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1 Introduction

The central idea of the Heterogeneous Tool Set (HETS) is to provide an open
source general framework for formal methods integration and proof manage-
ment. One can think of HETS acting like a motherboard where different expan-
sion cards can be plugged in, the expansion cards here being individual logics
(with their analysis and proof tools) as well as logic translations. Individual
logics and their analysis and proof tools can be plugged into the HETS mother-
board using an object-oriented interface based on institutions [19]. The HETS

motherboard already has plugged in a number of expansion cards (e.g., the the-
orem provers Isabelle, SPASS and more, as well as model finders). Hence, a
variety of tools is available, without the need to hard-wire each tool to the logic
at hand.

HETS supports a number of input languages directly, such as CASL, Common
Logic, OWL 2, LF, THF, HOL, Haskell, and Maude. For heterogeneous spec-
ification, HETS offers the language heterogeneous CASL. Heterogeneous CASL

(HETCASL) generalises the structuring constructs of CASL [11, 38] to arbitrary
logics (if they are formalised as institutions and plugged into the HETS moth-
erboard), as well as to heterogeneous combination of specification written in
different logics. See Fig. 2 for a simple subset of the HETCASL syntax, where
basic specifications are unstructured specifications or modules written in a spe-
cific logic. The graph of currently supported logics and logic translations (the
latter are also called comorphisms) is shown in Fig. 3, and the degree of support
by HETS in Fig. 4.

With heterogeneous structured specifications, it is possible to combine and
rename specifications, hide parts thereof, and also translate them to other logics.
Architectural specifications prescribe the structure of implementations. Specifi-
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Figure 1: The HETS motherboard and some expansion cards

SPEC ::= BASIC-SPEC

| SPEC then SPEC

| SPEC then %implies SPEC

| SPEC with SYMBOL-MAP

| SPEC with logic ID

DEFINITION ::= logic ID

| spec ID = SPEC end

| view ID : SPEC to SPEC = SYMBOL-MAP end

| view ID : SPEC to SPEC = with logic ID end

LIBRARY = DEFINITION*

Figure 2: Syntax of a simple subset of the heterogeneous specification language.
BASIC-SPEC and SYMBOL-MAP have a logic specific syntax, while ID stands for
some form of identifiers.

cation libraries are collections of named structured and architectural specifica-
tions.

HETS consists of logic-specific tools for the parsing and static analysis of
the different involved logics, as well as a logic-independent parsing and static
analysis tool for structured and architectural specifications and libraries. The
latter of course needs to call the logic-specific tools whenever a basic specification
is encountered.

HETS is based on the theory of institutions [19], which formalize the notion
of a logic. The theory behind HETS is laid out in [30]. A short overview of HETS

is given in [35, 36].
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Figure 3: Graph of logics currently supported by HETS. The more an ellipse
is filled with green, the more stable is the implementation of the logic. Blue
indicates a prover-supported logic.

2 Logics supported by Hets

The following list of logics (formalized as so-called institutions [19]) is currently
supported by HETS:

CASL extends many sorted first-order logic with partial functions and subsort-
ing. It also provides induction sentences, expressing the (free) generation
of datatypes. For more details on CASL see [38, 11]. We have implemented
the CASL logic in such a way that much of the implementation can be re-
used for CASL extensions as well; this is achieved via “holes” (realized via
polymorphic variables) in the types for signatures, morphisms, abstract
syntax etc. This eases integration of CASL extensions and keeps the effort
of integrating CASL extensions quite moderate.

CoCASL [37] is a coalgebraic extension of CASL, suited for the specification of
process types and reactive systems. The central proof method is coinduc-
tion.

ModalCASL [29] is an extension of CASL with multi-modalities and term
modalities. It allows the specification of modal systems with Kripke’s
possible worlds semantics. It is also possible to express certain forms of
dynamic logic.

ExtModal is an extended modal logic, subsuming and replacing ModalCASL.
It features – apart from multiple modalities and dynamic logic – also time
(and term) modalities, grading, hybrid modal logic, and the µ-calculus
[17]. Comorphisms to CASL and THF have been implemented.
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Language Parser Static Analysis Prover
CASL x x -
COCASL x x -
ModalCASL x x -
HASCASL x x -
Haskell (x) x -
CspCASL x x -
CspCASL Trace - - x
CspCASL Failure - - -
CommonLogic x x -
ConstraintCASL x (x) -
Temporal x (x) -
RelScheme x (x) -
DFOL x (x) -
ExtModal x (x) -
LF x (x) -
Casl-DL x - -
DMU x - -
FreeCAD - x -
OWL 2 x x x
Propositional x x x
QBF x x x
SoftFOL x - x
Maude x x -
VSE x x x
THF x x x
ISABELLE (x) - x
HolLight x x -
Adl x x -
Fpl x x -
EnCL x x x
Hybrid x x -
Hybridize x - -

Figure 4: Current degree of HETS support for the different languages. Languages
without prover can still “borrow” provers via logic translations.
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HasCASL is a higher order extension of CASL allowing polymorphic datatypes
and functions. It is closely related to the programming language Haskell
and allows program constructs being embedded in the specification. An
overview of HASCASL is given in [52]; the language is summarized in [49],
the semantics in [51, 50].

Haskell is a modern, pure and strongly typed functional programming lan-
guage. With various language extensions it simultaneously is the imple-
mentation language of HETS. As a logic we only supports the older Haskell
98 standard. Yet, in principle, HETS might be applied to itself – in some
more distant future. The definitive reference for Haskell is [42], see also
www.haskell.org.

CspCASL [46] is a combination of CASL with the process algebra CSP.

CommonLogic http://en.wikipedia.org/wiki/Common logic

ConstraintCASL is an experimental logic for the specification of qualitative
constraint calculi.

OWL 2 is the Web Ontology Language (OWL 2) recommended by the World
Wide Web Consortium (W3C, http://www.w3c.org). It is used for knowl-
edge representation and the Semantic Web [10]. Hets calls an external
OWL 2 parser written in JAVA to obtain the abstract syntax for an OWL
file and its imports. The JAVA parser is also doing a first analysis classi-
fying the OWL ontology into the sublanguages OWL Full, OWL DL and
OWL Lite. Hets only supports the last two, more restricted variants. The
structuring of the OWL imports is displayed as Development Graph.

CASL-DL [24] is an extension of a restriction of CASL, realizing a strongly
typed variant of OWL in CASL syntax. It extends CASL with cardinal-
ity restrictions for the description of sorts and unary predicates. The
restrictions are based on the equivalence between Casl-DL, OWL and
SHOIN (D). Compared to CASL only unary and binary predicates, prede-
fined datatypes and concepts (subsorts of the topsort Thing) are allowed.
It is used to bring OWL and CASL closer together.

Propositional is classical propositional logic, with the zChaff SAT solver [21]
connected to it.

QBF are quantified boolean formulas, with DepQBF http://fmv.jku.at/
depqbf/ connected to it.

RelScheme is a logic for relational databases [48].

SoftFOL [25] offers several automated theorem proving (ATP) systems for
first-order logic with equality:

• SPASS [60], see http://www.spass-prover.org;
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• Vampire [45] see http://www.vprover.org;

• Darwin [8], see http://combination.cs.uiowa.edu/Darwin;

• Eprover [53], see http://www.eprover.org;

• E-KRHyper [41], see http://www.uni-koblenz.de/∼bpelzer/ekrhyper,
and

• MathServe Broker1 [61].

These together comprise some of the most advanced theorem provers for
first-order logic. SoftFOL is essentially the first-order interchange lan-
guage TPTP [54], see http://www.tptp.org.

THF simply typed lambda calculus, is an interchange language for (typed)
higher-order logic [9], similar to what TPTP is for (untyped) first-order
logic. HETS connects THF to the automated higher-order provers Leo-II,
Satallax and Isabelle’s nitpick, refute and sledgehammer.

ISABELLE [40] is an interactive theorem prover for higher-order logic.

HolLight http://www.cl.cam.ac.uk/∼jrh13/hol-light/ is John Harrison’s
interactive theorem prover for higher-order logic.

VSE is an interactive theorem prover, see 11.4.

DMU is a dummy logic to read output of “Computer Aided Three-dimensional
Interactive Application” (Catia).

FreeCAD is a logic to read design files of the CAD system FreeCAD
http://sourceforge.net/projects/free-cad.

Maude is a rewrite system http://maude.cs.uiuc.edu/ for first-order logic.
In order to use this logic the environment variable HETS_MAUDE_LIB must
be set to a directory containing the files full-maude.maude, hets.prj,
maude2haskell.maude and parsing.maude.

DFOL is an extension of first-order logic with dependent types [44].

LF is the dependent type theory of Twelf http://twelf.plparty.org/. Hets
calls Twelf on .elf files (for this, the environment variable TWELF_LIB
must be set) and reads in the OMDoc generated by Twelf. Moreover,
LF can be used as a logical framework to add new logics in Hets [14].
Logic definitions in LF are based in the logic atlas of the Latin project
[27] and therefore the environment variable LATIN_LIB must be set to the
repository with the Latin logic definitions.

Framework is a dummy logic added for declarative logic definitions [14].

1which chooses an appropriate ATP upon a classification of the FOL problem
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Adl is “A Description Language” based on relational algebra originally de-
signed for requirements engineering of business rules https://lab.cs.
ru.nl/BusinessRules/Requirements engineering.

Fpl is a “logic for functional programs” as an extension of a restriction of CASL

(predicates are disabled) [47].

EnCL is an “engineering calculation language” based on first order theory of
real numbers with some predefined binders [15]. It allows the formulation
of executable specifications of engineering calculation methods. For the
execution of these specifications Hets provides connections to the computer
algebra systems Mathematica, Maple and Reduce.

Hybrid HybridCASL [39] extends ModalCASL by implementing the charac-
teristic features of hybrid logic, both at the level of syntax and semantics.
A comorphism from HybridCASL to CASL is provided.

The method of hybridisation of arbitrary institutions documented in [26],
providing a method to automatically combine the standard properties of
hybrid logics with any logic already integrated in Hets. Some manual
intervention is still required: a parser and a semantics analyser for the
sentences of the base logic need to be declared at source code level. Cur-
rently, the hybridised versions of the following logics may be used in a
fully automatic way: Propositional, CASL, CoCASL, and any other logic
already hybridised.

Various logics are supported with proof tools. Proof support for the other
logics can be obtained by using logic translations to a prover-supported logic.

An introduction to CASL can be found in the CASL User Manual [11]; the
detailed language reference is given in the CASL Reference Manual [38]. These
documents explain both the CASL logic and language of basic specifications
as well as the logic-independent constructs for structured and architectural
specifications. The corresponding document explaining the HETCASL language
constructs for heterogeneous structured specifications is the HETCASL language
summary [28]; a formal semantics as well as a user manual with more exam-
ples are in preparation. Some of HETCASL’s heterogeneous constructs will be
illustrated in Sect. 6 below.

3 Logic translations supported by Hets

Logic translations (formalized as institution comorphisms [18]) translate from
a given source logic to a given target logic. More precisely, one and the same
logic translation may have several source and target sublogics: for each source
sublogic, the corresponding sublogic of the target logic is indicated. A graph
of the most important logics and sublogics, together with their comorphisms, is
shown in Fig. 5.
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Figure 5: Graph of most important sublogics currently supported by HETS,
together with their comorphisms.
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In more detail, the following list of logic translations is currently supported
by HETS:
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Adl2CASL inclusion taking relations to CASL predicates
CASL2CoCASL inclusion
CASL2CspCASL inclusion
CASL2HasCASL inclusion
CASL2Isabelle inclusion on sublogic CFOL= (translation (7) of [33])
CASL2Modal inclusion
CASL2PCFOL coding of subsorting (SubPCFOL=) by injections,

see Chap. III:3.1 of the CASL Reference Manual [38]
CASL2PCFOLTopSort coding of subsorting (SulPeCFOL=) by a top sort

and unary predicates for the subsorts
CASL2Propositional translation of propositional FOL
CASL2SoftFOL coding of CASL.SuleCFOL=E to SoftFOL [25], map-

ping types to soft types
CASL2SoftFOLInduction same as CASL2SoftFOL but with instances of induc-

tion axioms for all proof goals
CASL2SoftFOLInduction2 similar to CASL2SoftFOLInduction but replaces

goals with induction premises
CASL2SubCFOL coding of partial functions by error elements (trans-

lation (4a′) of [33], but extended to subsorting, i.e.
sublogic SubPCFOL=)

CASL2VSE inclusion on sublogic CFOL=
CASL2VSEImport inclusion on sublogic CFOL=
CASL2VSERefine refining translation of CASL.CFOL= to VSE
CASL DL2CASL inclusion
CoCASL2CoPCFOL coding of subsorting by injections, similar to

CASL2PCFOL
CoCASL2CoSubCFOL coding of partial functions by error supersorts, simi-

lar to CASL2SubCFOL
CoCASL2Isabelle extended translation similar to CASL2Isabelle
CommonLogic2CASL Coding Common Logic to CASL.Module elimination

is applied before translating to CASL.
CommonLogic2CASLCompact Coding compact Common Logic to CASL. Compact

Common Logic is a sublogic of Common Logic where
no sequence markers occur. Module elimination is
applied before translating to CASL. We recommend
using this comorphism whenever possible because it
results in simpler specifications.

CommonLogicModuleElimination Eliminating modules from a Common Logic theory
resulting in an equivalent specification without mod-
ules.

CspCASL2CspCASL Failure inclusion
CspCASL2CspCASL Trace inclusion
CspCASL2Modal translating the CASL data part to ModalCASL
DFOL2CASL translating dependent types
DMU2OWL interpreting Catia output as OWL
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HasCASL2HasCASLNoSubtypes coding out subtypes
HasCASL2HasCASLPrograms coding of HASCASL axiomatic recursive defi-

nitions as HASCASL recursive program defini-
tions

HasCASL2Haskell translation of HASCASL recursive program def-
initions to Haskell

HasCASL2IsabelleOption coding of HasCASL to Isabelle/HOL [20]
Haskell2Isabelle coding of Haskell to Isabelle/HOL [58]
Haskell2IsabelleHOLCF coding of Haskell to Isabelle/HOLCF [58]
HolLight2Isabelle coding of HolLight to Isabelle/HOL
Maude2CASL encoding of rewrites as predicates
Modal2CASL the standard translation of modal logic to

first-order logic [12]
OWL2CASL inclusion
OWL2CommonLogic inclusion
Propositional2CASL inclusion
Propositional2QBF inclusion
QBF2Propositional inclusion
RelScheme2CASL inclusion

4 Getting started

The latest HETS version can be obtained from the HETS tools home page

http://www.dfki.de/cps/hets

Since HETS is being improved constantly, it is recommended always to use the
latest version.

HETS is currently available (on Intel architectures only) for Linux and with
limited functionality for Mac OSX.

There are several possibilities to install HETS.

1. The best support is currently given via Ubuntu packages.

sudo apt-add-repository ppa:hets/hets
sudo apt-get update
sudo apt-get install hets

This will also install quite a couple of tools for proving requiring about
800 MB of disk space. For a minimal installation apt-get install
hets-core instead of hets.

The following software will be installed, too:
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Hets-lib specification library http://www.cofi.info/Libraries

uDraw(Graph) graph drawing http://www.informatik.

uni-bremen.de/uDrawGraph/en/

Tcl/Tk graphics widget system (version 8.4 or 8.5)

SPASS theorem prover http://spass.mpi-sb.mpg.de/

Darwin theorem prover http://combination.cs.uiowa.

edu/Darwin/

A daily snapshot of hets can be installed by:

sudo hets -update

In case the binary (under /usr/lib/hets/hets) is broken it can be re-
placed manually or by reverting an update:

sudo hets -revert

2. For Mac OSX we provide disk images Hets-<date>.dmg without GTK
support.

3. You may compile HETS from the sources (they are licensed under GPL),
please follow the link “Hets: source code and information for developers”
on the HETS web page, download the sources (as tarball or from svn), and
follow the instructions in the INSTALL file, but be prepared to take some
time.

Depending on your application further tools are supported and may be in-
stalled in addition:

ISABELLE theorem prover http://www.cl.cam.ac.uk/

Research/HVG/Isabelle/

(X)Emacs editor (for Isabelle)

zChaff SAT solver http://www.princeton.edu/
∼chaff/zchaff.html

minisat SAT solver http://minisat.se/

Pellet OWL 2 reasoner http://clarkparsia.com/pellet/

E-KRHyper theorem prover http://userpages.uni-koblenz.

de/∼bpelzer/ekrhyper/

Reduce computer algebra system http://www.reduce-algebra.com/

Maude rewrite system http://maude.cs.uiuc.edu/

VSE theorem prover (non-public)

Twelf http://twelf.plparty.org/

5 Analysis of Specifications

Consider the following CASL specification:

spec Strict Partial Order =
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sort Elem
pred < : Elem × Elem
∀x , y , z : Elem
• ¬(x < x ) %(strict)%

• x < y ⇒ ¬(y < x ) %(asymmetric)%

• x < y ∧ y < z ⇒ x < z %(transitive)%

%{ Note that there may exist x, y such that
neither x < y nor y < x. }%

end

HETS can be used for parsing and checking static well-formedness of specifi-
cations.

Let us assume that the example is in a file named Order.casl (actually, this
file is provided with the HETS distribution as Hets-lib/UserManual/Chapter3.casl).
Then you can check the well-formedness of the specification by typing (into some
shell):

hets Order.casl

HETS checks both the correctness of this specification with respect to the CASL

syntax, as well as its correctness with respect to the static semantics (e.g.
whether all identifiers have been declared before they are used, whether opera-
tors are applied to arguments of the correct sorts, whether the use of overloaded
symbols is unambiguous, and so on). The following flags are available in this
context:

-p, --just-parse Just do the parsing – the static analysis is skipped and no
development is created.

-s, --just-structured Do the parsing and the static analysis of (heteroge-
neous) structured specifications, but leave out the analysis of basic spec-
ifications. This can be used for prototyping issues, namely to quickly
produce a development graph showing the dependencies among the spec-
ifications (cf. Sect. 7) even if the individual specifications are not correct
yet.

-L DIR, --hets-libdir=DIR Use DIR as a colon separated list of directories
for specification libraries (equivalently, you can set the variable HETS LIB
before calling HETS).

-a ANALYSIS, --casl-amalg=ANALYSIS For the analysis of architectural speci-
fication (a quite advanced feature of CASL), the ANALYSIS argument spec-
ifies the options for amalgamability checking algorithm for CASL logic; it
is a comma-separated list of zero or more of the following options:

sharing perform sharing analysis for sorts, operations and predicates.

cell perform cell condition check; implies sharing. With this option on,
the subsort embeddings are analyzed.
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colimit-thinness perform colimit thinness check; implies sharing. The
colimit thinness check is less complete and usually takes longer than
the full cell condition check (cell option), but may prove more effi-
cient in case of certain specifications.

If ANALYSIS is empty then amalgamability analysis for CASL is skipped.
The default value for --casl-amalg is cell.

6 Heterogeneous Specification

HETS accepts plain text input files with the following endings:

Ending default logic structuring language
.casl CASL CASL

.het CASL CASL

.hol HolLight HolLight

.hs Haskell Haskell

.owl OWL 2 OWL

.elf LF Twelf

.clf or .clif CommonLogic CASL

.maude Maude Maude

Furthermore, .xml files are accepted as Catia output if the default logic is
set to DMU before a library import or by the “-l DMU” command line option
of HETS. In all other cases .xml files are assumed to be development graph files
as produced by “-o xml”.

Although the endings .casl and .het are interchangeable, the former should
be used for libraries of homogeneous CASL specifications and the latter for
HETCASL libraries of heterogeneous specifications (that use the CASL struc-
turing constructs). Within a HETCASL library, the current logic can be changed
e.g. to HASCASL in the following way:

logic HasCASL

The subsequent specifications are then parsed and analysed as HASCASL

specifications. Within such specifications, it is possible to use references to
named CASL specifications; these are then automatically translated along the
default embedding of CASL into HASCASL (cf. Fig. 3). (There are also hetero-
geneous constructs for explicit translations between logics, see [28].)

The ending .hs is available for directly reading in Haskell programs and
hence supports the Haskell module system. By contrast, in HETCASL libraries
(ending with .het), the logic Haskell has to be chosen explicitly, and the CASL

structuring syntax needs to be used:

library Factorial

logic Haskell
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spec Factorial =
{
fac :: Int -> Int
fac n = foldl (*) 1 [1..n]
}
end

Note that according to the Haskell syntax, Haskell function declarations and
definitions need to start with the first column of the text.

7 Development Graphs

Development graphs are a simple kernel formalism for (heterogeneous) struc-
tured theorem proving and proof management.

A development graph consists of a set of nodes (corresponding to whole
structured specifications or parts thereof), and a set of arrows called definition
links, indicating the dependency of each involved structured specification on
its subparts. Each node is associated with a signature and some set of local
axioms. The axioms of other nodes are inherited via definition links. Definition
links are usually drawn as black solid arrows, denoting an import of another
specification.

Complementary to definition links, which define the theories of related nodes,
theorem links serve for postulating relations between different theories. Theo-
rem links are the central data structure to represent proof obligations arising in
formal developments. Theorem links can be global (drawn as solid arrows) or
local (drawn as dashed arrows): a global theorem link postulates that all axioms
of the source node (including the inherited ones) hold in the target node, while
a local theorem link only postulates that the local axioms of the source node
hold in the target node.

Both definition and theorem links can be homogeneous, i.e. stay within the
same logic, or heterogeneous, i.e. the logic changes along the arrow. Technically,
this is the case for Grothendieck signature morphisms (ρ, σ) where ρ 6= id. This
case is indicated with double arrows.

Theorem links are initially displayed in red. The proof calculus for develop-
ment graphs [31, 30] is given by rules that allow for proving global theorem links
by decomposing them into simpler (local and global) ones. Theorem links that
have been proved with this calculus are drawn in green. Local theorem links can
be proved by turning them into local proof goals. The latter can be discharged
using a logic-specific calculus as given by an entailment system for a specific
institution. Open local proof goals are indicated by marking the corresponding
node in the development graph as red; if all local implications are proved, the
node is turned into green. This implementation ultimately is based on a theo-
rem [30] stating soundness and relative completeness of the proof calculus for
heterogeneous development graphs.
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Details can be found in the CASL Reference Manual [38, IV:4] and in [30, 31,
36].

The following options let HETS show the development graph of a specification
library:

-g, --gui Shows the development graph in a GUI window

-u, --uncolored no colors in shown graphs

The following additional options also apply typical rules from the develop-
ment graph calculus to the final graph and save applying these rule via the
GUI.

-A, --apply-automatic-rule apply the automatic strategy to the develop-
ment graph. This is what you usually want in order to get goals within
nodes for proving.

-N, --normal-form compute all normal forms for nodes with incoming hiding
links. (This may take long and may not be implemented for all logics.)

Here is a summary of the types of nodes and links occurring in development
graphs:

Named nodes correspond to a named specification.

Unnamed nodes correspond to an anonymous specification.

Elliptic nodes correspond to a specification in the current library.

Rectangular nodes are external nodes corresponding to a specification down-
loaded from another library.

Red nodes have open proof obligations.

Yellow nodes have an open conservativity proof obligations.

Green nodes have all proof obligations resolved.

Black links correspond to reference to other specifications (definition links in
the sense of [38, IV:4]).

Red links correspond to open proof obligations (theorem links).

Green links correspond to proven theorem links.

Yellow links correspond to proven theorem links with open conservativity or
to open hiding theorem links.

Blue links correspond to hiding, free, or cofree definition links.

Violett links correspond to a mixture of links becoming visible after “expand”
or “Show unnamed nodes with open proofs”.
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Solid links correspond to global (definition or theorem) links in the sense of
[38, IV:4].

Dashed links correspond to local (theorem) links in the sense of [38, IV:4].
These are usually created after “Global-Decomposition” or only be visible
after “Show newly added proven edges”.

Single line links have homogeneous signature morphisms (staying within one
and the same logic).

Double line links have heterogeneous signature morphisms (moving between
logics).

We now explain the menus of the development graph window. Most of the
pull-down menus of the window are uDraw(Graph)-specific layout menus; their
function can be looked up in the uDraw(Graph) documentation2. The exception
is the Edit menu. Moreover, the nodes and links of the graph have attached
pop-up menus, which appear when clicking with the right mouse button.

Edit This menu has the following submenus:

Undo Undo the last development graph proof step (see under Proofs)
Redo Restore the last undone development graph proof step (see under

Proofs)
Hide/show names/nodes/edges The “Hide/show names/nodes/edges”

menu is a toggle: you can switch on or off the display of node names,
unnamed nodes or proven theorem links.
With the “Hide/show internal node names” option, the nodes that
are initially unnamed get derived names.
With the “Hide/show unnamed nodes without open proofs” option,
it is possible to reveal the unnamed nodes which do not have open
proof goals. Initially, the complexity of the graph is reduced by hiding
all these nodes; only nodes corresponding to named specifications
are displayed. Paths between named nodes going through unnamed
nodes are displayed as edges; these paths are then expanded when
showing the unnamed nodes.
When applying the development graph calculus rules, theorem links
that have been proven are removed from the graph. With the “Hide/Show
newly added proven edges” option, it is possible to re-display these
links; they are marked as proven in the link info (see Pop-up menu
for links, below).

Focus node This menu is particularly useful when navigating in a large
development graph, which does not fit on a single screen. The list of
all nodes is displayed: the nodes are identified by the internal node
number and the internal node name. Once a node is selected, the
view centers on it.

2see http://www.informatik.uni-bremen.de/uDrawGraph/en/service/uDG31 doc/.
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Select Linktypes This menu allows to select the type of links that are
displayed in the development graph. A selection window appears,
where links are grouped into three categories: definition links, proven
theorem links and unproven theorem links. It is possible to se-
lect/deselect all links or to invert the current selection.

Consistency checker Checks whether the theories of the nodes of the
graph are consistent i.e. have a model. The model finders currently
interfaced are Isabelle-refute, darwin and E-KRHyper, with best sup-
port for darwin.

Proofs This menu allows to apply some of the deduction rules for de-
velopment graphs, see Sect. IV:4.4 of the CASL Reference Manual
[38] or one of [30, 31, 36]. While support for local and global (defini-
tion or theorem) links is stable, support for hiding links and checking
conservativity is still experimental. In most cases, it is advisable to
use “Auto-DG-Prover”, which automatically applies the rules in the
correct order. As a result, the open theorem links (marked in red)
will be reduced to local proof goals, that is, they become green, and
instead, some target nodes may get red, indicating open local proof
goals. Besides the deduction rules, the menu contains entries for
computing a colimit approximation for the development graph and
for computing normal forms of all nodes (needed when dealing with
hiding). Also, a CASL-specific normalisation of free links has been
implemented.

Dump Development Graph This option is available only for debug-
ging purposes; it outputs a textual representation of the development
graph.

Show Library Graph This menu displays the library graph, in a sepa-
rate window, if the library graph window has been closed after HETS

has been called.

Save Graph for uDrawGraph Saves the development graph in a .udg
file which can be later read by uDrawGraph.

Save proof-script This menu saves the proof rules that have been ap-
plied to the current development graph in a .hpf file which can be
later read by HETS and thus the action performed on the graph are
saved.

Pop-up menu for nodes Here, the number of submenus depends on the type
of the node:

Show node info Shows the local informations of the node: the internal
node name and node number, the xpath that denotes the location of
the node within an XML representation, information about consis-
tency of the node, origin of the node and the local theory i.e. axioms
declared locally.
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Show theory Shows the theory of the node (including axioms imported
from other nodes). Notice that axioms imported via hiding links
are not part of the theory; they can be made visible only by re-
adding the hidden symbols, using the normal form of the node, by
calling Proofs/Compute Normal Form. For such nodes, a warning is
displayed.

Translate theory Translates the theory of a node to another logic. A
menu with the possible translation paths will be displayed.

Taxonomy graphs (Only available for some logics) Shows the subsort
graph of the signature of the node.

Show proof status Show open and proven local proof goals.

Prove Try to prove the local proof goals. See Section 11 for details.

Prove VSE structured Allows to send a development graph below the
current node to the interactive hetsvse prover if that binary is avail-
able, see 11.4.

Disprove Negates selected goals and tries to disprove them using consis-
tency checkers. Other goals will be treated like axioms if “Include
Theorems” is selected. (If a theory is consistent with a negated goal,
the goal is disproven.)

Add sentence This menu allows to add a sentence on the fly. The (possi-
bly named) sentence will be parsed and analysed using the underlying
logic.

Check consistency Simply calls the global “Consistency checker” menu
for the current node, see 11.1.

Check conservativity Checks conservativity of the inclusion morphism
from the empty theory to the theory of the node (see Check con-
ervativity for edges).

For the nodes which are references to specifications from an external li-
brary, the pop-up menu options are reduced to Show node info, Show
theory, Show proof status and Prove and moroever, the option Show
referenced library is added: on selection, it displays in a new window
the development graph of the external library from which the specification
has been downloaded.

Pop-up menu for links Again, the number of submenus depends on the type
of the link:

Show info Shows informations about the edge: internal number and in-
ternal nodes it links, the link type and origin and the signature mor-
phism of the link. The latter consists of two components: a logic
translation and a signature morphism in the target logic of the logic
translation. In the (most frequent) case of an intra-logic signature
morphism, the logic translation component is just the identity.
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Check conservativity (Experimental) Check whether the theory of the
target node of the link is a conservative extension of the theory of
the source node.

Expand This menu is available only for paths going through unnamed
nodes which are not displayed and it expands the path to the links
forming it.

Besides development graphs there are library graph windows displaying the
library hierarchy. The Edit menu has the following submenus:

Edit This menu for library graphs has the following submenus:

Reload Library Reloads all HETCASL sources in order to avoid closing
and restarting the application after sources have changed. However,
all previous proof steps will be lost, therefore you have to confirm this
action. (A change management tool to keep proofs is in preparation.)

Experimental reload changed Library This button is supposed to in-
terface our change management tool (in order to preserve proof in-
formation) but does not work yet.

Translate Library Translates a library along a comorphism to be cho-
sen. This only works for a homogeneous library hierarchy. A finer
grained alternative is to use “Translate theory” for individual nodes.
The original state and proof steps will be lost, therefore you have to
confirm this action.

Show Logic Graph Shows the graph of logics and logic comorphisms
currently supported by HETS. The Edit menu of a logic graph window
has the following submenu:

Show detailed logic graph Shows the important sublogics and co-
morphims between them, i.e. translation (blue links) and inclu-
sion (black links).

8 Reading, Writing and Formatting

HETS provides several options controlling the types of files that are read and
written.

-i ITYPE, --input-type=ITYPE Specify ITYPE as explicit type of the input
file. By default env, casl, or het extensions are tried in this order. An
env file contains a shared ATerm of a development graph, whereas casl
or het files contain plain HETCASL text. An env file will always be read
if it exists and is consistent (aka newer) than the corresponding HETCASL

file.

exp files contain a development graph in a new experimental omdoc for-
mat. prf files contain additional development steps (as shared ATerms)
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to be applied on top of an underlying development graph created from a
corresponding env, casl, or het file. hpf files are plain text files repre-
senting heterogeneous proof scripts. The contents of a hpf file must be
valid input for HETS in interactive mode. (gen trm formats are currently
not supported.)

The possible input types are:

casl
| het
| owl
| hs
| exp
| maude
| elf
| hol
| prf
| omdoc
| hpf
| clf
| clif
| xml
| [tree.]gen_trm[.baf]

-O DIR, --output-dir=DIR Specify DIR as destination directory for output
files.

-o OTYPES, --output-types=OTYPES OTYPES is a comma separated list of out-
put types:

prf
| env
| omn
| omdoc
| xml
| exp
| hs
| thy
| comptable.xml
| (sig|th)[.delta]
| pp.(het|tex|xml|html)
| graph.(exp.dot|dot)
| dfg[.c]
| tptp[.c]

The env and prf formats are for subsequent reading, avoiding the need
to re-analyse downloaded libraries. prf files can also be stored or loaded
via the GUI’s File menu.
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The omn option [22] will produce OWL files in Manchester Syntax for each
specification of a structured OWL library.

The omdoc format [22] is an XML-based markup format and data model
for Open Mathematical Documents. It serves as semantics-oriented rep-
resentation format and ontology language for mathematical knowledge.
Currently, CASL specifications can be output in this format; support for
further logics is planned.

The xml option will produce an XML-version of the development graph
for our change management broker.

The exp format is the new experimental omdoc format.

The hs format is used for Haskell modules. Executable CASL or HASCASL

specifications can be translated to Haskell.

When the thy format is selected, HETS will try to translate each specifi-
cation in the library to ISABELLE, and write one ISABELLE .thy file per
specification.

When the comptable.xml format is selected, HETS will extract the compo-
sition and inverse table of a Tarskian relation algebra from specification(s)
(selected with the -n or --spec option). It is assumed that the relation
algebra is generated by basic relations, and that the specification is writ-
ten in the CASL logic. A sample specification of a relation algebra can
be found in the HETS library Calculi/Space/RCC8.het, available from
www.cofi.info/Libraries. The output format is XML, the URL of the
DTD is included in the XML file.

The sig or th option will create HETCASL signature or theory files for
each development graph node. (The .delta extension is not supported,
yet.)

The pp format is for pretty printing, either as plain text (het), LATEXinput
(tex), HTML (html) or XML (xml). For example, it is possible to generate
a pretty printed LATEX version of Order.casl by typing:

hets -v2 -o pp.tex Order.casl

This will generate a file Order.pp.tex. It can be included into LATEX
documents, provided that the style hetcasl.sty coming with the HETS

distribution (LaTeX/hetcasl.sty) is used.

The format pp.xml represents just a parsed library in XML.

Formats with graph are for future usage.

The dfg format is used by the SPASS theorem prover [60].

The tptp format (http://www.tptp.org) is a standard format for first-
order theorem provers.

Appending .c to dfg or tptp will create files for consistency checks by
SPASS or Darwin respectively.
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For all output formats it is recommended to increase the verbosity to at
least level 2 (by using the option -v2) to get feedback which files are
actually written. (-v2 also shows which files are read.)

-t TRANS, --translation=TRANS chooses a translation option. TRANS is a colon-
separated list without blanks of one or more comorphism names (see
Sect. 3)

-n SPECS, --spec=SPECS chooses a list of named specifications for processing

-w NVIEWS, --view=NVIEWS chooses a list of named views for processing

-R, --recursive output also imported libraries

-I, --interactive run HETS in interactive mode

-X, --server run HETS as web server (see 9)

-x, --xml use xml-pgip packets to communicate with HETS in interactive mode

-S PORT, --listen=PORT communicate with HETS in interactive mode vy lis-
tining to the port PORT

-c HOSTNAME:PORT, --connect=HOSTNAME:PORT communicate with HETS in in-
teractive mode via connecting to the port on host HOSTNAME

-d STRING, --dump=STRING produces implementation dependent output for de-
bugging purposes only (i.e. -d LogicGraph lists the logics and comor-
phisms)

9 Hets as a web server

Large parts of HETS are now also available via a web interface. A running server
should be accessible on http://pollux.informatik.uni-bremen.de:8000/.
It allows to browse the HETS library, upload a file or just a HETCASL specifica-
tion. Development graphs for well-formed specifications can be displayed in var-
ious formats where the svg format is supposed to look like the graphs displayed
by uDrawGraph. Besides browsing, the web server is supposed to be accessed
by other programs using queries. The possible queries are described on http:
//trac.informatik.uni-bremen.de:8080/hets/wiki/RESTfulInterface.

A development graph is addressed by the path following the port number
and the slash of the URL, i.e. http://localhost:8000/Basic/Numbers.casl.
Once a development has been created it can be accessed via a (fairly unique)
session id (consisting of nine digits) that can be used as path.

A path may be followed by a query string that begins with a question mark
and consists of entries (usually field-value pairs) separated by ampersands. The
queries control the information to be extracted from the development graph
given by the path or they allow to perform commands on the graph.
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Usually, query string are made up of field=value pairs, but in some cases
the field name or the value may be omitted and in that case the equal sign must
be omitted, too.

For instance strings denoting formats, like xml, svg, pdf, etc., do not need to
be preceded by format=. Some formats, like pdf, only pretty print specification
and basically ignore the underlying development graph.

A special entry is just session which only returns a fresh session id for
a development graph that is given by a file name, i.e. http://localhost:
8000/Basic/Numbers.casl?session. These session ids must be used to per-
form commands (of the development graph calculus) that change the underlying
graph.

Given a graph, nodes and edges can be addressed by numbers via entries
like node=0 or edge=0. (Nodes can also be given by name.) For nodes, prover
actions are possible by further entries. http://localhost:8000/123456789?
prove=Nat E1\&prover=SPASS\&timeout=5 would try to prove the goals of
the node Nat E1 using the prover SPASS with a timeout of 5 seconds for the
development graph that happened to have the (unlikely) session id 123456789.
Individual goals can be given via a theorems field and special translations by
a translation field. The available provers and translations can be queried by
?node=0&translations and ?node=0&provers or shorter by ?translations=0
and ?provers=0, where instead of the node number (here 0) also a node name
can be used.

10 Miscellaneous Options

-v[Int], --verbose[=Int] Set the verbosity level according to Int. Default
is 1.

-q, --quiet Be quiet – no diagnostic output at all. Overrides -v.

-V, --version Print version number and exit.

-h, --help, --usage Print usage information and exit.

+RTS -KIntM -RTS Increase the stack size to Int megabytes (needed in case of
a stack overflow). This must be the first option.

-l LOGIC, --logic=LOGIC chooses the initial logic, which is used for processing
the specifications before the first logic L declaration. The default is CASL.

-e ENCODING, --encoding=ENCODING Read input files using latin1 or utf8 en-
coding. The default is still latin1.

--unlit Read literate input files.

--relative-positions Just uses the relative library name in positions of warn-
ing or errors.
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-U FILE, --xupdate=FILE update a development graph according to special
xml update information (still experimental).

-m FILE, --modelSparQ=FILE model check a qualitative calculus given in SparQ
lisp notation [59] against a CASL specification

11 Proofs with HETS

The proof calculus for development graphs (Sect. 7) reduces global theorem
links to local proof goals. Local proof goals (indicated by red nodes in the
development graph) can be eventually discharged using a theorem prover, i.e.
by using the “Prove” menu of a red node.

The graphical user interface (GUI) for calling a prover is shown in Fig. 6 —
we call it “Proof Management GUI”. The top list on the left shows all goal names
prefixed with the proof status in square brackets. A proved goal is indicated by
a ‘+’, a ‘-’ indicates a disproved goal, a space denotes an open goal, and a ‘×’
denotes an inconsistent specification (aka a fallen ‘+’; see below for details).

If you open this GUI when processing the goals of one node for the first
time, it will show all goals as open. Within this list you can select those goals
that should be inspected or proved. The GUI elements are the following:

• The button ‘Display’ shows the selected goals in the ASCII syntax of this
theory’s logic in a separate window.

• By pressing the ‘Proof details’ button a window is opened where for each
proved goal the used axioms, its proof script, and its proof are shown —
the level of detail depends on the used theorem prover.

• With the ‘Prove’ button the actual prover is launched. This is described
in more detail in the paragraphs below.

• The list ‘Pick Theorem Prover:’ lets you choose one of the connected
provers (among them ISABELLE, MathServe Broker, SPASS, Vampire, and
zChaff, described below). By pressing ‘Prove’ the selected prover is launched
and the theory along with the selected goals is translated via the shortest
possible path of comorphisms into the provers logic.

• The pop-up choice box below ‘Selected comorphism path:’ lets you pick a
(composed) comorphism to be used for the chosen prover.

• Since the amount and kind of sentences sent to an ATP system is a major
factor for the performance of the ATP system, it is possible to select in
the bottom lists the axioms and proven theorems that will comprise the
theory of the next proof attempt. Based on this selection the sublogic may
vary and also the available provers and comorphisms to provers. Former
theorems that are imported from other specifications are marked with the
prefix ‘(Th)’. Since former theorems do not add additional logical content,
they may be safely removed from the theory.
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Figure 6: Hets Goal and Prover Interface
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• If you press the bottom-right ‘Close’ button the window is closed and the
status of the goals’ list is integrated into the development graph. If all
goals have been proved, the selected node turns from red into green.

• All other buttons control selecting list entries

11.1 Consistency Checker

Since proofs are void if specifications are inconsistent, the consistency should
be checked (if possible for the given logic) by the “Consistency checker” shown
in Fig. 7. This GUI is invoked from the ‘Edit’ menu as it operates on all nodes.

The list on the left shows all node names prefixed with a consistency status
in square brackets that is initially empty. A consistent node is indicated by
a ‘+’, a ‘-’ indicates an inconsistent node, a ‘t’ denotes a timeout of the last
checking attempt.

For some selection of nodes (of a common logic) a model finder should be
selectable from the ‘Pick Model finder:’ list. Currently only for “darwin” some
CASL models can be re-constructed. When pressing ‘Check’, possibly after ‘Se-
lect comorphism path:’, all selected nodes will be checked, spending at most the
number of seconds given under ‘Timeout:’ on each node. Pressing ‘Stop’ allows
to terminate this process if too many nodes have been chosen. Either by ‘View
results’ or automatically the ‘Results of consistency check’ (Fig. 8) will pop up
and allow you to inspect the models for nodes, if they could be constructed.

11.2 Automated Theorem Proving Systems
(Logic SoftFOL)

All ATPs integrated into HETS share the same GUI, with only a slight modifi-
cation for the MathServe Broker: the input field for extra options is inactive.
Figure 9 shows the instantiation for SPASS, where in the top right part of the
window the batch mode can be controlled. The left side shows the list of goals
(with status indicators). If goals are timed out (indicated by ‘t’) it may help
to activate the check box ‘Include preceeding proven theorems in next proof
attempt’ and pressing ‘Prove all’ again.

On the bottom right the result of the last proof attempt is displayed. The
‘Status:’ indicates ‘Open’, ‘Proved’, ‘Disproved’, ‘Open (Time is up!)’, or ‘Proved
(Theory inconsistent!)’. The list of ‘Used Axioms:’ is filled by SPASS. The button
‘Show Details’ shows the whole output of the ATP system. The ‘Save’ buttons
allow you to save the input and configuration of each proof for documentation.
By ‘Close’ the results for all goals are transferred back to the Proof Management
GUI.

The MathServe system [61] developed by Jürgen Zimmer provides a unified
interface to a range of different ATP systems; the most important systems are
listed in Table 1, along with their capabilities. These capabilities are derived
from the Specialist Problem Classes (SPCs) defined upon the basis of logical,
language and syntactical properties by Sutcliffe and Suttner [55]. Only two
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Figure 7: Hets Consistency Checker Interface
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Figure 8: Consistency Checker Results
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Figure 9: Interface of the SPASS prover
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ATP System Version Suitable Problem Classesa

DCTP 10.21p effectively propositional
EP 0.91 effectively propositional; real first-order, no

equality; real first-order, equality
Otter 3.3 real first-order, no equality
SPASS 2.2 effectively propositional; real first-order, no

equality; real first-order, equality
Vampire 8.0 effectively propositional; pure equality, equal-

ity clauses contain non-unit equality clauses;
real first-order, no equality, non-Horn

Waldmeister 704 pure equality, equality clauses are unit equal-
ity clauses

a The list of problem classes for each ATP system is not exhaustive, but only the
most appropriate problem classes are named according to benchmark tests made
with MathServe by Jürgen Zimmer.

Table 1: ATP systems provided as Web services by MathServe

of the Web services provided by the MathServe system are used by HETS cur-
rently: Vampire and the brokering system. The ATP systems are offered as
Web Services using standardized protocols and formats such as SOAP, HTTP
and XML. Currently, the ATP system Vampire may be accessed from HETS via
MathServe; the other systems are only reached after brokering.

SPASS

The ATP system SPASS [60] is a resolution-based prover for first-order logic with
equality. Furthermore, it provides a soft typing mechanism with subsorting that
treats sorts as unary predicates. The ATP SPASS should be installed locally and
available through your $PATH environment variable.

Vampire

The ATP system Vampire is the winner of the last 5 CADE ATP System Com-
petitions (CASC) (2002–2006) in the devisions FOF and CNF. It is a resolution
based ATP system supporting the calculi of ordered binary resolution and super-
position for handling equality. See http://www.cs.miami.edu/∼tptp/CASC/
J3/SystemDescriptions.html#Vampire---8.0 for detailed information. The
connection to Vampire is achieved by using an Web service of the MathServe
system.

MathServe Broker

The brokering service chooses the most appropriate ATP system upon a clas-
sification based on the SPCs, and on a training with the library Thousands
of Problems for Theorem Provers (TPTP) [61]. The TPTP format has been
introduced by Sutcliffe and Suttner for the annual competition CASC [56] and
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provides a unified syntax for untyped FOL with equality, but without any sym-
bol declaration.

11.3 Isabelle

ISABELLE [40] is an interactive theorem prover, which is more powerful than
ATP systems, but also requires more user interaction.

ISABELLE has a very small core guaranteeing correctness, and its provers,
like the simplifier or the tableaux prover, are built on top of this core. Further-
more, there is over fifteen years of experience with it, and several mathematical
textbooks have been partially verified with ISABELLE.

ISABELLE is a tactic based theorem prover implemented in standard ML. The
main ISABELLE logic (called Pure) is some weak intuitionistic type theory with
polymorphism. The logic Pure is used to represent a variety of logics within
ISABELLE; one of them being HOL (higher-order logic). For example, logical
implication in Pure (written ==>, also called meta-implication), is different from
logical implication in HOL (written -->, also called object implication).

It is essential to be aware of the fact that the ISABELLE/HOL logic is differ-
ent from the logics that are encoded into it via comorphisms. Therefore, the
formulas appearing in subgoals of proofs with ISABELLE will not conform to the
syntax of the original input logic. They may even use features of ISABELLE/HOL

such as higher-order functions that are not present in an input logic like CASL.
ISABELLE is started with ProofGeneral [2, 1] in a separate Emacs [16, 57].

The ISABELLE theory file conforms to the Isabelle/Isar syntax [40]. It starts
with the theory (encoded along the selected comorphism), followed by a list
of theorems. Initially, all the theorems have trivial proofs, using the ‘oops‘
command. However, if you have saved earlier proof attempts, HETS will patch
these into the generated ISABELLE theory file, ensuring that your previous work
is not lost. (But note that this patching can only be successful if you do not
rename specifications, or change their structure.) You now can replace the ’oops’
commands with real ISABELLE proofs, and use Proof General to step through
the proofs. You finish your session by saving your file (using the Emacs file
menu, or the Ctrl-x Ctrl-s key sequence), and by exiting Emacs (Ctrl-x Ctrl-c).

11.4 VSE

The specification environment Verification Support Environment (VSE) [3], de-
veloped at DFKI Saarbrücken, provides an industrial-strength methodology for
specification and verification of imperative programs. VSE provides an inter-
active prover, which supports a Gentzen style natural deduction calculus for
dynamic logic. This logic is an extension of first-order logic with two additional
kinds of formulas that allow for reasoning about programs. One of them is the
box formula [α]ϕ, where α is a program written in an imperative language, and
ϕ is a dynamic logic formula. The meaning of [α]ϕ can be roughly put as “After
every terminating execution of α, ϕ holds.”. The other new kind of formulas
is the diamond formula 〈α〉ϕ, which is the dual counter part of a box formula.
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The meaning of 〈α〉ϕ can be described as “After some terminating execution of
α, ϕ holds”.

A VSE specification or something that can be translated to VSE (currently
only CASL) can be sent to the VSE prover via the node menu of development
graph nodes in two different ways. You can either select VSE from the theorem
prover choice box shown after “Prove” or you can select “Prove VSE Struc-
tured”. The first choice will call VSE with a single flattened theory whereas
a structured call will translate all nodes with ingoing links to the current one
individually.

VSE pops up with a “project” window. In this window you can choose “Work
on” and “specification”. Besides the builtin specification “boolean” there is at
least one specification from your development graph that you can select for
proving. For a structured choice you’ll have specifications for all underlying
nodes that you should work on in a bottom up fashion.

The state created by VSE will be stored in a .tar file (within the current
directory) that preserves proofs for replay later on as long as you don’t change
library or node names.

11.5 zChaff

zChaff is a solver for satisfiabily problems of boolean formulas (SAT) in CNF.
It is connected as a prover for propositional logic to HETS. The prover SPASS

is used to transform arbitrary boolean formulas to CNF. zChaff implements
the CHAFF algorithm. We are using the property, that a conjecture under the
assumption of a set of axioms is true, if the variables of axioms together with
the negation of the conjecture have no satisfying assignment, to prove theorems
with zChaff. That is why you see the result UNSAT in the proof details, if a
theorem has been proved to be true. zChaff uses the same ATP GUI as the
provers for SoftFOL (ref. to section 11.2). zChaff does not accept any options
apart from the time-limit. The current integration of zChaff into HETS has been
tested with zChaff 2004.11.15.

11.6 Reduce

This is a connection to the computer algebra system from http://www.reduce-algebra.
com/. Installation is possible as follows:

svn co https://reduce-algebra.svn.sourceforge.net/svnroot/reduce-algebra
cd reduce-algebra/trunk
./configure --with-csl
make

The binary redcsl will be searched in the PATH or is taken from the HETS REDUCE
environment variable.
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11.7 Pellet

Pellet is a popular open-source DL-reasoner for SROIQ(D), which is the logic
underlying OWL 2, written in Java. A Java Runtime Environment (in version
> 1.5) is needed to run Pellet. For the integration into HETS the environment
variable PELLET_PATH has to be set to the root-directory of the Pellet installa-
tion.

Pellet uses the same ATP GUI as the provers for SoftFOL (ref. to section
11.2).

11.8 Fact++

Fact++ is a DL-reasoner for SROIQ(D), which is the logic underlying OWL
2, written in C++. Fact++ is integrated into HETS via the OWL-API, which
is written in Java. A Java Runtime Environment (in version >= 1.5) has to be
installed. To use Fact++, the environment variable HETS_OWL_TOOLS has to be
set to the directory containing the files

OWLFact.jar
OWLFactProver.jar
lib/FaCTpp-OWLAPI-3.4-v1.6.1.jar
lib/owl2api-bin.jar

as well as

lib/native/i686/libFaCTPlusPlusJNI.so

on a 32bits-Linux-system or

lib/native/x86_64/libFaCTPlusPlusJNI.so

in a 64bits-Linux-system. Fact++ does not support options.
Fact++ uses the same ATP GUI as the provers for SoftFOL (ref. to section

11.2).

11.9 E-KRHyper

E-KRHyper3 is an extension of KRHyper4 by handling of equality. E-KRHyper
is an automatic first order theorem prover and model finder based on the Hyper
Tableaux Calculus[6]. E-KRHyper is optimized for being integrated into other
systems. In the current implementation we use a default tactics script, that
can be influenced by the user. The options of E-KRHyper are written in a
Prolog-like syntax as in

#(set_parameter(timeout_termination_method,0)).

the “.” at the end of each option is mandatory. To get an overview of E-
KRHyper’s options, run the command

3http://www.uni-koblenz.de/∼bpelzer/ekrhyper/
4http://www.uni-koblenz.de/∼wernhard/krhyper/
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ekrh

in a terminal. Then enter the command

#(help).

at the prompt of E-KRHyper, to display its help information, which is basically
a long list of all available parameters. You can exit E-KRHyper by the command

#(exit).

E-KRHyper uses the same ATP GUI as the other provers for SoftFOL (ref.
to section 11.2).

11.10 Darwin

Darwin is an automatic first order prover and model finder implementing the
Model Evolution Calculus[7]. The integration of Darwin as a consistency checker
supports the display of models (if they can be constructed) in CASL-syntax.
Eprover is needed to be in the system-path, if Darwin is used with HETS, since
Darwin uses Eprover for clausification of first-order formulae.

Darwin supports a wide range of options, to get an overview of them run
the command

darwin --help

in a terminal.
Darwin uses the same ATP GUI as the other provers for SoftFOL (ref. to

section 11.2).

11.11 QuickCheck

11.12 minisat

11.13 Truth tables

11.14 CspCASLProver

12 Limits of Hets

HETS is still intensively under development. In particular, the following points
are still missing:

• There is no proof support for architectural specifications.

• Distributed libraries are always downloaded from the local disk, not from
the Internet.

• Version numbers of libraries are not considered properly.

• The proof engine for development graphs provides only experimental sup-
port for hiding links and for conservativity.
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class Logic lid sign morphism sentence basic_spec symbol_map

| lid -> sign morphism sentence basic_spec symbol_map where

identity :: lid -> sign -> morphism

compose :: lid -> morphism -> morphism -> morphism

dom, codom :: lid -> morphism -> sign

parse_basic_spec :: lid -> String -> basic_spec

parse_symbol_map :: lid -> String -> symbol_map

parse_sentence :: lid -> String -> sentence

empty_signature :: lid -> sign

basic_analysis :: lid -> sign -> basic_spec -> (sign, [sentence])

stat_symbol_map :: lid -> sign -> symbol_map -> morphism

map_sentence :: lid -> morphism -> sentence -> sentence

provers ::

lid -> [(sign, [sentence]) -> [sentence] -> Proof_status]

cons_checkers :: lid -> [(sign, [sentence]) -> Proof_status]

class Comorphism cid

lid1 sign1 morphism1 sentence1 basic_spec1 symbol_map1

lid2 sign2 morphism2 sentence2 basic_spec2 symbol_map2

| cid -> lid1 lid2 where

sourceLogic :: cid -> lid1 targetLogic :: cid -> lid2

map_theory :: cid -> (sign1, [sentence1]) -> (sign2, [sentence2])

map_morphism :: cid -> morphism1 -> morphism2

Figure 10: The basic ingredients of logics and logic comorphisms

13 Architecture of Hets

The architecture of HETS is shown in Fig. 11. How is a single logic implemented
in the Heterogeneous Tool Set? This is depicted in the left column of Fig. 11.

HETS provides an abstract interface for institutions, so that new logics can
be integrated smoothly. In order to do so, a parser, a static checker and a prover
for basic specifications in the logic have to be provided.

Each logic is realized in the programming language Haskell [42] by a set
of types and functions, see Fig. 10, where we present a simplified, stripped
down version, where e.g. error handling is ignored. For technical reasons a
logic is tagged with a unique identifier type (lid), which is a singleton type the
only purpose of which is to determine all other type components of the given
logic. In Haskell jargon, the interface is called a multiparameter type class
with functional dependencies [43]. The Haskell interface for logic translations is
realised similarly.

The logic-independent modules in HETS can be found in the right half of
Fig. 11. These modules comprise roughly one third of HETS’ 100.000 lines of
Haskell code.

The heterogeneous parser transforms a string conforming to the syntax in
Fig. 2 to an abstract syntax tree, using the Parsec combinator parser [23]. Logic
and translation names are looked up in the logic graph — this is necessary to
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Figure 11: Architecture of the heterogeneous tool set.

be able to choose the correct parser for basic specifications. Indeed, the parser
has a state that carries the current logic, and which is updated if an explicit
specification of the logic is given, or if a logic translation is encountered (in the
latter case, the state is set to the target logic of the translation). With this, it
is possible to parse basic specifications by just using the logic-specific parser of
the current logic as obtained from the state.

The static analysis is based on the static analysis of basic specifications, and
transforms an abstract syntax tree to a development graph (cf. Sect. 7 above).
Starting with a node corresponding to the empty theory, it successively extends
(using the static analysis of basic specifications) and/or translates (along the
intra- and inter-logic translations) the theory, while simultaneously adding nodes
and links to the development graph.

Heterogeneous proof management is done using heterogeneous development
graphs, as described in Sect. 7. For local proof goals, logic-specific provers are
invoked, see Sect. 11.

HETS can store development graphs, including their proofs. Therefore, HETS

uses the so-called ATerm format [13], which is used as interchange format for
interfacing with other tools.

More details can be found in [30, 36] and in the overview of modules provided
in the developers section of the HETS home page at http://www.dfki.de/sks/
hets.
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HETS is mainly maintained by Christian Maeder (Christian.Maeder@dfki.de)
and Till Mossakowski (Till.Mossakowski@dfki.de). The mailing list is

hets-users@informatik.uni-bremen.de

the homepage is

http://www.informatik.uni-bremen.de/mailman/listinfo/hets-users.

You need to subscribe to the list before you can send a mail. But note that
subscription is very easy!

If your favourite logic is missing in HETS, please tell us (hets-users@informatik.uni-
bremen.de). We will take your feedback into account when deciding which logics
and proof tools to integrate next into HETS. Help with integration of more logics
and proof tools into HETS is also welcome.
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