Compiler Practical 2013

Storage Administration: Overview

Berthold Hoffmann (B. Gersdorf, T. Rofer)
hof@informatik.uni-bremen.de
Cartesium 2.48

Deutsches
D= i @ Universitt Bremen
Intelligenz GmbH

27.06.2012




W " Deutsches
rrrrrrrrrrrrrrrr m
) | fiir Kiinstliche
. Intelligenz GmbH

St r u Ct u re @ Universitat Bremen

Heap Administration
Automatic Garbage Collection
Reference Countin

Mark and Sweep Collectors
Copying Collectors

o U s W iheE

Mark and Compact Collectors

27.06.2012 2



rrrrrrrrrrrrrrrrr

Heap Administration: Push-Only NS¢ G
Sta C k @ Uni\:ersli:;:g;zr::;n

* Can be implemented very fast and easy
e Standard implementation in LOOP-0
e Full, some time ... ;-)

* Cannot be used if the program shall run for
some time, and works with data on the heap.

27.06.2012 1. Heap-Verwaltung 3



7 Deutsches
'- Fohgtm

1 fiir Kiinstliche

Heap Aministration: Free Lists Uuﬂ,\,e,s',;;B;;';;n

For programming languages mit explicit
(manual) allocation/de-allocation:

— Keeping one or several lists that link free blocks on
the heap

e Allocation in these lists
e De-allocated blocks are added to one of these lists

— Fragmentation (and counter measures)
* Bigger blocks are no longer available
* Allocation: First-fit vs. Best-fit
* De-allocation: Joining adjacent blocks to bigger blocks

27.06.2012 1. Heap-Verwaltung 4



ohgtm
| fiir Kiinstliche

'-r Deutsches
F

Intelligenz GmbH

Automatic Garbage Collection |

U Umversﬂat Bremen

Explicit storage management is error-prone
— Storage leaks

— Multiple de-allocation

— Dereferencing of ,,dangling pointers”

* Automatic storage management can be faster

(Benjamin Zorn, The Measured Cost of Conservative Garbage Collection, Software
- Practice and Experience)

— Using times of low activity
— Generational garbage collection

27.06.2012 2. Automatische Specherverwaltung 5



W " Deutsches
' Forschun gsze

Autom. Garb. Collection Il i)

Drawbacks

 Temporary suspension of program execution
during garbage collection

 Some operations are slowed down, e.g.,
assignments, by reference counting

* Possibly additional initialization of variables
that are otherwise useless

27.06.2012 2. Automatische Specherverwaltung 6



I b d Deutsches
' Forschungszentrum

'S Z
| k fiir Kiinstliche

De-Allocation of Unused Storage @Unwe,s;;‘;f;’;“;:;

With simple de-allocation:
e Used storage is untouched
* All pointers / references stay valid

* Can be done in parallel with program
execution

* Does not solve fragmentation

27.06.2012 2. Automatische Specherverwaltung 7



W7 Doutsches
Forschu Zentru

' fiir Kiinstliche
W inte Ilg z GmbH

CO m pa Ct Ifl Catl O n U Universitat Bremen

e Used storage is pushed together

* All pointers / references have to be adjusted
— On the stack
— Within objects on the heap

* Cannot be done in parallel to program
execution

27.06.2012 2. Automatische Specherverwaltung 8



- P Deutsches
orschungszentrum
fiir Kiinstliche

k Itllg z GmbH

l l Universitat Bremen

Reference Counters

* Every object on the heap gets a reference count
 The counter is set to 0 during allocation

With every assighnment to a Stapel Halde
reference

— The counter of the newly H n
assigned object is increased,
and the counter of the object
held previously is decreased

— |If this count equals O, the object
is deleted

— For every object reference of the deleted
object, the reference count is decreased as
well, and the object may be deleted

27.06.2012 3. Referenzzéhler 9



h g entrum
f K stlic h
Itllg z GmbH

Reference Counters: Cycles @))m.vers.tat -

* Cyclic structures cannot be de-allocated

Heap

27.06.2012 3. Referenzzahler 10



chungszentrum

I b d Deutsches
' For:

'S Z
| k fiir Kiinstliche

Separate Storage Adjustment (L) unwersit sromen

* When?
— |If no heap space is available
— If there is time
* How?
— Determining which blocks on the heap can be
reached from the stack
— De-allocation of all not reachable blocks

— Compactification of the heap

27.06.2012 4. Mark and Sweep Collection 11



Mark and Sweep Collector ({U)) Universitt Bremen

* Mark every block on the heap as not reachable

* Construct the RootSet: all blocks on the heap that
are directly referenced from the stacl

* For every block b in the RootSet that is marked as
unreachable:

— Mark b as reachable

— Check, recursively, every block b* that is still
unreachable, and is referenced from block b

* De-allocate every block on the heap that is still
marked as unreachable

e Cost: O(number of blocks on the heap)

27.06.2012 4. Mark and Sweep Collection 12



W " Deutsches
F hun

orschu gszentrum
1 fiir Kiinstliche
k Intelligenz GmbH

Bakers Mark and Sweep Collector (U niversiat remen

* Every block belongs always to exactly one of
the following lists
— free: list of free blocks

— unreached: list of occupied blocks (additional
mark within the blocks)

— unscanned: temporry list of unscanned blocks
— scanned: temporary list of scanned blocks

e Cost: O(number of reachable blocks)

27.06.2012 4. Mark and Sweep Collection 13



Forschungszentrum

a k fiir Kiinstliche

Bakers Mark and Sweep Collector @Unwe,s;;‘;f:g;‘;";:;n

' P | ' Deutsches

scanned := @
unscanned := blocks in RootSet
WHILE unscanned # @ DO
WITH b € unscanned DO
unscanned := unscanned \ b
scanned := scanned U {b}
FOR EACH b’ referenced from b DO
IF b‘ € unreached THEN
unreached := unreached \ b’
unscanned := unscanned U {b‘}
END IF
END FOR
END WITH
END WHILE

free := free U unreached
unreached := scanned

27.06.2012 4. Mark and Sweep Collection 14



Al rtciigeaz GrabH
versitat Bremen

Conservative Storage Administration @ un

e A storage block is reachable if the stack or a
reachable heap blocks contain numbers that
might be heap addresses

 Works without information about the
structure of data on stack and heap

 Compactification is not possible
* May miss to de-allocate some blocks

27.06.2012 4. Mark and Sweep Collection 15



W7 Deutsches
orschungszentrum
| fiir Kiinstliche
| Intelligenz GmbH

Non-Cons. Storage Administration () universitat Bremen

e Structure information is used to identify

references on the stack and within heap
blocks

* Only these are checked for reachability
* Language must be type-safe

— References always point to compatible objects

27.06.2012 4. Mark and Sweep Collection 16



Cheney’s Mark and Sweep Collector U'Ules

* Blocks are copied from one heap to a second

one, and back

* Drawback: Halves the storage capacity

e Cost O(size of reachable blocks
+ number of heap)

METHOD lookupNewAddr(b) IS
IF b.newAddr = NULL THEN
b.newAddr := free
free := free + b.size
Copyb to b.newAddr
END IF
RETURN b.newAddr
END METHOD

27.06.2012

I B Deutsches
Forschungszentrum
fiir Kiinstliche
Intelligenz GmbH

itat Bremen

FOR EACH b € Heap DO
b.newAddr := NULL
END FOR

free := start address of target heap
FOR EACH b € RootSetDO
b := lookupNewAddr(b)
END FOR
b := start address of target heap
WHILE b < free DO
FOR EACH Reference b.r aus b DO
b.r := lookupNewAddr(b.r)
END FOR
b :=b + b.size
END WHILE

5. Copying Collector 17



Mark and Compact Collector

 Determine reachable blocks (as
with Mark and Sweep)
* Allocate new addresses
* Correct references
* Copy blocks
e Cost: O(size of reachable blocks
+ number of heap blocks)

free := start address of heap
FOR EACH b € Heap (ascending) DO
IF b.reached THEN
b.newAddr := free
free := free + b.size
END IF
END FOR

27.06.2012

Forschungszentrum
| fiir Kiinstliche
Intelligenz GmbH

l l Umversﬂat Bremen

' I B Deutsches

FOR EACH b € RootSetDO
b := b.newAddr;
END FOR

FOR EACH b € Heap (ascending) DO
IF b.reached THEN
FOR EACH reference b.r aus b
DO b.r := b.rnewAddr
END FOR
END IF
END FOR

FOR EACH b € Heap (ascending) DO
IF b.reached THEN
Copyb to b.newAddr
END IF
END FOR

6. Mark and Compact Collector 18



