is a COSASC-
signature (morphism).

Models Since the membership predicates in Σ̂ are fully determined by the
axioms in Ĵ(Σ), we can think of Casl Σ-models as 〈Σ#, J〉-models. The
model translation now works as follows: Just take inclusions in COSASC-
models to be the injections in COS-SubCond=. Obviously, this is not bi-
jective. However, it is a (pointwise) equivalence of categories, as shown in
Theorem 10.3.

Sentences Just delete the injections. Applications of membership are trans-
lated into sort constraints.

Satisfaction As in Theorem 10.3.

2

The institution COSASC is not yet the right institution to give a precise
meaning to all the constructs of OBJ3. Most importantly, retracts are missing.
The OBJ3 system automatically extends an OSA-presentation 〈Σ,Γ〉 with
Σ = (S,TF ,≤) to an OSA-presentation 〈Σ⊗,Γ⊗〉 which is 〈Σ,Γ〉 extended by
functions

(r : s′ > s): s′−→s

and axioms
∀x : s • (r : s′ > s)(x) = x

for s, s′ in the same connected component of (S,≤). Let κΣ,Γ: 〈Σ,Γ〉 −→
〈Σ⊗,Γ⊗〉 be the inclusion, and κΣ = κΣ,∅. Signature morphisms σ: Σ −→ Σ
can also be extended to signature morphisms σ⊗: Σ⊗ −→Σ′⊗. The following
lemma is important for the semantics of retracts:

Lemma 10.5 Let FκΣ,Γ
: Mod(〈Σ,Γ〉)−→Mod(〈Σ⊗,Γ⊗〉) be the free con-

struction (left adjoint) w.r.t. Mod(κΣ,Γ). Then the unit ιM :M−→FκΣ,Γ
(M)|κΣ,Γ
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is injective.

Proof. The lemma follows from Theorem 3.5 of [36] 18 by using the diagram
method for free extensions [73]. 2

10.2 The Institutions Underlying OBJ3

Joseph Goguen claims in [32] that the semantics of a theory 〈Σ,Γ〉 is neither
Mod(〈Σ,Γ〉) nor Mod(〈Σ⊗,Γ⊗〉), but rather ι: IdMod(〈Σ,Γ〉)−→Mod(κΣ,Γ) ◦
FκΣ,Γ

(actually, he considers initial semantics only, and the above is the straight-
forward generalization to loose semantics). But there is no explicit description
of an institution that uses ι as a semantics in the literature. Perhaps the OBJ
community does not feel a need of such an institution. But when translating
OBJ3 to other languages, we need a precise semantics of all the underlying
concepts. Therefore, in this section, we introduce two institutions that can
serve as underlying institutions of OBJ3.

The following institution captures OBJ3’s retracts and also allows to deal with
error recovery by treating error values as first-class citizens.

Definition 10.6 The institution COSASC⊗.

Signatures A COSASC⊗-signature (resp. signature morphism) is just a sig-
nature (resp. signature morphism) in COSASC.

Models A Σ-algebra in COSASC⊗ is a 〈Σ⊗, ∅⊗〉-algebra in COSASC. Much
in the same way, reducts are inherited.

Sentences A Σ-sentence in COSASC⊗ is a Σ⊗-sentence in COSASC. Sen-
tence translation is inherited in the same way.

Satisfaction A Σ-algebraM satisfies a Σ-sentence ϕ in COSASC⊗ if we have
in COSASC that the Σ⊗-algebra M satisfies the Σ⊗-sentence ϕ. Thus the
satisfaction condition for COSASC⊗ follows from that for COSASC. 2

Treating error values as first-class citizens in COSASC⊗ has one main disad-
vantage: equations involving retracts may lead to confusion among ordinary
values, which generally is undesirable. So one has to prove that retract equa-
tions do not interfere with ordinary values. More importantly, in COSASC⊗

we entirely lose the distinction between ordinary and error values, since ordi-
nary functions and retracts can both map ordinary values to error values and
vice versa. Also CafeOBJ’s error supersorts do not help for separating retract-
generated error values from ordinary values. This is because retract functions

18 Notice that here we need the assumption that all carriers are non-empty, which
implies faithfulness of 〈Σ,Γ〉 in the sense of [36]. This will be further discussed in
Section 11.2.
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have to go to ordinary sorts, since they serve for the purpose of coercing a
value to an (ordinary) subsort of a sort.

This justifies the introduction of a more complex institution that keeps error
values and ordinary values distinct. It also comes closer to Joseph Goguen’s
claim that the injection ι is the semantics, meaning that “the ‘new error ele-
ments’ reside in a shadowy penumbra, distinctly set off from the bright central
region of pure elements by the injection, as well as from the dark outer region of
error terms by a subsort relation” [32]. The best approximation of this “shad-
owy penumbra” seems to be the institution COSASC⊗ introduced below. In
the presence of CafeOBJ’s error supersorts, satisfaction in this institution is
closely related to existential super satisfaction in [32].

Definition 10.7 The institution COSASC⊗.

Signatures A COSASC⊗-signature (resp. signature morphism) is just a sig-
nature (resp. signature morphism) in COSASC.

Models A Σ-algebra in COSASC⊗ is a Σ-algebra in COSASC.
Sentences A Σ-sentence in COSASC⊗ is a Σ⊗-sentence in COSASC.
Satisfaction A valuation ν:X −→ M satisfies a Σ-equation t1 = t2 with
s = lub(LS(t1), LS(t2)) if

(ιM ◦ ν)#(t1) = (ιM ◦ ν)#(t2) ∈ ιM(Ms)

where ιM ◦ν is considered to be a valuation from X to FκΣ
(M). A valuation

ν:X−→M satisfies a Σ-sort constraint t : s if ,

(ιM ◦ ν)#(t) ∈ ιM(Ms)

This is extended to sentences in the same way as for COSASC.
In order to prove the satisfaction condition, consider a signature mor-

phism σ: Σ −→ Σ′ and a Σ′-algebra M ′. By the universal property of the
free extension FκΣ

(M ′|σ), the homomorphism (ιM ′)|σ has a unique extension

(ιM ′)|σ#:FκΣ
(M ′|σ)−→FκΣ′

(M ′)|σ⊗

making the right triangle in the diagram below commutative. Now we use
the fact stated in the satisfaction part of Definition 10.1 that valuations
ν:σ(X) −→M ′ are in a one-one-correspondence to valuations ν|σ:X −→
M ′|σ with the property that ζ#

σ,X ◦ ν#|σ = (ν|σ)#. The remaining subdia-
grams in the following diagram commute by freeness of the respective term
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algebras; thus, the outer square commutes as well.

|TΣ⊗(X)|
(ι(M′|σ)◦ν|σ)#

//

ζ#

σ⊗,X

��

|FκΣ
(M ′|σ)|

((ιM′ )|σ)#

��

|TΣ(X)|

iiRRRRRRRRRRRRRR

ζ#
σ,X

��

(ν|σ)#

''OOOOOOOOOOO

|M ′|σ|

(ιM′ )|σ

��>>>>>>>>>>>>>>>>>>

ι(M′|σ)

@@������������������

|TΣ′(σ(X))|σ|

uullllllllllllll

ν#|σ
77ppppppppppp

|TΣ′⊗(σ(X))|σ⊗|
(ιM′◦ν)#|σ⊗ // |FκΣ′

(M ′)|σ⊗|

Since ((ιM ′)|σ)#|κσ ◦ ι(M ′|σ) = (ιM ′)|σ, ((ιM ′)|σ)# takes the image of ι(M ′|σ)

exactly to the image of (ιM ′)|σ. Moreover, on the former image, ((ιM ′)|σ)#

is injective, since ((ιM ′)|σ)#|κσ ◦ ι(M ′|σ) = (ιM ′)|σ is injective by Lemma 10.5.
Therefore, there exists some a ∈ (M ′|σ)s with

(ι(M ′|σ) ◦ ν|σ)#(t1) = ι(M ′|σ)(a) = (ι(M ′|σ) ◦ ν|σ)#(t2)

if and only if there exists some a ∈M ′
σS(s) with

(ιM ′ ◦ σ(ν))#(ζ#
σ⊗,X(t1)) = ιM ′(a) = (ιM ′ ◦ σ(ν))#(ζ#

σ⊗,X(t2))

Since ζ#
σ⊗,X is used for sentence translation, the satisfaction condition follows

easily. 2

In COSASC⊗, error values generated by retracts only have a virtual exis-
tence, since retracts are always interpreted freely. This means that equations
involving retracts are false in all models if they do not follow already from
the built-in retract equations in Γ⊗. In the case that all user-defined retract
equations involve only one retract, and this retract occurs at the outmost posi-
tion of a term, this works fine, and COSASC⊗ corresponds to the operational
semantics of OBJ3.

However, COSASC⊗ does not work for error recovery, where error values
should be treated as first-class values (such that functions can compute with
them). In this case, we have to use COSASC⊗, though we then lose the
distinction between ordinary and error values.

Let us illustrate this with an example. Consider the following OBJ3 specifi-
cation of paths over an arbitrary graph, which later on is instantiated to a
particular graph with four nodes and three edges (the specification is also a
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CafeOBJ specification, the only difference being that CafeOBJ generates the
supersort Path Err automatically):

th GRAPH is

sorts Nodes Edges .

ops source target : Edges -> Nodes .

endo

obj PATH[G :: GRAPH] is

sorts Edges < Path .

sorts Path < Path_Err .

ops source target : Path -> Nodes .

op _ :: _ : Path Path -> Path_Err assoc .

vars p,q : Path .

ceq source((p :: q) as Path) = source(p) if p :: q : Path .

ceq target((p :: q) as Path) = target(q) if p :: q : Path .

ceq target(p)=source(q) if p :: q : Path .

ceq p :: q in Path if target(p)=source(q) .

endo

obj MY-GRAPH is

using GRAPH .

ops a b c d : -> Nodes .

ops 1 2 3 : -> Edges .

eq source(1) = a .

eq target(1) = b .

eq source(2) = b .

eq target(2) = c .

eq source(3) = c .

eq target(3) = d .

endo

obj MY-PATH is

protecting PATH[MY-GRAPH]

endo

In COSASC⊗, the inital MY-PATH-model contains as valus of the sort Path not
only values like 1, 2, 3, 1::2, 2::3, but also values like r:Path Err>Path(2::1).
Thus, not only the sort Path Err contains “error elements” like

r:Path Err>Path(2::1),

also the sort Path contains them!

Now in COSASC⊗, the specification behaves as expected: the sort Path of
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a 1 // b
2 // c 3 // d

a 1 //

1::2

;;

1::2::3

??b
2 //

2::3

##
c 3 // d

Fig. 6. The inital MY-GRAPH-model and the inital MY-PATH-model.

the inital MY-PATH-model indeed is just interpreted (up to change of represen-
tation) by the set

{1, 2, 3, 1::2, 2::3, 1::2::3 },

while the sort Path Err additionally contains “error elements”, for example
r:Path Err>Path(2::1).

10.3 Translating COSASC⊗ to SubCond=

In this and the follwing subsection, we describe two translations of institu-
tions underlying OBJ3 to (fragments of) the Casl institution, serving differ-
ent methodological purposes. The present section describes the translation of
COSASC⊗ to subsorted conditional equational logic (SubCond=). It trans-
lates retracts to total functions, and thus retracts usually generate new values
in the carrier sets (which are called error values).

Theorem 10.8 The following describes a strongly persistently liberal sim-
ple institution representation from COSASC⊗ to SubCond= that is also an
embedding.

Signatures A COSASC⊗-signature Σ is mapped to 〈Σ⊗, ∅⊗〉 considered as
a SubCond=-presentation (which means that the retracts in the retract
equations have to be explicitly qualified with their profiles). A signature
morphism σ: Σ−→Σ′ is mapped to the signature morphism σ⊗: Σ⊗−→Σ′⊗.
Now σ⊗ is monotone because σ is. It remains to show that σ⊗ preserves the
overloading relation ∼F . Let f : w1 −→ s1 ∼F f : w2 −→ s2 in Σ, i.e. there
exist w0 ∈ S∗ with w0 ≤ w1 and w0 ≤ w2 and a common supersort s0 of s1

and s2. By regularity of Σ, there is some w ∈ S∗, s ∈ S with f : w −→ s
and w0 ≤ w ≤ w1, w2. Since σ preserves overloading, σFw1,s1

(f) = σFw,s(f) =
σFw2,s2

(f).
Models Given a COSASC⊗-signature Σ, the model translation is the fol-
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lowing composite (( )• has been introduced in Theorem 10.3): 19

ModCOSA
⊗

(Σ) ModSubCond
=

(〈Σ⊗, ∅⊗〉)

ModCOSA(〈Σ⊗, ∅⊗〉) ModCond
=

(〈Σ⊗#
, J⊗〉)

( )•oo ModHorn
=

(〈Σ̂⊗, Ĵ⊗〉)
Mod(µΣ⊗ )oo

Concerning strongly persistent liberality and the embedding property,
( )• has a left adjoint right inverse and is an equivalence of categories due
to Theorem 10.3. Mod(µΣ⊗) just forgets membership predicates, which are
fully determined by the axioms in Ĵ⊗. Therefore, it is even an isomorphism.
(The additional function-overloading axioms in Ĵ⊗ already follow from those
in J⊗ with an argument similar to the above argument showing preservation
of overloading by signature morphisms.)

Sentences Given a COSASC⊗-signature Σ, for sentences without sort con-
straints, the sentence translation is the following composite (LP has been
introduced in Theorem 10.3):

SenCOSA
⊗

(Σ) SenSubCond
=

(Σ⊗)

SenCOSA(Σ⊗)
LPΣ⊗//SenCond

=

(Σ⊗
#

)
Sen(µΣ⊗ )//SenHorn

=

(Σ̂⊗)

Sort constraints within sentences are translated as follows: Given t : s as an
atomic constituent of a sentence in SenCOSASC

⊗
(Σ), let s′ = lub(s, LS(t))

and translate it to

inj(LS(t),s′)(Sen(µΣ⊗)(LPΣ⊗(t))) ∈ s

as an atomic constituent in SenSubCond
=

(Σ⊗).
Satisfaction The representation condition follows from that of the represen-

tation in Theorem 10.3. For sort constraints, we also need the axioms for
membership in Ĵ . 2

When we translate the OBJ3 specification MY-PATH given above with this
tranlsation, we get the Casl specification

spec Graph =
sorts Nodes ,Edges
ops source, target : Edges → Nodes ;

a, b, c, d : Nodes ;
1 , 2 , 3 : Edges

19 Since SubCond= is a total framework, we have to leave out the partial projections
from Σ̂ as said in the paragraph about partiality in Section 3.4.1. Otherwise, the
target of the translation would be SubPCond=.
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axioms source(1 ) = a;
target(1 ) = b;
source(2 ) = b;
target(2 ) = c;
source(3 ) = c;
target(3 ) = d

end

spec Path[Graph] =
sorts Edges < Path;

Path < Path Err
ops r Path Err Path : Path Err → Path;

source, target : Path → Nodes ;
:: : Path × Path → Path Err , assoc

forall p, q : Path
• p :: q ∈ Path ⇒ source(r Path Err Path(p :: q)) = source(p)
• p :: q ∈ Path ⇒ target(r Path Err Path(p :: q)) = target(q)
• p :: q ∈ Path ⇔ target(p) = source(q)

end

spec My Graph =
Graph

then
ops a, b, c, d : Nodes ;

1 , 2 , 3 : Edges
axioms source(1 ) = a;

target(1 ) = b;
source(2 ) = b;
target(2 ) = c;
source(3 ) = c;
target(3 ) = d

end

spec My Path =
Path[My Graph]

end

10.4 Translating COSASC⊗ to SubPCond=

The translation of COSASC⊗ to SubPCond= maps retracts to partial pro-
jections. This means that retracts do not generate new values in the carrier
sets.

Theorem 10.9 The following describes a strongly persistently liberal simple
institution representation from COSASC⊗ to SubPCond= that is also an
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embedding.

Signatures Any COSASC⊗-signature is a SubPCond=-signature by letting
the set of partial function symbols be empty.

Models Given a COSASC⊗-signature Σ, the model translation is the follow-
ing composite:

ModCOSASC⊗(Σ) ModSubPCond
=

(Σ)

ModCOSASC(Σ) ModCOSASC(〈Σ#, J〉)( )•oo ModPHorn
=

(〈Σ̂, Ĵ〉)Mod(µΣ)oo

Concerning strongly persistent liberality and the embedding property,
( )• has a left adjoint right inverse and is a natural equivalence due to
Theorem 10.3. Mod(µΣ) just forgets membership predicates and partial
projections, which are fully determined by the axioms in Ĵ⊗. Therefore,
using a similar argument as in the proof of Theorem 10.8, it is even an
isomorphism.

Sentences Given a COSASC⊗-signature Σ, sentences without sort constraints
are translated with the following composite:

SenCOSA⊗(Σ) SenSubPCond
=

(Σ)

SenCOSA(Σ⊗)
LPΣ⊗//SenCond

=

(Σ⊗
#

)
[[ ]] //SenPHorn

=

(Σ̂)

Here, [[ ]] is defined inductively as follows:
• [[x]] = x
• [[inj(s,s′)(t)]] = inj(s,s′)([[t]])
• [[r : s′ > s(t)]] = pr(s′,s)([[t]])
• [[fw,s(t1, . . . , tn)]] = fw,s([[t1]], . . . , [[tn]])
• [[t1 = t2]] = [[t1]]

e
= [[t2]]

• [[∀X • e1 ∧ . . . ∧ en ⇒ e]] = ∀X • [[e1]] ∧ . . . ∧ [[en]]⇒ [[e]]
A sort constraint t : s occurring in a sentence is translated to

inj(LS(t),s′)([[LPΣ⊗(t)]]) ∈ s,

where s′ = lub(s, LS(t)).
Satisfaction Given M ∈ ModPHorn

=

(Σ̂), by Theorem 10.3 without loss of
generality we can assume that M consists of inclusions as injections already,
and (M |µΣ

)• = M |µΣ
(note that also (M |µΣ

)s = Ms). The key to prove the
representation condition is the following lemma:
Lemma 10.10 Given M ∈ ModPHorn

=

(Σ̂) with (M |µΣ
)• = M |µΣ

, val-
uations ν:X −→M are the same as valuations ν̃:X −→ (M |µΣ

). For t ∈
TΣ⊗(X), the following properties hold:
(1) ν#([[LPΣ⊗(t)]]) is defined iff (ι(M |µΣ

) ◦ ν̃)#(t) ∈ ι(M |µΣ
)(M |µΣ

)
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(2) In case of (1), ι(M |µΣ
)(ν

#([[LPΣ⊗(t)]])) = (ι(M |µΣ
) ◦ ν̃)#(t).

Proof. The proof proceeds by induction over the structure of t. The only
critical case is that of retracts. We have ν#([[LPΣ⊗(r : s′ > s(t))]]) is defined
iff ν#(pr(s′,s)([[LPΣ⊗(t)]])) is defined iff ν#([[LPΣ⊗(t)]]) is defined and ∈ Ms

iff (ιM |µΣ
◦ ν̃)#(t) ∈ ιM |µΣ

((M |µΣ
)s) iff (since retracts are interpreted freely

outside Ms) (ιM |µΣ
◦ ν̃)#(r : s′ > s(t)) ∈ ιM |µΣ

((M |µΣ
)s). 2

Proposition 10.11 The model translation component of the representation
from COSASC⊗ to SubPCond= is a natural equivalence.

Proof. ( )• is shown to be a natural equivalence in [36], and Mod(µΣ) is a
natural equivalence since 〈Σ̂, Ĵ〉 is a definitional extension of 〈Σ#, J〉. 2

With this translation, the specification Path is translated to Casl as follows:

spec Graph =
sorts Nodes ,Edges
ops source, target : Edges → Nodes ;

a, b, c, d : Nodes ;
1 , 2 , 3 : Edges ;

axioms source(1 ) = a;
target(1 ) = b;
source(2 ) = b;
target(2 ) = c;
source(3 ) = c;
target(3 ) = d

end

spec Path [Graph] =
sorts Edges < Path;

Path < Path Err
ops source, target : Path → Nodes ;

:: : Path × Path → Path Err
forall p, q : Path
• p :: q ∈ Path ⇒ source((p :: q) as Path) = source(p)
• p :: q ∈ Path ⇒ target((p :: q) as Path) = target(q)
• p :: q ∈ Path ⇔ target(p) = source(q)

end

10.5 Translating OBJ3’s Constructs into Casl Constructs

We now briefly describe how any of the institution representations defined in
the previous section can be lifted to a translation of language constructs.
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One difference between OBJ3 and Casl concerns disambiguation of terms.
Sort disambiguation in OBJ3 inserts subsort inclusions and retracts, while
in Casl, only subsort injections are inserted. Note that Casl’s disambigua-
tion [61] corresponds to the least sort parse for regular signatures. Thus, at
the construct level, the translation from OBJ3 to Casl has just to insert re-
tracts. (It does not matter here that at the concepts level, Casl terms are
disambiguated while OBJ3 terms are not.)

Mixfix declaration facilities are essentially the same for OBJ and Casl. Prece-
dences between mixfix operations are expressed with numeric priorities in
OBJ3, while Casl allows arbitrary pre-orders as in ASF+SDF. Thus, OBJ3
numeric priorities have to be translated to the pre-order induced by them. Con-
cerning the associativity of mixfix operations, OBJ3 allows to declare rather
general gathering patterns. These are not available in Casl. Casl only al-
lows to declare binary infix operations to be left or right associative, this
corresponds to special gathering patterns in OBJ3. Other gathering patterns
cannot be translated to Casl. Instead, one has to parse the formulas and
terms with an OBJ3 parser (using the gathering patterns) and using explicit
bracketing for disambiguation wherever necessary in the translation to Casl.

Explicit sort disambiguation (written t.s in OBJ3) is also available in Casl

(written t : s). Sort constraints, written as t : s in (extensions of) OBJ3, are
written as membership formulas t ∈ s in Casl.

Associativity, commutativity, identity and idempotence attributes are slightly
more general in OBJ3 than in Casl, since in Casl, argument and result sorts
of the operations with attributes have to be the same. In the case that this
condition does not hold, the attribute has to be translated to an axiom.

OBJ3’s subsort declarations allow chains of subsorts to be declared. This has
to be split up into several declarations in Casl. Finally, OBJ3’s let definitions
have to be translated to Casl’s operation definitions.

Concerning functional CafeOBJ, a distinguishing feature of fun-CafeOBJ as
used in the CafeOBJ report is that each sort comes equipped with an error
supersort. This feature need not be treated at the level of the logic though: the
right place to introduce the error supersorts is the level of language constructs,
namely the function that extracts a signature in the institution from a given
specification should introduce the error supersorts.
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11 Boolean Functions and Empty Carriers

In this section, two problems that are common to all specification language
translations are discussed, namely the treatment of boolean functions and
empty carriers.

11.1 Translating Boolean Functions to Predicates

Larch, ACT ONE and OBJ3 all have a built-in sort Bool or Boolean of
boolean values, together with some Boolean operations. 20 The translations
of the previous sections treat Bool like any other sort. This means that the
implicit inclusion of Bool into each specification must be handled at the level
of structured specifications: When translating a Larch, ACT ONE or OBJ3
specification to Casl, one has to make the implicit import of Bool (together
with possibly equality and if-then-else functions, depending of the language)
explicit in the result of the translation. Further, when translating ACT ONE
or OBJ3, the Casl specification of Bool has to be surrounded by a free {
. . . }, since the Booleans are always interpreted initially in these languages.
For the declared constructor functions, ACT ONE generates special equations
of sort Bool, which have to be included in the translation as well.

However, it may be desirable to treat Bool as a special sort and translate
Larch’s, ACT ONE’s or OBJ3’s Bool-valued functions into Casl’s predicates.
This works only for theories that do not use Bool as argument sort of a
function.

We thus can modify the translations of Sections 6.1, 10.3 and 10.4 by mapping
Bool-valued functions into predicates at the signature level. At the sentence
level, applications of Bool-valued functions are translated to applications of
predicates, and the standard Bool-functions are translated into the logical
connectives. 21 At the model level, predicates are translated to Bool-valued
functions.

For example, concerning OBJ3, let us restrict COSASC⊗ (or COSASC⊗) to
signatures including the standard signature BOOL (with a fixed meaning), but
without any functions having Bool as argument sort except those in BOOL, thus
getting the institution COSASC⊗-Bool (or the institution COSASC⊗-Bool).
We then have a strongly persistently liberal institution representation from

20 For LSL, the institution underlying Larch, Baumeister [8] has developed a formal
treatment of signatures with fixed Boolean subsignature.
21 If-then-else is available only as a construct, not as a concept in Casl. The trans-
lation from Casl constructs to concepts can be used as translation here.
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COSASC⊗-Bool to SubFOL=, and another one from COSASC⊗-Bool to
SubPFOL=. A similar remark holds for LSL: we get a representation LSL-Bool −→
CFOL=.

Concerning ACT ONE, we can use GCond=-Bool −→ FOL= constructed in
an analogous way. (This representation can also be used for ASF, although
ASF does not have an implicitly imported Bool). Now in this setting (of trans-
lating Bool-valued functions to Casl predicates), the special axioms of sort
Bool generated for constructors in ACT ONE (stating injectivity of construc-
tors and disjointness of their images) can be generated with a free type . . .
construct in Casl, which generates exactly the same axioms as first-order
formulas.

11.2 The Empty Carrier Problem

All institutions of order-sorted and partial algebras which we have defined
in this paper do not admit empty carriers. The reader may be surprised by
this, since many-sorted and subsorted algebras usually are defined in a way
allowing empty carriers [28,36].

The main reason to disallow empty carriers in Casl was that when allowing
empty carriers, the satisfaction of a sentence like

∀x : s • a = b

would depend not only on the equality of the interpretations of a and b, but
also on the question whether the carrier for sort s is empty or not. This may
lead to confusion, especially when the variable x : s is not introduced locally,
but through a global variable declaration.

Surprisingly, another reason to forbid empty carriers lies in the framework
of order-sorted algebra that has been developed by advocates of empty car-
riers: Lemma 10.5, which is crucial for proving the satisfaction condition of
COSASC⊗, only holds if we forbid models that mix empty and non-empty
carriers. 22 We here additionally forbid models consisting only of empty car-
riers, but this additional restriction is not essential in any respect.

Forbidding empty carriers is not a great loss, since it is unlikely that a datatype
contains no data. Moreover, it is even an advantage: since the standard def-
initions of first-order and higher-order logic forbid empty carriers as well,
there is a straightforward bridge from Casl to FOL=- or HOL=-based theo-

22 It also holds if we restrict ourselves to confluent sets of axioms [36], but this does
not help for defining an institution.
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rem proving tools (which usually assume non-empty carriers). Empty carriers
would overly complicate the use of such tools for Casl.

It has been argued [35] that allowing empty carriers is necessary to get initial
models and free extensions. However, Theorem 4.16 shows that initial models
and free extensions exist if we restrict ourselves to strict signatures. Now in [35]
it is argued that there are useful theories that are not strict (e.g. the theory
of pre-ordered sets). However, such theories can still be used as parameter
theory for free extensions, since Theorem 4.16 only requires the target theory
to be strict. It will hardly be the case that one wants to have initial or free
semantics for non-strict theories.

For the rare cases where an example specification should really use empty
carriers, and for the re-use of tools supporting empty carriers, we now examine
the relation between institutions with and without empty carriers and set up
representations between these institutions. Then, by composing with one of
these representations, we can shift the representations of Fig. 3, 4 and 5 to
representations between institutions that differ in their behaviour w.r.t. empty
carriers.

For any institution I introduced in the previous sections, let Imt denote I with
a slightly modified model functor that allows the possibility of empty carriers
in the model.

Let us now consider the representation of I in Imt and vice versa at the first-
order level. 23 There are easy representations between FOL= and (FOL=)mt:

• For the representation of (FOL=)mt in FOL=, we can simply use repre-
sentation (4) from the first-order level (Section 4.1.4) and delete the axiom
∃x : s •Ds(x) stating non-emptiness of the set of “defined” elements. This
gives a representation of (PFOL=)mt in FOL=, which then can be com-
posed with the inclusion of (FOL=)mt into (PFOL=)mt. As in (4), we thus
get a strongly persistently liberal representation with the weak (injective)-
amalgamation property.
• FOL= can be represented in (FOL=)mt by adding to a signature an axiom

∃x : s • T

for each sort s. Axioms and models are translated identically. This gives a
subinstitution representation. 2

Instead of FOL= we could have used any other institution at the first-order
level and get the same results.

23 Note that most formulations of first-order logic exclude empty carriers anyway,
so these representations will be needed very rarely only.
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At the positive conditional level, we do not have such strong relations. 24 We
have the following representations between (SubP )Horn= and (SubP )Horn=mt:

• (Horn=)mt can be represented inHorn= in much the same way as (FOL=)mt

can be represented in FOL= above. We have to delete not only the axioms
of form ∃x : s •Ds(x), but also the operations ⊥ and the axioms involving
them in order to get theories in Horn form. This gives a strongly persistently
liberal representation (however, due to the deletion of ⊥, weak (injective)-
amalgamation is lost).

The same thing also works for the superinstitutions of Horn= defined at
the positive conditional level.

Concerning representing (Cond=)mt in Cond=, we can use representa-
tion (8) from the positive conditional level and delete the newly introduced
constants that guarantee the existence of “defined” elements.
• Horn= can be represented in Horn=mt by adding to a signature an over-

loaded constant c : s for each sort s. Axioms and models are translated
identically. This gives a model-bijective institution representation. The same
thing also works for the sub- and superinstitutions of Horn= defined at the
positive conditional level. 2

12 Conclusion

We have considered the relation of Casl to other specification languages at
the level of specification in-the-small. To this end, we have defined a number
of subinstitutions of the institution SubPCFOL= underlying the specification
language Casl.

Among these subinstitutions of SubPCFOL=, we have defined a number of
institution representations. Altogether, three graphs of institutions and rep-
resentations arise: two at the first-order level (one with, one without sort
generation constraints), and one at the positive conditional level. We also
have classified the institution representations according to different proper-
ties, and have shown how these properties lead to a good interaction with
theorem proving. More specifically, the properties allow (1) the lifting of the-
orem provers for flat specifications, (2) for structured specifications without
free, (3) for structured specifications including free and/or (4) the lifting of
loose semantics. As a consequence, we get

(1) All the institutions of the positive conditional level are liberal w.r.t. so-
called strict theory morphisms (this is proved by lifting free constructions

24 Note that at the positive conditional level, there are much more frameworks
allowing empty carriers than in the first-order case.
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from well-known institutions to other subinstitutions of Casl).
(2) First-order theorem provers with induction (or, at the level of positive

conditional specifications, conditional term rewriters and paramodula-
tion) can be “lifted” for use for theorem proving within basic specifica-
tions in Casl. At the first-order level, this result also holds for structured
specifications. Actually, we have used the composition of translations
(7) ◦ (6′) ◦ (5a′) (cf. Section 4.1) from the first-order level, going from
the Casl logic SubPCFOL= to second-order logic SOL=, as the basis
for the logical encoding provided within the CASL tool set (CATS) [51].
CATS also provides the intermediate steps of this composite encoding,
having targets CFOL= and SubCFOL= (the former roughly being first-
order logic with induction). Thus it is possible to use CATS to connect
Casl to standard first-order or higher-order theorem provers.

As a first practical example, we have used this to encode Casl in Is-
abelle/HOL in the HOL-CASL system, see [58] for details. The experience
was that the institution representation can serve as a semantical basis for
the re-use of theorem provers, but to make it work in practice requires
more work. One important point is the question of a partial inverse of the
representation, which makes it possible to display intermediate formulas
in a proof in the syntax of the represented institution.

(3) Moreover, we have described the translation of a number of well-known
specification languages (Larch, OBJ3, functional CafeOBJ, ACT, ASF,
and HEP-theories) into Casl. We have set up formally precise trans-
lations at the level of the underlying logics (formalized as institutions),
and informally discussed how this lifts to the level of language constructs.
Thus, specification libraries and case studies developed in these languages
can be translated to Casl.

Most of the specification languages that we have examined are based on a
rather straightforwardly defined subinstitution of the Casl institution. The
exception is OBJ3. When attempting to translate OBJ3 to Casl, we first
had to clarify what the institution underlying OBJ3 is. Actually, we have
found two institutions for OBJ3, serving different methodological purposes.
One institution (COSASC⊗) treats error values generated by retracts as first-
class citizens, allowing error recovery, while the other one (COSASC⊗) treats
error values as virtual values, allowing a clean separation of ordinary and error
values.

We also have addressed the level of language constructs and have (informally)
shown how the constructs for writing specifications in-the-small from other
languages can be translated into Casl. A formal treatment would need a
formal definition of the other languages, which is not available in all cases and
which also would be too detailed.

Finally, we have shown how the problem that most of the existing algebraic
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specification languages differ from Casl in that they have a semantics allowing
models with empty carriers can be solved.

An important future extension of the translations will be to consider also the
translation among different concepts for specifications in-the-large. Here, the
main difficulty will be the different philosophies behind the module systems:
While OBJ3, CafeOBJ and ACT TWO use a colimit-based approach where
the same name can have different meanings (depending on its origin module),
Casl follows a same-name-same-thing philosophy.
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A Preservation of Freeness

The following propositions are important for proving properties about persis-
tently liberal institution representations. We will use the following terminol-
ogy: Given a functor F left adjoint to G, ηG and εF (or just η and ε, if no
confusion can arise) will denote the unit and counit of some corresponding
adjoint situation.

Proposition A.1 Given R: B−→A with left adjoint L such that R◦L ∼= id,
then η, εL, and Rε are isomorphisms. Moreover, L is full.

Proof. Let δ:R ◦ L−→ id be a natural isomorphism, and let A be an object
in A.

RLA
(δ◦η)RLA //

RεLA◦δ−1
RLA

��

id

""FFFFFFFFFFFFFFFFF RLA

RεLA◦δ−1
RLA

��
RLA

(δ◦η)RLA //RLA

Since Rε ◦ ηR = id for any adjunction, RεLA ◦ δ−1
RLA ◦ δRLA ◦ ηRLA = id. Hence,

the upper triangle commutes. By naturality of δ◦η, also the square commutes.
Thus, also the lower triangle commutes. But this shows (δ ◦ η)RLA to be an
isomorphism. Since δ is an isomorphism, ηRLA is an isomorphism as well. By
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naturality of η,

RLA
ηRLA //

δA

��

RLRLA

RLδA

��
A

ηA //RLA

commutes. Hence, ηA is an isomorphism. Since εL ◦Lη = id and Rε ◦ ηR = id
for any adjunction, εL and Rε are isomorphisms as well.

Fullness of L follows with the dual of [1], 19.14. 2

Proposition A.2 Let the following diagram of categories and functors be
given.

A
L //

U

��

B
R

oo

V

��
X

L′ //
Y

R′
oo

Assume further that

• U ◦R = R′ ◦ V ,
• R ◦ L ∼= id and R′ ◦ L′ ∼= id,
• L is left adjoint to R, and
• L′ is left adjoint to R′.

Then

(1) If B ∈ B is V -free over L′X for some X ∈ X, then RB is U -free over X.
(2) A ∈ A is U -free over X ∈ X iff LA is V -free over L′X.
(3) If B ∈ B is strongly persistently V -free and V B is in the image of L′,

then RB is strongly persistently U -free.
(4) Further assume that L′ ◦U = V ◦L. Then A ∈ A is strongly persistently

U -free iff LA is strongly persistently V -free.

Proof. (1)

By Proposition A.1, ηR and εLL are isomorphisms, and L is full. Assume that
B ∈ B is V -free over L′X, i.e. there is a V -universal arrow ηVL′X :L′X−→V B.
By composition with the R′-universal arrow ηR

′
X :X−→R′L′X we get an R′V -

universal arrow ηR
′V

X = R′ηVL′X ◦ ηR
′

X :X−→R′V B. By its universality, there is
a morphism g:B−→LRB with R′V g ◦ ηR′VX = UηRRB ◦ ηR

′V
X .
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X
ηR
′V

X //
ηR
′V

X

''NNNNNNNNNNNN R′V B

R′V g

��

R′V B = URB
UηRRB

**UUUUUUUUUUUUUUUUU

URLRB = R′V LRB

Now R′V εLB◦R′V g◦ηR
′V

X = URεLB◦UηRRB◦ηR
′V

X = ηR
′V

X . By universality of ηR
′V

X ,
we get εLB ◦ g = id, and thus also εLB ◦ g ◦ εLB = εLB. Since L is full, g ◦ εLB is the
L-image of an A-morphism. By co-universality of εLB, we get g◦εLB = id. Thus,
g:B −→LRB is an isomorphism. But then, ηUX := ηR

′V
X :X −→URB can be

shown to be a U -universal arrow as follows: If f :X−→UA is an X-morphism,
by universality of ηR

′V
X , there is a unique morphism f#:B −→LA satisfying

R′V f#◦ηR′VX = UηRA◦f . Now (ηRA)−1◦R(f#◦g−1)◦ηRB is a morphism from RB
to A with U((ηRA)−1◦R(f#◦g−1)◦ηRB)◦ηR′VX = U(ηRA)−1◦UR(f#)◦UR(g−1)◦
UηRRB ◦ URεLB ◦ URg ◦ ηR

′V
X = U(ηRA)−1 ◦ UR(f#) ◦ UR(g−1) ◦ URg ◦ ηR′VX =

U(ηRA)−1 ◦UR(f#)◦ηR′VX = U(ηRA)−1 ◦UηRA ◦f = f . Since g is an isomorphism,
uniqueness follows from that of f#. 2

Proof of (2), “=⇒”:

Let ηUX :X−→UA be U -universal, and ηRA :A−→RLA be R-universal. Then

ηVL′X := L′X
L′ηUX //L′UA

L′UηRA//L′URLA = L′R′V LA
εL
′

V LA //V LA

is a V -universal arrow: Let f :L′X−→V B be an X-morphism. By co-universality
of εL

′
V B, there is some unique f̃ :X −→ R′V B = URB with εL

′
V B ◦ L′f̃ = f .

By UR-universality of UηRA ◦ ηUX , there is some unique f̃#:LA −→ B with
URf̃# ◦ UηRA ◦ ηUX = f̃ . By also considering the commutativity of the square
(due to naturality of εL

′
), f̃# is the unique morphism from LA to B with

V f̃# ◦ ηVL′X = f .
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L′X

ηV
L′X

$$L′ηUX //

L′f̃

))SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS

f
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L′UA
L′UηRA //L′URLA = L′R′V LA

εL
′

V LA //

L′URf̃#=L′R′V f̃#

��

V LA

V f̃#

��
L′URB = L′R′V B

εL
′

V B //V B

2

Proof of (2), “⇐=”:

Follows from (1) with B = LA, since RLA ∼= A. 2

Proof of (3): Follows from (1) with X such that L′X = V B, where Propo-
sition A.1 ensures that the unit constructed in the proof is an isomorphism,
which leads to strongly persistent freeness by Proposition 2.10. 2

Proof of (4):

Follows from (2) with X = UA, since by assumption, L′UA = V LA, where
εL
′

V L = εL
′

L′U and proposition A.1 ensure that the unit constructed in the proof
is an isomorphism, which leads to strongly persistent freeness by Proposi-
tion 2.10. 2

B Locally finitely presentable categories

Definition B.1 [2] An object K of a category K is called finitely presentable
provided that its hom-functor

hom(K, ):K−→Set

preserves directed colimits.

For example, a set is finitely presentable in Set iff it is finite. A many-sorted
algebra is finitely presentable in Mod(S, F ) iff it can be presented by finitely
many generators and finitely many equations in the usual algebraic sense.

Definition B.2 [2] A category K is called locally finitely presentable provided
that is cocomplete and has a set A of finitely presentable objects such that
every object is a directed colimit of objects from A.

Proposition B.3 [2] Each locally finitely presentable category is complete. 2
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Locally finitely presentable categories are categories that satisfy some com-
pleteness properties (completeness and cocompleteness) and some smallness
properties (roughly speaking, they are categories of structures with operations
of finite arities).

C Effective equivalence relations

Definition C.1 (cf. [2, 3.4(8)])

A relation on an object K is a subobject of K ×K (usually represented by a
pair e1, e2:E−→K of morphisms such that the morphism 〈e1, e2〉:E−→K×K
is a monomorphism). We call e1, e2:E−→K an equivalence relation provided
that it is

(1) reflexive, i.e., the diagonal of K ×K is contained in the subobject repre-
sented by 〈e1, e2〉

(2) symmetric, i.e., the monomorphisms 〈e1, e2〉 and 〈e2, e1〉 represent the
same subobject

(3) transitive, i.e., when we form the pullback of e2 and e1:

E ′

e′1

~~~~~~~~~~~~~~~~~

e′2

  @@@@@@@@@@@@@@@

E

e1

��~~~~~~~~~~~~~~~

e2

  @@@@@@@@@@@@@@@@ E

e1

~~~~~~~~~~~~~~~~~~

e2

��@@@@@@@@@@@@@@@

K K K

then the subobject represented by 〈e1 ◦ e′1, e2 ◦ e′2〉 is contained in that repre-
sented by 〈e1, e2〉.

Definition C.2 A kernel pair of a morphism f :K−→K ′ in a category is a
pair e1, e2:E−→K such that

E
e1 //

e2

��

K

f

��
K f

//K ′

is a pullback.
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A category has effective equivalence relations, if every equivalence relation is
the kernel pair of some morphism.
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[1] J. Adámek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories.
Wiley, New York, 1990.

[2] J. Adámek and J. Rosický. Locally Presentable and Accessible Categories.
Cambridge University Press, 1994.

[3] D. Ancona, M. Cerioli, and E. Zucca. Extending Casl by late binding.
In C. Choppy, D. Bert, and P. Mosses, editors, Recent Trends in Algebraic
Development Techniques, 14th International Workshop, WADT’99, Bonas,
France, volume 1827 of Lecture Notes in Computer Science. Springer-Verlag,
2000.

[4] E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. D. Mosses,
D. Sannella, and A. Tarlecki. Casl: The common algebraic specification
language. Theoretical Computer Science, this volume.

[5] E. Astesiano and M. Cerioli. Free objects and equational deduction for partial
conditional specifications. Theoretical Computer Science, 152:91–138, 1995.

[6] M. Barr. Models of Horn theories. Contemporary Mathematics, 92:1–7, 1989.

[7] J. Barwise. Axioms for abstract model theory. Annals of Mathematical Logic,
7:221–265, 1974.

[8] H. Baumeister. Relations between Abstract Datatypes modeled as Abstract
Datatypes. PhD thesis, Universität des Saarlandes, 1998.

[9] H. Baumeister and A. Zamulin. State-based extension of Casl. Submitted for
publication, 2000.

[10] J. Bergstra, J. Heering, and P. Klint. Module algebra. J. ACM, 37(2):335–372,
1990.

[11] J. A. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification.
Addison-Wesley, 1989.

[12] T. Borzyszkowski. Logical systems for structured specifications. Theoretical
Computer Science, this volume.

[13] P. Burmeister. Partial algebras — survey of a unifying approach towards a
two-valued model theory for partial algebras. Algebra Universalis, 15:306–358,
1982.

[14] P. Burmeister. A model theoretic approach to partial algebras. Akademie Verlag,
Berlin, 1986.

119



[15] P. Burmeister, M. Llabrés, and F. Rosselló. Pushout complements for partly
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