
Compiler Construction and Formal Languages
Exercises

Berthold Hoffmann
Informatik, Universität Bremen, Germany

hof@informatik.uni-bremen.de

January 2013

Abstract

By doing the following exercises, the students attending the course Compiler Construction
and Formal Languages shall apply the concepts and algorithms taught in the course. Some
of these exercises will be indicated as assignments, to be done by students, either alone or in
groups of at most two, in order to get credit points and marks for the course. Some of the other
exercises will be done in class.

1 Static or Dynamic?

A property P of a programming language is called

• static if it can be checked already while the program is compiled, and

• dynamic if it can, in general, only be checked at the time when the compiled program is
executed.

Please consider the programming languages C, Java, and Haskell (or other languages that you
know). Find out which of the following properties is static, and dynamic in these languages,
respectively:

1. The binding of names (identifiers) to the declarations introducing them.

2. The type of a variable.

3. The bounds of an array.

4. The value of a variable.

Please compare the languages wrt. your findings.

2 Bootstrapping

Implementing Java

The language Java is implemented by a compiler and an interpreter:

• The compiler transforms Java programs into Java Byte Code (JBC).

• JBC-programs are executed by an interpreter, known as the Java Virtual Machine (JVM).

1

A Portable Java Implementation

Portable implementations of Java – like the Java Developer Kit by Sun systems are based on the
following components:

1. A master compiler from Java to JBC, written in Java itself. This compiler can be assumed to
use only a small portion of the JVM library.

2. A compiler from Java to JBC, written JBC, which is derived from the master compiler. (You
get this compiler for free as soon as you are able to execute Java on some platform.)

3. A Java Virtual Machine, an interpreter for JBC, written in Java.

Tasks

1. Port to machine M . How can Java be ported to a new machine M , given the components
above? Do this by implementing a component that is as simple and small as possible.

You may assume that a native C-compiler, producing M machine code, and “written” in M
machine code, exists for M . The resulting implementation need not run efficiently – it may
involve an interpreter.

2. Bootstrap on machine M . How can the compiler be made native? Again, do this by imple-
menting a small component.

3 Regular Definitions

3.1 Identifiers

shall be formed according to the following rules:

1. Identifier are strings (of arbitrary length) that consist of letters, digits, and “ ” (underscore).

2. Identifiers start with a letter.

3. An underscore may appear only between two letters or digits.1

Examples: x Hallo Welt Identifier koennen lang sein

Counterexamples: 1x H a l l o W e l t Name

3.2 String Literals

shall be defined as follows:

1. String literals are enclosed in quotes “"”.

2. They consist of an arbitrary number of printable characters.

3. They must not contain a newline character.

4. If one quote shall be made part of a string literal, it has to appear twice in it.2

Examples: The string literals "", " Hallo, Welt!", and """ Hallo, Welt!""" contain 0, 12, and
14 characters, respectively.

1These are the rules for identifiers in the programming language Ada.
2These are the rules for string literals in the programming language Pascal.

2

Task

Give regular definitions for identifiers and string literals.

Tip

• PrintableChar shall be the set of all printable characters, including newline.

• The regular expression“\n” shall represent newline.

• The regular expression “∼[c1, . . . , cn]” shall denote the set of characters that contains all
printable characters, except for c1 bis cn; i.e., the set PrintableChar \ {c1, . . . , cn}.

4 Finite Automata

Use the rules discussed in the course to construct, for the regular definitions of identifiers and string
literals, resp.,

1. a non-deterministic automaton,

2. the equivalent deterministic automaton, by the quotient set construction, and

3. the minimal deterministic automaton.

5 Recognition of Comments

Comments shall be enclosed in /* und */; they may include newlines.

1. Define comments by a regular definition.

2. Construct a minimal finite automaton for comments from this definition. You may do this
“intuitively”, without taking the formal steps discussed in the course.

3. Check whether your definition gets simpler if you use a lookahead operator R1/R2, which
generates the expression R1 only if it is followed by the expression R2.

Recognition of Float Literals

String literals shall be defined by

num = digit∗. digit+ exp?

1. Construct a minimal finite automaton for comments from this regular definition. You may do
this “intuitively”, without taking the formal steps discussed in the course.

6 Lexical Analysis of OOPS-0 with lex

The language oops, which is used in the compiler project at Universität Bremen, has the following
lexemes:

• non-empty sequences of layout characters blank, tabulator, and newline,

• comments, also extending over several lines, enclosed in (* and *),

• identifiers,

3

• integer literals,

• string literals,

• the delimiters ,, :, ;, (, and),

• the operator symbols <=, >=, :=, *, /, +, -, =, #, <, >, and ., as well as

• the keywords AND, ATTRIBUTE, BEGIN, CLASS, ELSE, ELSEIF, END, EXTENDS, IF, IS, METHOD,
MOD, NEW, NOT, OR, OVERRIDE, READ, RETURN, THEN, WITH, WHILE, and WRITE.

Tasks

1. Define the scanner for oops in lex. Here, we are not interested in the translation of lexemes
into tokens, so the return statements can be omitted.)

The regular definitions developed in the course can be used for the lexemes.

2. Produce tow versions of the scanner: one without keywords, and one including them (Then
their definitions should go before that of identifiers.)

3. Compare the size of the scanner tables?

So, should be keywords rather be recognized by the screener?

7 Ambiguity of Context-Free Grammar

Consider the following context-free rules, where terminals are underlined, and R is the start symbol:

R → R | R
| R R
| R+ | R ∗ | R ?
| (R)

| a | b | c

Tasks

1. Which language is defined here?

2. Show that the grammar is ambiguous.

3. Make it unambiguous. Derivations and derivation trees shall respect that the precedences
of the operators increases from top to bottom The operators ∗ , + und ? have the same
precedence.

4

8 SLL(1)-Property for a Grammar of Commands

Let the syntax of commands be defined as follows:

program ::= statement �

statements ::= statement

| statement ; statements

statement ::= if expression then statements end if

| if expression then statements else statements end if

| while expression do statements end while

| id := expression

| id

expression ::= e

Tasks

1. Check whether the grammar satisfies the SLL(1) condition.

2. Determine the First and Follower sets for that purpose.

3. If the condition is violated, transform the grammar by left factorization until it does satisfy
it.

9 Recursive-Descent Parsing of Commands

Consider the SLL(1) syntax for commands from the previous exercise.

Tasks

1. Generate a recursive descent parser.

2. Construct an abstract syntax for commands.

3. Add tree-constructing instructions to the parser.

4. Incorporate error handling into the parser, based on deletion and insertion of symbols.

10 A Grammar Violating the SLR(1) Condition

Consider the following grammar for expressions:

S → E $

E → E + E
| E ∗ E
| (E)
| id

5

Action Goto
Z $ + ∗ () id E

0 s2 s3 1
1 acc s4 s5 s2 s3
2 s2 s3 6
3 r5 r5 r5 r5
4 s2 s3 7
5 s2 s3 8
6 s4 s5 s9
7 r2 r2 s5 r2
8 r3 r3 r3 r3
9 r4 r4 r4 r4

Figure 1: An action and goto table for parsing expressions

Tasks

1. Construct the characteristic finite automaton for the grammar.

2. Show that the grammar violates the SLL(k) condition, by considering its action table.

11 Bottom-Up SLR(1)-Parsing

The grammar
S → E $ (1)

E → E + E (2)
| E ∗ E (3)
| (E) (4)
| id (5)

has a parse table as in Figure 1 (Precedences and associativities of the operators have been used to
resolve the shift-reduce conflicts for this grammar.) The parser interpretes this table. States and
rules are represented by their numbers, and the start state is 0:

pop(0);
first symbol;
while Action[top, symbol] 6= acc
do case Action[top, symbol]

of si ⇒ push(symbol); push(i); nextsymbol;
| rn⇒ for i:= 1 to 2* length(rule(n)) do pop;

z:= top;
push(left-hand-side(rule(n))); push(Goto[z])

otherwise syntaxerror(“· · · ”);
end case

end while;
if Action[top, symbol] = acc ∧ symbol = $
then print(“yes!”) else print(“no!”) end if.

Tasks

Execute the parser with the following programs, and non-programs:

6

• a− b ∗ c�

• (a− b) ∗ c�

• (a− b)c�

• (a− b) ∗ −c�

Here a, b, c are numbers. Represent the configurations of the parser as

s0 v1 · · · sk−1 vk sk
w
.t1 · · · tn�

where w is the prefix read, the s0, si are states, the vi are symbols (for 1 6 i 6 k), and the tj are
terminal symbols (for 1 6 j 6 n).

12 Identification with Linear Visibility

Consider the following program:

declare x:k1;

begin

declare x:k2;

declare y:k3;

use y:

use x

end;

use x

Use the attribute grammar presented in the course in the following steps:

• Construct an abstract syntax tree.

• Determine the attribution rules for the program.

• Which declarations are associated with the identifiers x and y?

Recall the attribute rules:

P

St

v

v n

init

B

St

v n

v n

nest
unnest

L

St St

v n

v n v n

D

Id Kd

v n

enter

U

Id Kd

v n

def

13 Attribute Grammar for Global Visibility

Define, for the known abstract syntax and semantical basis, an attribute grammar that defines
identification according to simultaneous visibility.

The rules of the underlying grammar define the following syntax trees:

P

St

B

St

L

St St

D

Id Kd

U

Id Kd

The semantical basis should be extended by one operation:

7

• The predicate isLocal can be useful to determine whether an identifier has already be declared
within the current block.

In Haskell, the extended interface would be:

module DeclarationTable

where type TAB = [[(Id,Kd)]]

type Id = String

data Kd = Unbound | Typ | Const | Var | Proc deriving (Eq, Text)

initial :: TAB

nest, unnest :: TAB -> TAB

enter :: TAB -> (Id,Kd) -> TAB

def :: TAB -> Id -> Kd

isLocal :: TAB -> Id -> Bool

14 Attribution with Simultaneous Visibility

Determine the attribution of the following syntax tree in a language with simultaneous visibility.

P

L

U

Id Kd

L

B

L

L

U

Id Kd

U

Id Kd

L

D

Id Kd

D

Id Kd

D

Id Kd

15 Declaration Tables in Java

Implement the semantic basis for identification, the declaration table, in Java. The signature is:

module DeclarationTable

where type TAB = [[(Id,Kd)]]

type Id = String

data Kd = Unbound | Typ | Const | Var | Proc deriving (Eq, Text)

initial :: TAB

nest, unnest :: TAB -> TAB

enter :: TAB -> (Id,Kd) -> TAB

def :: TAB -> Id -> Kd

isLocal :: TAB -> Id -> Bool

8

16 Declaration Tables for Overloading

Until now, the grid-like declaration table copes with declarations that are monomorphic so that an
identifier is associated with at most declaration. In a polymorphic language, a set of declarations
can be associated with certain identifiers (of operations and functions). Then the function def

yields a list (Kinds) of Kd. The function enter, when adding a declaration (x,k) to a table, has
to decide whether

1. the entry can just be added, or

2. whether a similar entry is hidden by the new one, or

3. whether the new declaration is illegal, since the entry to be hidden appeared in the same
block.

The predicate former called isLocal is not helpful any more. A predicate distinct should be
provided, which determines whether two declarations (their Kd, that is) are distinguishable, and
can hence be overloaded. 3 This predicate can be used in the new implementation of enter.

In Haskell the changed interface is::

module DeclarationTable

where type TAB = ...

type Kinds = [Kd]

type Kd = ...

type Id = ...

initial :: TAB

nest, unnest :: TAB -> TAB

enter :: TAB -> (Id,Kd) -> TAB

def :: TAB -> Id -> Kinds

distinct :: Kd -> Kd -> Bool

Tasks

1. Extend the efficient implementation of declaration tables so that it copes with overloaded
declarations.

2. Does the complexity of the operations change?

17 Type Compatibility

For the type analysis of expressions, we have introduced a relation t E u expressing that a type u
is compatible with a type t.

Tasks

Consider a programming language you know (Java, Haskell, C, C# . . .).

1. At which program places, type compatibility is required?

2. How is type compatibility defined in the language?

3. Does a single notion of type compatibility hold throughout the language, or are there different
notions, depending on the context?

3Languages differ wrt. the conditions under which functions or operations are considered to be distinguishable.
This will be discussed in the course.

9

18 Transforming and Evaluating Expressions

Determine the transformation c = codeW (3+(x∗4))α. Assume that α(x) = 3, and that dop∗ = mul
has the meaning:

S[SP] := S[SP − 1] ∗ S[SP];SP := SP − 1

Execute c with the P-Machine. Assume the code c starts at location 10; S[3] shall contain the value
10 , and SP shall have the value 3.

The equations for transformation are on slide 169/171. The sketch of the P-machine is on page
166. [There is a minor error on this page. Do you find it?]

A simple form of numerical choice takes the following form:

C ::= case E of u => C u ; . . . ; o => C o default Cd

The value v of the expression E is used to select the command Cv labeled with the corresponding
value, from a contiguous integer range u . . . o. If v is not in the range u . . . o, the default command
Cd is selected. (The pre-historic switch of Algol-60, C, C++, and Java does not necessarily
perform a unique selection (only if all commands are terminated with break).

Numerical choice can be transformed, on the source level, into an equivalent cascade of Boolean
choices (if − then − else). It can also be implemented with a goto table: n unconditional jumps
ujp li are inserted in the code – not in the data – and a computed goto jumps to the right place in
that table. This instruction takes the following form:

ijp ≡ PC := PC + S[SP]; SP := SP − 1

The instruction expects the goto table to be placed in the directly succeeding code locations. Fol-
lowing instructions might be useful.

ljp u l ≡ if s[SP] < u then PC := PC + l

gjp o l ≡ if s[SP] > o then PC := PC + l

Tasks

1. Translate numeric choice, either to equivalent if -cascades, or with a goto table.

2. Which of the implementations do you consider to be better? More precisely, under which
circumstances could one be better than the other one?

3. If the same command shall be selected for different numerical values, the simple form of case
forces to duplicate code, which should be avoided for several reasons.

How could you change the transformation, if a list of literals can be placed in front of the
commands?

19 Transforming Generalized Expressions

1. Predefined Functions. Allow calls to standard functions of the form f(e1, . . . ek) in expressions,
and extend the transformations to handle these calls. Assume that that α(f) contains the
address of code(f).

Transform function calls into machine code. You may wish to introduce an instruction that
jumps to the code of standard functions. This instruction could use a register, say OPC , to
save the program counter. An instruction for returning from a standard function concludes
the code of standard functions. Assume that this instruction restores the program counter
with “PC := OPC”.

10

2. Compound Operands. Allow that the infix operations and standard functions in an expression
may have operands and results that occupy several storage cells, not just one.

Extend the transformation scheme accordingly.

20 Array Transformation

Consider the following Pascal program:

program Feld;

type Complex = record re, im: Real; end;

var a: array [-3..+3] of Complex;

var i: Integer;

begin

i:= 1;

a[i] := a[i+1]

end.

Determine the size of the types, and the address environment of the program.
Translate the program and execute the translated P-code. Take care: the transformation pre-

sented in the course does only cover array ranges 0 . . . k. Invent an extension for the more general
case (or just look it up in the presentations).

21 Storage and Selection of Dynamic Arrays

So far assumed that the range [u..o] of an array is static. Then its size is static as well, like of any
other type discussed so far. Values of static arrays can be allocated on the stack.

An array is dynamic if its range is [Eu..Eo] is given by the values of expressions. The size of a
dynamic array is dynamic (hence the name), so that its values cannot be stored on the stack like
values of static size.

Many modern languages allocate dynamic arrays on the heap. This has the drawback that the
space for an array has to be recovered by garbage collection if it is no longer alive. It would be
better to allocate it on the stack where the storage is reclaimed automatically. For this purpose, he
representation of a dynamic array is divided into two parts:

1. Its descriptor contains all information that is needed to perform the operations on it:

• The upper bound og (the value of Eo).

• The lower bound ug (the value of Eu).

• The subtrahend su (the difference to the 0th element).

• The size gr, as the number of its storage cells.

• The fictive address fa (the address of the 0th element).

2. Its proper values are kept in a dedicated area DYN of the stack, between the area (LOC) for
values of static size and the stack for intermediate calculations in expressions (ZWERG).

The size of a dynamic array is just the (static) size of its descriptor:

size(row [Eu..Eo] of t) = 5

Then the address environment α can be determined as before.
Furthermore, the elaboration of a dynamic array declaration must produce code that, at runtime,

defines the values of the descriptor, and allocates space for its proper value in DYN.

11

Table 1: Instructions allocating and accessing dynamic arrays
Command Meaning Explanation
sad a g S[a+ 4] := S[SP]; (og)

S[a+ 3] := S[SP − 1]; (ug)
S[a+ 2] := S[a+ 3] ∗ g; (su)
S[a+ 1] := S[a+ 4]− S[a+ 3] + 1; (gr)
S[a] := SP − S[a− 2]− 1; (fa)
SP := SP + S[a+ 1]− 2 (allocate space)

dpl SP := SP + 1;
S[SP] := S[SP − 1];

ind S[SP] := S[S[SP]]
chd if S[SP] < S[S[SP − 2] + 3] or S[SP] > S[S[SP − 2] + 4]

then error “index error”;
ixa g S[SP − 1] := S[SP − 1] + (S[SP] ∗ g);SP := SP − 1;

We assume that the elaboration of local declarations calls an instruction isp g that increases
register SP by the size g of all local declarations – including the descriptors of dynamic arrays.

Then ever declaration of a dynamic array produces the following code:

[[x : row [Eu..Eo] of t]]α = [[V]]A α; [[Eu]]W α; [[Eo]]W α; sad α(x) size(t);

The access to an element of a dynamic array is translated as follows:

[[V [E]]]α = [[V]]A α;dpl ; ind ; [[E]]W α; chd ; ixa size(type(x[E])) ; sli

The code [[V]]A α yields the descriptor address of a dynamic array x, not the address of the values
themselves. The descriptor address is duplicated with the instruction dpl first, and then used to
calculate the address of the array values with ind (their fictive address, rather), before the Index
is calculated. The original of the descriptor is needed to check array bounds with the command
chd . If the variable access V is not just an identifier x, but a component, say y.s, of a product,
the address of the descriptor cannot be passed to the instruction directly. The original descriptor
is two cells below SP – above is the address of the array values and the values of the index. Only
when the address of the array element is calculated, it will be slided down on the stack, overwriting
the original descriptor, by the instruction sli.

In the following Pascal program:

procedure Feld;

var a: array [-n..+n] of Complex;

var i: Integer;

begin

i:= 1;

a[i] := a[i+1]

end;

the global variable n shall have the value 3. Let size(Complex) = 2 and α = {n 7→ 5, a 7→ 10, i 7→ 15}.
After elaboration of the declarations, the stack pointer shall point to the last cell occupied by local
variables, namely 15.

The code for allocating the array looks as follows:

[[x: array [-n..+n] of Complex]]α = [[x]]A α; [[−n]]W α; [[n]]W α; sad α(x) size(Complex);

= lda α(x) ; lda α(n) ; ind ;neg ;

lda α(n) ; ind ; sad α(x) size(Complex);

= lda 10 ; lda 5 ; ind ;neg ; lda 5 ; ind ; sad 10 2;

12

By these instructions, the store is manipulated as shown in Figure2.

0
1
2
3
4

α(n)→ 3 5
6
7
8
9

α(x)→ 10
11
12
13
14

SP→α(i)→ 15

[[−n]]W α
=⇒

[[n]]W α

0
1
2
3
4

α(n)→ 3 5
6
7
8
9

α(x)→ 10
11
12
13
14

α(i)→ 15
−3 16

SP→ 3 17

=⇒
sad α(x)2

0
1
2
3
4

α(n)→ 3 5
6
7
8
9

α(x)→SP − su− 1 22 10
(og − ug + 1) ∗ 2 14 11

−(ug ∗ 2) −6 12
ug −3 13
og 3 14

α(i)→ 15
...

SP→ 29

Figure 2: Allocation of an array descriptor

Task

1. Define the code for [[x[i]]]α, assuming that i has the value 1.

2. Demonstrate how the code is executed.

22 Static Predecessors

In the course, we have discussed how static predecessors can be organized as a linked list. This
leads, with deeply nested blocks, to a certain overhead in the access to non-local identifiers.

This can be avoided if static predecessors are organized in a display vector. Here the static
predecessors are held in a (small) global stack at the start of the storage area. As the depth of block
nesting is a static value, the maximal extension of the display vector can be determined in advance.

Tasks

Organize static predecessors in a display vector.

1. What has to be done when entering and leaving a procedure?

2. Redefine the instruction lda. You may change the meaning of the modifier ` for that purpose.

3. If a variable is global, i.e., declared on level ` = 0, or local, i.e., declared on ` = current level ,
the display vector is not needed at all. Define the instructions ldg and ldl for access to global
and local variables, respectively.

13

23 Translating Recursive Procedures

Translate the following Pascal function:

function fac (n: Integer): Integer;

begin

if n <= 0 then fac := 1 else fac := fac(n-1)

end

Task

The statement “fac := E” defines the result of the function fac (instead of “return E” in other
languages). Execute the code.

24 Parameter Passing

This is about endangered ways of parameter passing. Let proc p(x : t);B be a procedure that is
called as p(E).

Constant Parameters

If x is handled as a constant parameter, x acts as a constant name for the value of E while p is
executed, as if a declaration const x = E; would be elaborated before entering p.

Questions

1. In what differs this passing mode to value parameters (“call by value”)?

2. Consider the advantages and drawbacks of constant wrt. value parameters.

3. What code has to be generated for passing a dynamic array as a constant parameter?

Name Parameters

This way of parameter passing resembles textual substitution, and has been used in the lambda
calculus. It is defined as follows: If x is passed as a name parameter, it denotes the expression E
while the body B of p is executed. Whenever x is used, the expression E will be evaluated; this is
done in the context of the block B, considering all declarations for B.

Questions

1. Consider advantages and drawbacks of name parameters.

2. Sketch how name parameters could be transformed into code.

3. What is the difference of name parameters to pure textual substitution?

25 Translating a Complete Program

Translate the following program:

14

program fakultaet;

var x : Integer;

function fac (n: Integer): Integer;

begin

if n <= 0 then fac := 1 else fac := n * fac(n-1)

end

begin

x := fac(2)

end.

26 Multiple Inheritance

Consider how the organization of object-oriented code must be changed in the presence of “proper”
multiple inheritance (not only of interfaces, as in Java).

1. How can method tables be organized?

2. How can dynamic binding of methods be done?

15

