
Compiler Practical 2013

Berthold Hoffmann (B. Gersdorf, T. Röfer)

hof@informatik.uni-bremen.de
Cartesium 2.48

Inheritance, Static and
Dynamic Binding

20.03.2012 1

1. Late Binding (Dynamic Dispatch)

2. Virtual Method Tables

3. Context Analysis

4. Synthesis

5. BASE

6. Bonus Task: Type Checking and Type Casts at
Runtime

Structure

20.03.2012 2

• Virtual methods
– The actual type of the receiver object, not ist base type,

determines which method is called
– From now on, all methods in LOOP are virtual

• Late Binding
– It is determined only at runtime which (virtual) method is

called

• Virtual Method Tables
– Objects contain hidden references to the virtual method

table of their class.
– In this table, addresses of the methods of the class are

stored.

Late Binding (Dynamic Dispatch)

20.03.2012 3

Early or Late Binding?

20.03.2012 1. Spätes Binden 4

CLASS A IS
 value : Integer;
 METHOD getValue : Integer IS BEGIN
 RETURN value;
 END METHOD
END CLASS

CLASS B EXTENDS A IS
 value : Integer;
 METHOD init : B IS BEGIN
 BASE.value = 65;
 value = 66;
 RETURN SELF;
 END METHOD
 METHOD getValue : Integer IS BEGIN
 RETURN value;
 END METHOD
END CLASS

x: A;

…

x := NEW B.init;

WRITE x.value;

WRITE x.getValue;

Virtual Method Tables (VMT)

20.03.2012 2. Virtuelle Methodentabellen 5

CLASS A IS
 METHOD fn1 …
 METHOD fn2 …
END CLASS

CLASS B EXTENDS A IS
 METHOD fn2 …
 METHOD fn3 …
END CLASS
…
x,y: A;
x := NEW A;
x.fn1;
y := NEW B;
y.fn1;
y.fn2;
y.fn3; | compilation error

Address VMT

A A.fn1

A+1 A.fn2

Address VMT

B A.fn1

B+1 B.fn2

B+2 B.fn3

Global Storage

Address Heap

Object x

…

Objects

Address Heap

Object y

…

• If a method overrides another one, their
signatures must be identical

– Otherwise, this would be overloading, which is
not supported in LOOP

• What happens if a method overrides a
variable, or vice versa?

– Either, this is forbidden, as it is overloading,

– Or, it depends whether in the class of the
accessing reference, the method or attribute is
visible.

Context Analysis: Overriding

20.03.2012 3. Kontextanalyse 6

• Every method is associated with a number

– The index in ist VMT

– A new attribute in class MethodDeclaration

• For new methods, numbering starts after the
last method number of the base class

– In class Object, numbering starts at 0

• In case of overriding, the existing method
number is reused

Context Analysis: Method Numbers

20.03.2012 3. Kontextanalyse 7

• For every class, a VMT
must be generated

• Preparation
– Generate Java array of

MethodDeclarations of the
actual class

– Have it filled by the base
classes and the actual class

– Every entry contains the
latest overriden method in
the most derived class

Synthesis: Generating VMTs

20.03.2012 4. Synthese 8

CLASS A IS
 METHOD fn1 …
 METHOD fn2 …
END CLASS

CLASS B EXTENDS A IS
 METHOD fn2 …
 METHOD fn3 …
END CLASS

Offset VMT

0 A.fn1

1 A.fn2 B.fn2

2 B.fn3

• Code generation

– Theaddress of the table is labelled with <class>:

– Then generate DAT 1, <class>_<method>
for every method

• Object instances

– NEW enters the address of the VMT at the address
of the object (relative address 0)

– Attributes start at relative adddress 1

– ClassDeclaration.HEADER_SIZE = 1;

Synthesis: Code, Object instances

20.03.2012 4. Synthese 9

• The address of the object is needed twice:

– As parameter SELF

– For determining the address of the VMT

• Not every method call is bound lately …

Synthesis: Method Call

20.03.2012 4. Synthese 10

• Access to attributes and
methods of the base class in
a method body

• BASE and SELF
– BASE ist the same local

variable as SELF, i.e., both lie
at the same stack address

– The type of SELF is the actuall
class, the type of BASE is the
base class

– BASE must be an R-value

• Method calls via BASE are
not bound lately!

BASE

20.03.2012 5. BASE 11

CLASS A IS

 METHOD a IS
 BEGIN
 WRITE 65;
 END METHOD

END CLASS

CLASS B EXTENDS A IS

 METHOD a IS
 BEGIN
 BASE.a;
 WRITE 66;
 END METHOD

END CLASS

Bonus: Type Checking and …

20.03.2012
6. Bonusaufgabe: Typüberprüfung und

Typumwandlung zur Laufzeit
12

CLASS Main IS

 METHOD main IS

 a : Object;

 b : Main;

 BEGIN

 a := SELF;

 IF a ISA Main THEN

 b := Main(a);

 END IF

 END METHOD

END CLASS

• <expr> ISA <class>

– Is <expr> of the type of
<class>? (or of one of its
subclasses?)

• <class>(<expr>)

– Yields NULL if <expr> is not
of type <class>, and is the
identity otherwise

Bonus: …Type Casts at Runtime

20.03.2012
6. Bonusaufgabe: Typüberprüfung und

Typumwandlung zur Laufzeit
13

CLASS Main IS

 METHOD main IS

 a : Object;

 b : Main;

 BEGIN

 a := SELF;

 IF a ISA Main THEN

 b := Main(a);

 END IF

 END METHOD

END CLASS

• Type is the address of the
VMT

• Every VMT has a pointer to
the VMT of ist base class

– Address of the base class of
Object is 0

• ISA follows these pointers

• It holds true that
NULL ISA Object = TRUE

5%

