
Compiler Practical 2013

Berthold Hoffmann (B. Gersdorf, T. Röfer)

hof@informatik.uni-bremen.de
Cartesium 2.48

Storage Administration: Overview

27.06.2012 1

1. Heap Administration

2. Automatic Garbage Collection

3. Reference Countin

4. Mark and Sweep Collectors

5. Copying Collectors

6. Mark and Compact Collectors

Structure

27.06.2012 2

• Can be implemented very fast and easy

• Standard implementation in LOOP-0

• Full, some time … ;-)

• Cannot be used if the program shall run for
some time, and works with data on the heap.

Heap Administration: Push-Only
Stack

27.06.2012 1. Heap-Verwaltung 3

• For programming languages mit explicit
(manual) allocation/de-allocation:

– Keeping one or several lists that link free blocks on
the heap

• Allocation in these lists

• De-allocated blocks are added to one of these lists

– Fragmentation (and counter measures)

• Bigger blocks are no longer available

• Allocation: First-fit vs. Best-fit

• De-allocation: Joining adjacent blocks to bigger blocks

Heap Aministration: Free Lists

27.06.2012 1. Heap-Verwaltung 4

• Explicit storage management is error-prone

– Storage leaks

– Multiple de-allocation

– Dereferencing of „dangling pointers“

• Automatic storage management can be faster
(Benjamin Zorn, The Measured Cost of Conservative Garbage Collection, Software
- Practice and Experience)

– Using times of low activity

– Generational garbage collection

Automatic Garbage Collection I

27.06.2012 2. Automatische Specherverwaltung 5

Drawbacks

• Temporary suspension of program execution
during garbage collection

• Some operations are slowed down, e.g.,
assignments, by reference counting

• Possibly additional initialization of variables
that are otherwise useless

Autom. Garb. Collection II

27.06.2012 2. Automatische Specherverwaltung 6

With simple de-allocation:

• Used storage is untouched

• All pointers / references stay valid

• Can be done in parallel with program
execution

• Does not solve fragmentation

De-Allocation of Unused Storage

27.06.2012 2. Automatische Specherverwaltung 7

• Used storage is pushed together

• All pointers / references have to be adjusted

– On the stack

– Within objects on the heap

• Cannot be done in parallel to program
execution

Compactification

27.06.2012 2. Automatische Specherverwaltung 8

• Every object on the heap gets a reference count
• The counter is set to 0 during allocation
• With every assignment to a

reference
– The counter of the newly

assigned object is increased,
and the counter of the object
held previously is decreased

– If this count equals 0, the object
is deleted

– For every object reference of the deleted
object, the reference count is decreased as
well, and the object may be deleted

Reference Counters

27.06.2012 3. Referenzzähler 9

a

b

2

…

1

…

Stapel Halde

• Cyclic structures cannot be de-allocated

Reference Counters: Cycles

27.06.2012 3. Referenzzähler 10

1

…

1

…

1

…

Heap

• When?

– If no heap space is available

– If there is time

• How?

– Determining which blocks on the heap can be
reached from the stack

– De-allocation of all not reachable blocks

– Compactification of the heap

Separate Storage Adjustment

27.06.2012 4. Mark and Sweep Collection 11

• Mark every block on the heap as not reachable
• Construct the RootSet: all blocks on the heap that

are directly referenced from the stacl
• For every block b in the RootSet that is marked as

unreachable:
– Mark b as reachable
– Check, recursively, every block b‘ that is still

unreachable, and is referenced from block b

• De-allocate every block on the heap that is still
marked as unreachable

• Cost: O(number of blocks on the heap)

Mark and Sweep Collector

27.06.2012 4. Mark and Sweep Collection 12

• Every block belongs always to exactly one of
the following lists

– free: list of free blocks

– unreached: list of occupied blocks (additional
mark within the blocks)

– unscanned: temporry list of unscanned blocks

– scanned: temporary list of scanned blocks

• Cost: O(number of reachable blocks)

Bakers Mark and Sweep Collector

27.06.2012 4. Mark and Sweep Collection 13

Bakers Mark and Sweep Collector

27.06.2012 4. Mark and Sweep Collection 14

scanned := Ø
unscanned := blocks in RootSet
WHILE unscanned # Ø DO
 WITH b ∈ unscanned DO
 unscanned := unscanned \ b
 scanned := scanned ∪ {b}
 FOR EACH b‘ referenced from b DO
 IF b‘ ∈ unreached THEN
 unreached := unreached \ b‘
 unscanned := unscanned ∪ {b‘}
 END IF
 END FOR
 END WITH
END WHILE

free := free ∪ unreached
unreached := scanned

• A storage block is reachable if the stack or a
reachable heap blocks contain numbers that
might be heap addresses

• Works without information about the
structure of data on stack and heap

• Compactification is not possible

• May miss to de-allocate some blocks

Conservative Storage Administration

27.06.2012 4. Mark and Sweep Collection 15

• Structure information is used to identify
references on the stack and within heap
blocks

• Only these are checked for reachability

• Language must be type-safe

– References always point to compatible objects

Non-Cons. Storage Administration

27.06.2012 4. Mark and Sweep Collection 16

Cheney’s Mark and Sweep Collector

27.06.2012 5. Copying Collector 17

free := start address of target heap
FOR EACH b ϵ RootSetDO
 b := lookupNewAddr(b)
END FOR
b := start address of target heap
WHILE b < free DO
 FOR EACH Reference b.r aus b DO
 b.r := lookupNewAddr(b.r)
 END FOR
 b := b + b.size
END WHILE

METHOD lookupNewAddr(b) IS
 IF b.newAddr = NULL THEN
 b.newAddr := free
 free := free + b.size
 Copyb to b.newAddr
 END IF
 RETURN b.newAddr
END METHOD

FOR EACH b ϵ Heap DO
 b.newAddr := NULL
END FOR

• Blocks are copied from one heap to a second
one, and back

• Drawback: Halves the storage capacity
• Cost O(size of reachable blocks

 + number of heap)

Mark and Compact Collector

27.06.2012 6. Mark and Compact Collector 18

FOR EACH b ϵ Heap (ascending) DO
 IF b.reached THEN
 FOR EACH reference b.r aus b
 DO b.r := b.r.newAddr
 END FOR
 END IF
END FOR free := start address of heap

FOR EACH b ϵ Heap (ascending) DO
 IF b.reached THEN
 b.newAddr := free
 free := free + b.size
 END IF
END FOR

FOR EACH b ϵ RootSetDO
 b := b.newAddr;
END FOR

• Determine reachable blocks (as
with Mark and Sweep)

• Allocate new addresses
• Correct references
• Copy blocks
• Cost: O(size of reachable blocks

 + number of heap blocks)

FOR EACH b ϵ Heap (ascending) DO
 IF b.reached THEN
 Copyb to b.newAddr
 END IF
END FOR

