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Parte I

What is it?



Rump’s example:

y = 333.75b6 + a2(11a2b2 − b6− 121b4 − 2)+5.5b8 + a/(2b) (1)

for a = 77617.0 and b = 33096.0.
Rump computed this function in an IBM S/370 main frame, he
obtained the following results:

1. single precision: y = 1.172603 . . . ;

2. double precision: y = 1.1726039400531 . . . ;

3. extended precision: y = 1.172603940053178 . . . ;

All results lead any user to conclude that IBM S/370 returned the
correct result. However this result is WRONG and the correct
result lies in the interval

−0.82739605994682135 ± 5 × 10−17 (2)

* Even the sign is wrong.



◮ This example was revised in [3] using IEEE 754 arithmetic in
the Forte Developer 6 update 2 Fortran 95 compiler from Sun
Microsystem Inc. and the results are even more incorrect.

◮ It means that floating-point computations can be even
dangerous, if we imagine that, for example, human lives
depend on a computer application which implements (or in
some step of a computation evaluates to) Rump’s function.

◮ Therefore, correctness is the fundamental condition in
numerical computations.

◮ Aiming to provide methods for performing machine correct
numerical computations, Moore[4, 5] proposed interval
analysis which is, the development of an arithmetic, a
topology, relations, etc. for closed intervals.



Interval Algebras

◮ A closed interval or just Moore Interval is a continuum of
real numbers, defined by: [a, b] = {x ∈ R : a ≤ x ≤ b}.
Intervals whose endpoints are equals are called degenerate

intervals.

◮ The set of all closed intervals is the set
IR = {[a, b] : a, b ∈ R ∧ a ≤ b}

◮ An n-ary interval operation is a function F : IR
n → IR.

◮ An interval algebra is an structure 〈IR, {Fi}i∈I 〉, where Fi is
an n-ary interval operation



Interval Arithmetic — Moore Arithmetic

Given X = [x , x ] and Y = [y , y ], Moore Interval Arithmetic can
be defined as follows:

X + Y = [x + y , x + y ] (3)

X − Y = [x − y , x − y ] (4)

X × Y = [min W ,max W ] (5)

where W = {x × y , x × y , x × y , x × y}

1/Y = [1/y , 1/y ], for 0 6∈ Y . (6)



Correctness

◮ Moore arithmetic guarantees correctness, since all the
operations have the following property:

X ⊙ Y = {x ⊙ y : x ∈ X ∧ y ∈ Y } (7)

for ⊙ ∈ {+,−, /,×}.

Therefore, if we want to “calculate” some x ⊙ y , where x ∈ X
and y ∈ Y , then x ⊙ y ∈ X ⊙ Y



Correctness

◮ Interval correctness can be formalized in the following way:

An interval function F (X1, . . . ,Xn) is correct with respect
a real function f (x1, . . . , xn), whenever

x1 ∈ X1, . . . , xn ∈ Xn ⇒ f (x1, . . . , xn) ∈ F (X1, . . . ,Xn).
(8)



Correctness, order and precision

◮ The width of an interval [a, b], w([a, b]), is b − a.

◮ It is possible to order intervals as sets, using set inclusion
order; that is:

[a, b] ⊆ [c , d ], if c ≤ a ≤ b ≤ d (9)

◮ In this case w([a, b]) ≥ w([c , d ])

◮ A function F is inclusion-monotonic if F ([a, b]) ⊆ F ([c , d ]),
whenever [a, b] ⊆ [c , d ].

◮ In this case, inclusion-monotonic functions are correct.

◮ Fundamental theorem of interval arithmetic:

“if F is a inclusion monotonic extension of a real
function f , then f (X1, . . . ,Xn) ⊆ F (X1, . . . ,Xn).



Correctness, order and precision

“This theorem is an astounding result: with a single
evaluation of a function over an interval, access to
information about the function over a continuum is
obtained” (In Walster [11] section 1.2).

Yes, Walster is right! This is really a strong result since it states
that from a finite evaluation it is possible to access information of
an infinite function. However, as we show below, correctness is not
restricted only to inclusion monotonic.



Correctness, order and precision

◮ The opposite order: [a, b] ⊑ [c , d ] iff [c , d ] ⊆ [a, b] establishes
that [c , d ] is a better or an equally better representation

for all real numbers in it than [a, b], since
w([a, b]) ≥ w([c , d ]).

◮ In this sense, [c , d ] is more precise than or equally precise
[a, b].

◮ Any inclusion-monotonic function is also monotonic here;
therefore this order captures aspects of precision and
correctness.

◮ This order was introduced on interval by D. Scott [10], and in
1990 Acióly [1] discovered that it is possible to obtain a
continuous domain structure (domain theory), in such a
way that the set of total elements in the space is isomorphic
with real numbers.

◮ This discover gives another interpretation for interval; as
information about real numbers.



Interval Semantics

Therefore, an interval can be interpreted as:

◮ a set

◮ a number extension

◮ an information

The point now is: What are the relations between those different
aspects?



Algebraic Properties

Equality Consistency

x + (y + z) = (x + y) + z x + (y + z) ≍ (x + y) + z
x + [0, 0] = x x + [0, 0] ≍ x
x + y = y + x x + y ≍ y + x
x − x ⊇ [0, 0] x − x ≍ [0, 0]
x × (y × z) = (x × y) × z x × (y × z) ≍ (x × y) × z
x × [1, 1] = x x × [1, 1] ≍ x
x × y = y × x x × y ≍ y × x
x/x ⊇ [1, 1] x/x ≍ [1, 1]
x × (y + z) ⊆ (x × y) + (x × z) x × (y + z) ≍ (x × y) + (x × z)



Parte II

Recent Theoretical Results



Interval Representation Theory [7, 8, 9]

◮ What kind of interval functions are suitable to “represent”
real functions?

◮ What is the relation between classical topological aspects of
real numbers and the topologies derived from those
interpretations of intervals?



Topological aspects of Intervals



Moore Continuity for Intervals

◮ Moore in [5] proposed the following notion of distance for
intervals:

di(X ,Y ) = max(| x − y |, | x − y |) (10)

◮ This distance is proved to be a metric and therefore provide a
continuity notion for interval functions.

◮ The ǫ-open ball of center A is the set
B(A, ǫ) = {X ∈ I(R) : di(A,X ) < ǫ}.



Scott Continuity for Intervals

◮ The information order “⊑” induces a topology called Scott
topology;

◮ A function F : IR → IR is ord-continuous if for every
directed set ∆, F (

⊔

∆) =
⊔

F (∆);

◮ A function is ord-continuous iff it is continuous with respect
to Scott topology — Scott-continuous.

◮ A Scott-continuous function is also monotonic; and therefore
a correct function;

◮ From Scott topology, it is also possible to derive a
quasi-metric space [2]:

qi(X ,Y ) = max{y − x , x − y , 0} (11)

◮ The ǫ-open ball of center A is the set
B(A, ǫ) = {X ∈ I(R) : qi(A,X ) < ǫ}.

◮ F : I(R) → I(R) is Scott-continuous iff F is qi -continuous.



Moore-continuity vs Scott-continuity

◮ Moore-continuity does not imply Scott-continuity

◮ The following function is Moore but not Scott-continuous;
where m([a, b]) = a+b

2
is the midpoint of [a, b]:

F (X ) = m(X ) +
1

2
(X − m(X )) (12)



Moore-continuity vs Scott-continuity

◮ Scott-continuity does not imply Moore-continuity

◮ The following function is Scott but not Moore-continuous:

F (X ) =

{

[−1, 1] , if 0 ∈ X , or
[0, 0] , otherwise.

(13)



Distances for Intervals and it’s interpretations

◮ A metric is a function d : A × A → R, such that for all
a, b, c ∈ A,

◮ d(a, b) = 0 ⇔ a = b;
◮ d(a, c) ≤ d(a, b) + d(b, c); and
◮ d(a, b) = d(b, a).

The pair (A, d) is called metric space.

◮ A quasi-metric generalizes the notion of metric. It is a
function d : A × A → R, such that

◮ d(a, a) = 0;
◮ d(a, c) ≤ d(a, b) + d(b, c); and
◮ d(a, b) = d(b, a) = 0 ⇒ a = b.

◮ Observe the counter-positive for the last axiom, i.e.
a 6= b ⇒ [d(a, b) 6= d(b, a)∨ d(a, b) 6= 0∨ d(b, a) 6= 0]. So, it
is possible to have a 6= b, d(a, b) 6= 0, and d(b, a) = 0.

◮ The concept of distance in a set A can be formalized by the
notion of quasi-metric.



Distances for Intervals and it’s interpretations

◮ For every quasi-metric q, it is always possible to define
another quasi-metric called conjugated quasi-metric defined
by q(a, b) = q(b, a) and a metric q∗, such that

q∗(a, b) = max{q(a, b), q(a, b)}. (14)

◮ Since a quasi-metric q generalizes the notion of distance, it
induces the following open balls:

◮ B(a, ǫ) = {s ∈ A : q(a, s) < ǫ},
◮ B(a, ǫ) = {s ∈ A : q(a, s) < ǫ} and
◮ B∗(a, ǫ) = {s ∈ A : q∗(a, s) < ǫ}.

Those three kinds of balls define three topological spaces:
T (q) and T (q), and the metric T (q∗).



Distances for Intervals and it’s interpretations

◮ The quasi-metric for intervals which is associated with
Scott-continuity was introduced by Acióly and Bedregal in [2]:

dI ([a, b], [c , d ]) = max{a − c , d − b, 0} (15)

◮ It’s conjugated is:

dI ([a, b], [c , d ]) = max{c − a, b − d , 0} (16)

◮ Proposition: Moore metrics [6] coincides with d∗

I .

◮ Obs: Therefore, dI is a distance to measure intervals as
information, dE as sets and d∗

I as numbers. From now on
d∗

I will be replaced by dM .



Characterizing DI , DE and DM-continuities

◮ Definition: A function F : I(R) → I(R) is bi-continuous if it
is dI and dE -continuous.

◮ Definition: The sets DM , DI and DE are the sets of dM , dI

and dE -continuous functions.

◮ Proposition:

◮ DI − (DE ∪ DM) 6= ∅.
◮ DE − (DI ∪ DM) 6= ∅.
◮ DM − (DI ∪ DE ) 6= ∅.

◮ Proposition: F : I(R) → I(R) is bi-continuous iff F is
Moore and Scott continuous.

◮ Corolary: (DE ∩ DI ) − DM = (DM ∩ DI ) − DE = ∅.

◮ Proposition: If F : I(R) → I(R) is Moore and

dE-continuous then F is bi-continuous.

◮ Corolary: (DM ∩ DE ) − DI = ∅.

◮ Corolary: DM ∩ DE ∩ DI = DE ∩ DI = DE ∩ DM = DM ∩ DI .



Characterizing DI , DE and DM-continuities
◮ According to those corollaries, the following figure shows the

classification of interval continuous functions with respect to
various viewpoints of interval analysis; namely the extensional,
informational and metrical — i.e. DE , DI and DM ,
respectively:



Correctness and Optimality



◮ Correctness or Representation: An interval function F is

correct with respect to a real function f if it satisfies the
following property:

x ∈ [a, b] ⇒ f (x) ∈ F ([a, b]) (17)

◮ Let f : R → R and F : I(R) → I(R) be real and interval
functions, respectively. F represent f , if for each X ∈ I(R)
and x ∈ X , f (x) ∈ F (X ). The set of all real functions
represented by F is Rep(F ) = {f : F represents f }.



Some results about Correctness

◮ Some interval function F : I(R) → I(R) does not represent
any real function f . For example:

F ([a, b]) =

{

[5, 5] , if a = b, or
[0, 1] , otherwise

(18)

◮ Not every real function f admits interval representations. For
example:

f (x) =

{ 1
x , if x > 0, or
1 , otherwise

(19)



Correctness vs dI , dE and dM-continuities

◮ Not every interval representation is Moore-continuous.

◮ Every monotonic function F : I(R) → I(R) represents some
real function f

◮ Every Scott-continuous function F : I(R) → I(R) represents
some real function f .

◮ Not every interval representation is a monotone function and
hence a Scott-continuous function.

◮ Corollary: Correctness is weaker than monotonicity; i.e. The

Fundamental Theorem for Interval Arithmetics is very
strong to capture the notion of correctness.

◮ Corollary: So the set of interval monotonic functions is a
proper subset of interval correct functions.



Canonical representations

◮ x2 and x · x are the same functions;

◮ But the interval counterpart “X · X”, does not always return
the optimum interval approximation.

◮ For example, [−1, 2] · [−1, 2] = [−2, 4];

◮ X · X is correct, since the image of x2 under [−1, 2] is a
subset of [−1, 2] · [−1, 2].

◮ The function bellow is also a representation for x2:

SQR([a, b]) =







[a2, b2] , if a ≥ 0, or
[b2, a2] , if b < 0, or
[0, 0] , otherwise.

(20)

◮ However this is the best one, since for every representation F ,
F ([a, b]) ⊑ SQR([a, b]).

◮ We called it the canonical interval representation.



Canonical representations and Euclidean Topology

◮ Let f : R → R be a real function. If f is a total
non-asymptotic real function, then the interval function:

CIR(f )([a, b]) = [min f ([a, b]),max f ([a, b])]

is well defined and it is an interval representation called
canonical interval representation for f .

◮ Lemma: If f : R → R is continuous then for every
[a, b] ∈ I(R), CIR(f )([a, b]) = f ([a, b]).

◮ Proposition: For every interval representation F of a real
function f , F ⊑ CIR(f ).

◮ First Representation Theorem: For every real function f , f
is continuous if and only if CIR(f ) is Scott-continuous.

◮ Second Representation Theorem: For every real function
f , f is continuous iff CIR(f ) is Moore-continuous.

◮ Corollary: Representation for bi-continuity: f is
continuous if and only if CIR(f ) is bi-continuous..



Canonical representations and Euclidean Topology

◮ CIR is an operator which maps the set of real Euclidean
continuous functions into the set of Scott-continuous
functions and Moore-continuous functions.

◮ Corollary: If CIR(f ) is Scott-continuous or Moore-continuous
then CIR(f )([a, b]) = f ([a, b]).

◮ Proposition: There are discontinuous functions f : R → R,
such that CIR(f ) is monotonic.

◮ Proposition: CIR(⌊ ⌋) is neither Moore-continuous nor
Scott-continuous.

◮ Corollary: f is continuous iff CIR(f ) is dI , dE , and
dM -continuous.

◮ Proposition: Not every interval function Moore and Scott
continuous is a canonical representation of some continuous
function.

◮ Corollary: Not every interval bi-continuous function is the
canonical interval representation of a real continuous function.



Canonical representations and Euclidean Topology
◮ Corollary: (DE ∩ DI ∩ DM) − {CIR(f ) : f is continuous} 6= ∅



The basic idea of an interval system



Parallel resistors
◮ The equation to calculate the resistance of resistors connected

in parallel is:

Rp =
1

1
R1

+ 1
R2

(21)

◮ Now suppose that a resistor R1 = 6.80 ohms with 10% of
tolerance (i.e. the resistance varies in the interval 6.80 ± 0.68,
i.e. [6.12, 7.48]) is connected in parallel with another R2 = 4.7
ohms with 5% of tolerance (i.e. the resistance varies in the
interval 4.7 ± 0.23 i.e. [4.47, 4.93]).

◮ The values of the resulting resistance varies in the interval
[2.58, 2.97] with midpoint and tolerance equal to 2.77 ± 0.20.

◮ This is an interval application, since the result is also a
variation, an uncertainty. Moreover, the interval function
must be correct.

◮ The equation 21 is in fact an interval equation instead of a
real equation, since tolerances are important data for the
system.



Interval Fuzzy Logic

◮ Interval Valued Fuzzy Sets were introduced by Turksen in
1986;

◮ An interval Valued Fuzzy Set is a function:

A = {(x , ϕA(x)) : x ∈ U ∧ ϕA(x) ∈ I [0, 1]} (22)

where U is an universe and
I [0, 1] = {[a, b] ∈ I(R) : 0 ≤ a ≤ b ≤ 1}.



Interval Fuzzy Sets
◮ The following figure is a fuzzy interval set “Hot Temperature”.

The membership interval degrees for 40oC, 50oC and 60oC,
are respectively [0.16, 0.23], [0.28, 0.39] and [0.47, 0.71].



Interval Fuzzy Sets
◮ Notice that the usual fuzzy membership functions (linear,

curve-S, bell curves, triangular, etc.) are continuous.
Therefore, it’s canonical interval representations, its fuzzy
interval counterparts are continuous.

◮ Example of interval set:



Interval Fuzzy Sets
◮ Example of interval set:



Further Applications

◮ Signal Processing;

◮ Image Processing (Signal and Morphological approach);

◮ Computation with real numbers.



Programming Languages

◮ XSC-Languages
◮ Pascal-XSC
◮ C-XSC
◮ Fortran-XSC
◮ Java-XSC
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Comparing continuity of interval functions based on Moore
and Scott topologies.
Electronical Journal on Mathematics of Computation,
2(1):1–14, 2005.

[9] R.H.N. Santiago, B.R.C. Bedregal, and B.M. Acióly.
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