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Finally, the substitution ¢’ is defined by

o'(s,a,8") = gT% 5 (L) = 9T o Tu(La).

Since L, € £ and g7, T, is a rational transduction, the substitution ¢ is

o.m nrm. required form. Moreover, (**) holds true. The core element on both

sides is a éoH.m 018z ...an € R. Considering the left side, T goes from sg to

§1 when reading a word in L . The same output is produced on the right

side from (s¢,a1,81) by g7, o, - ¢
We still state the established equation (%) in the following form.

Theorem M.Ho. The full m.ﬁu L-closure of any language family £ is obtained
by m.ﬁ& closing £ under retional transductions, and then closing the resultin
family under regular operations. _u.a

The reader is referred to [47] for further detai ibli i
. etails and bibliographical re-
Emwwm concerning mﬁﬂh-gmoaﬁ Principal AFL's constitute s widely studied
.ﬁow:w we have not discussed here. By definition, a full AFL £ is full principal
if it is generated by a single langnage L:

£ =Clyaps(L).

Principal AFL's and cones are defined sinilarly. No nondenumerable family

can be principal. Recursive langua i ivi
: ges constitute a nontrivial exam
AFL that is not principal. ple of an

4. Wijngaarden (two-level) grammars

4.1 Definitions, examples. The generative power

Wijngaarden grammars or two-level grammars were introduced in [136] in
order to define the syntax and the semantics of the programming language
ALGOL 868, see [138]. They are a very natural extension of context-free mmw@um-
mars. In a Wijngaarden, or shortly W-grammar, the idea to extend a context-
free grammar is very different from the idea to extend a context-free gram-
mar to a context-sensitive grammar. A W-grammar has uouwmaamb&mmﬂ with
an inner structure, ie., the name of the nonterminal may depend on so

<mﬁmg.mmu called hypervariables. Consequently, the rules that contain such My ;
vﬁ.é.d.wzmm are referred to as hyperrules. The hyperrules are not used dire ﬂw.
for Qomﬁfosm. In order to obtain the rules for derivations, one has to mcmu ﬁ.%
tute consistently (uniformly) all occurrences of E@mwd&nmgmm in hyper mHT
by values from some fixed sets associated to hypervariables. These mwwm. nu%cm

o e

e e e
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be context-free languages, too. The resulting set of derivation rules could
be infinite. A similar phenomenon occurs in mathematical logic, when the
propositional logic is extended to the predicate logic by assigning to propo-
sitional variables an innmer structure that depends on some variables. Note
that the variables that occur in predicates and in formulas are consistently
substituted by values from a set (the domain of the model).

A further classical method to define a model is to consider all ground terms
as the domain, the well-known Herbrand model. The domain of a Herbrand
model has a structure very similar to a context-free language.

The theory of W-grammars was developed slowly. At the first glance, the
formalism looks complicated enough. We present here a short and straight
way 1o introduce the notion of a W-grammar. A context-free scheme is a
context-free grammar without the start symbol, i.e., the start symbol is not

defined.

Definition 4.1. A W-grammar is a triple, G = (G1,G2,7), where Gy =
(M,V,Rp) and G = (H, X, Rg) are context-free schemes such that the
elements of H are of the form < h >, where h € (M U V)",

(MUVuE)n{<,>}=00ondz€H, z=<v>vel" ]

Terminology. G: is the metalevel of G and the elements of the sets M, V,
R, are the metavariables, the metaterminals and respectively the metarules.
G, is the hyperlevel of G and the elements of the sets H, ¥, Ry are the hy-
pervariables, the {erminals and respectively the hyperrules. The start symbol
of G is z.

In order to define the language generated by a W-grammar, some pre-
liminaries are necessary. Denote by Lx the context-free language gener-
ated by the context-free grammar Gx = (M, V, X, Ry}, where X € M,
ie., Gx is the context-free grammar that is obtained from the context-
free scheme G; by defining the start symbol X € M. Consider the sets:
A= MUVUEU{<,>,—}and B=A-M. Any function ¢ : A — B* with
the property that, for every X € M, t(X) € Lx, and for every v € A-M,
#(v) = v, can be extended to a unique morphism t' 1 A* —» B*. All these
morphisms ¢ define the set of admissible substitutions, denoted by T

Definition 4.2. The set of strict rules is Rg = {t(r) |t € T,r € Ru}, and
the set of strict hypervariebles is Hs = {t{z) [t € T,z € H}.
Ifr is a hyperrule, r € Ry, then the set of strict rules corresponding to r
18
Rs(r) = {t(r} |t € T}. o
Note that the strict rules are context-free rules, where the nonterminals
are strict hypervariables. However Hs can be infinite and, consequently, the
set of strict rules, Rg, can be infinite, too, Perhaps this is the most important
difference between context-free grammars and W-grammars.
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Definition 4.3. The derivation relation is defined as for contert-free gram-
mars, but using the strict rules instead of the classical rules of a contezi-free
grammar, te., for any z,y from (Hs U XY, £ =" y iff there exist n > 0
and u; in (Hg U X)*, i =0,...,n, such that ug = z,u, = y and for each 1,
i=0,...,n~1, there are o, B and ¢ strict rule v ~— § in Rg, with u; = a3
end u;r; = abf.

The leftmost (rightmost) derivation is defined as in the case of context-
free grammars. ]

Definition 4.4. The longuage generated by a W-grammar G, is
LG)={ziz e X z ="z} O

In sequel we consider some examples. Assume that, for all of the next

three examples, the metalevel of the W-grammar is in each case the same,
le, M = {I,LJ,K}, V = {q,5,#,t,t,t"} aud for any X € M, Ly = q*.

Moreover, assume that z =< s >, & = {a, b, c} and therefore, for each of the
following W-grammars, one has to define only the set Ry of hyperrules.

Ezample {.1. As a first example, assume that Ry is:

hl. < s >—< #g>

B2. < IT#J >—s< tI >|< JH#IT >
h3. <tgl >— a <il >

hd. <i>— X

It s easy to observe that the strict rules are: hl, hd,
W25 < @#g > < tg >i< g >,
and
h3g. <"t > g < tg* >,
where 4,7,k > 0.

Note that a strict hypervariable < g™ > is producing o™ and nothing else,
with n > 0. A derivation starts with z and if the next rules are h] and

the second case of h2;; for a number of applications, then one obtains a
derivation such as the following:

2 =< O#q' >=< gl#q' >==< ¢ >==c PP#g >=

=< P#° > < P =< B ey

At any step in the above derivation, one can apply the first case of a strict
rule h2; ; that replaces a strict Eﬁmgmﬁm_&m < ¢'#¢° > with a strict hyper-
variable < #¢* > that derives finally of. Therefore, the langnage generated
is:

Ly = {a’ } f in the Fibonacci sequence}, a

B e e
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Ezample 4.2. Proceed as in the above example, except that now Ry is:

—< >
ww. p w*wu vlmwgm S< T >|< It JoIl >
h3. <tgl >—a<tl >
hd. <t >— A
h5. < tgf >— b<t'J >
h8. <t/ >— A

Note that a derivation is of the form:
3.9
z =< mu%nu =< QM#% >=< g H#Hg =

=< *#q'® >=< P#gP >= ...

Using the first part of h2 and h3-h6 a strict hypervariable < g"#¢™ >
derives the terminal word a™b™. Hence, it is easy to note that

hun?z@ﬂ_:Vomu&SHﬁmw. O

Ezample 4.3. Let Ry be:

hl. < s>—<tlg><t'Jg><Ig#Jg>
Wa. < J#IJ >—=< I#J >
Y. < JJ#I >——< [F#J >
h2". < I#I >——< T >
h3. <tgf >—a<tl>
h3. <tgl >—b<t'l>
w3, < t'gl >— c<t'T >
hd., <t>— A
hd!. <t >— A
hd”. <t >—s A
The reader should observe that hl starts a derivation and h2, H_w, , &m:m
describe the algorithm of Euclid to coS@ﬁw the greatest common ESMOM M
two (nonzero) natural numbers. The remaining rules are used to mmwm.mm e the
terminal word. Hence, it is easy to see that the language generated 1s

Ly = {a™™c* | n,m > 0 and k = ged(n, m}}. g
The generative power of W-grammars was established by Sintzoff, [125]:

Theorem 4.1. A language L is recursively enumerable iff there exists a xm
grammar G, such that L = L{G).

Aad Van Wijngaarden improved the above result in [137):

Theorem 4.2. A language L is recursively enumerable iff there mﬁ.m& a W-
grammar G such that L = L(G) and G has at most one metavariable. O
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4.2 Membership problem and parsing

Restrictions on W-grammars such that the language generated is a recursive
language were studied by P. Deussen and K. Mehlhorn, see [36] and [37]:

Definition 4.5. 4 hyperrule < ug >— 2 < Uy > ar... < Uy > By 18

— left bounded (1) iff for any X ¢n M, if X has at least one occurrence in
ug, then X has at least one occurrence in < UL D> o < Uy >

- right bounded (vb) iff for any X in M, if X has at least one occurrence in
<y > ... <un >, then X has at least one occurrence in < ug >.

- strict left bounded (slb) iff for any X in M, the number of occurrences
of X in ug is less than or egual to the number of occurrences of X in
<uy > ... <un > and, moreover, the length of uy with respect to V is less
than or equal to the length of u1 ... un with respect to V.

- strict right bounded (srb) iff for any X in M, the number of occurrences
of X in ug is greater than or equal to the number of occurrences of X in
<up > ... < un > and, moreover, the length of uy with respect to V is
greaier than or equal to the length of uy ... u, with respect to V. O

Definition 4.6. A W-grammar G is of type L (R), iff all the hyperrules are
A-free and b (rb) and all the hyperrules of the form < u >——< v > are

slb (srb). The class of languages generated by W-grammars of type L (R) is
denoted by Ly, (Lg). O

Theorem 4.3.
Ly =Lr=EXSPACE,

the class of languages acceptable by off-line Turing machines in exponential
space. O

L. Wegner used the above restrictions to develop a parsing algorithm
for a subclass of W-grammars, see [135). The algorithm of Wegner can be
used for a very large class of languages. In the sequel we present this parsing
algorithm. We start by considering some definitions and terminology. Let G =
(G1, G2, z) be a W-grammar, where G; = (M,V,Rp) and G, = (H, I, Ry).
A sequence Ey, = ry,,7y,,...,7;, of hyperrules is called a left parse of w €
(Hs U Z)* if there exists at least one leftmost derivation D of w in & such
that D = «vp, @3,...,0n, =wand for 1 < 5 <n-1,0;1 = a; byuseofa
strict rule from Rs(r;;). Note that for context-free grammars there is a one
to one correspondence between leftmost derivations and left parses. However,
for W-grammars this is not the case. Moreover, 2 stronger result does hold:

Theorem 4.4. It is undecidable whether or not an arbitrary W-grammar G

has the property that for each leftmost derivation there is atf most one left
parse,
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Proof. Let Gy = (V§, V3,8, Fi), i = 1,2 be two mHEnHw_Q oo%dmﬁ-m_.mm gram-
mars and define the W-grammar G such that M = Vi UV, V=Vr U Vr,
=P uUb,

Mﬁn ?‘HA ,m.HMV,A 5y >}, X ={a}, Rg = ? —< 8 >, < 5 >—a,
< Sy >— a}, where the start symbol of G is z.

Note that there is a leftmost derivation é:&. more S.umw one left parse
iff L(Gy) N L(G2) # B. But the emptiness of the intersection of non#mﬁ-mnmm
ianguages is undecidable and hence the theorem holds.

ition 4.7. Let G = (G1,Gs,z) be a W-grammar, where .
Nwmngmmmnpﬁmiv and Ga = (H,X,Ry). Let h be in H. The g.ﬁmqﬁo?oz
system associated to h is the {-tuple HS, = (M,V, ?mﬁi, and h is referred
to as the aziom of HS,. The language defined by HS) is

L(HS,) = {t(h) [t € T}. O

The hypernotion systems are extended in the natural way for axioms
he(HuX)".

Definition 4.8. Let HS, = (M,V,h, Ry) be a hypernotion @mumﬁh where
ho= X1 Xo. .. Xn, X; € (MUV),1 <4 < n. HSy 15 uniquely assignable (u.a.)
if for all w € L(HS),) there is ezactly one decomposition w = wiws .. ..Em
such that t{X;) =w, 1 £ 1< n,ted.

Definition 4.9. A W-grammar G is lefi-hand side uniquely n&ﬁ:gzm {lhs
w.a.) if for every hyperrule (ho — hihz ... h,) € Ry the hypernotion system
M, V., hg, Rpr) is uniquely assignable. . .

A A S\wmﬁpﬂwqaaﬂ G 45 right-hand side uniquely Qmmw.qaa.im {Ths u.a.) if for
every hyperrule (hg — hihg ... hn) € Ry the hypernotion system (M, VU
X Rihs. .. k., Ry is uniquely assignable. O

Definition 4.10. 4 W-grammar G is locally unambiguous if

(i} for every leftmost derivation D of o in Q there is exactly one left parse
E of a in G and given D one can m‘mﬂmn.ae&w_ fnd E, and o
(i3) for every left parse E of o in G there s exactly one leftmost derivation

D of a in G and given E one can effectively find D. ]

Theorem 4.5. For every W-grammar G one can effectively find a locally
unambiguous W-grammar G' such that L(G) = L(G"). ]

The next step is to define a canonical context-free grammar which simnu-
lates the derivations in a W-grammar under special assumptions.

Definition 4.11. Let G = (G1, G, 2) be ¢ W-grammar, where
G, ={M,V,Run) and Go = (H, X, Ryr) and let r be o hyperrule,

rihg — hihy.. . hm, where iy e HUX 1 <i<m.
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A cross-reference of v is an m-tuple (®1,Z2,. .. ,%m) such that

(i) ﬁ. h; € X, then z; = hi; otherwise z; = hf, for some hyperrule hy — a
_in Ry orxzi= M if A e (M, V, hi, Bprd, and
(%) L(M, V, haho . <M Bag) N LM, V, 2175 ..z, Rag) # O where ! is ob-
tained from z; by renaming metanotions in z; such that they are distinct
from those inz; fori#3j, 1<, <m. O

Definition 4.12. Let G = (G1,G?2,2) be a W-grammar, where

Gy H.Q&n A\.N.,\L and (3 = (H, X, Rg). The skeleton (canonical) grammar
associgied to G is the context-free grammar G, = (Vwv, 2,2, P) defined as
follows: T

Vi = {ho | (ho — o) € Ry},
P= C Rox(r), where

TERY

.mm..n?.v = ﬁbc — T1T2 ... Tm m T = Q@c - w._.g..www...}:.ﬂv € MN.E.“ _?s S A.m.Chv
forl1<i<m and (z1,22,...,%m) a cross-reference of r}. O

Ummnmn.moh 4.13. A skeleton grammar G, associated fo q W-gremmar G is
proper if for all v,r" € Ry withr £ v/, Rop{r) N Ry (r') = 0. O

Hrmowma .ﬁ.m. A skeleton grammoar G, wssociated fo a W-grammar @
s..w wﬂoﬁmﬁ of all hyperrules v = (hy — hyhy coohm) and v o= (B —
Rihy ... hy) have pairwise distinct cross-references. ° O

Definition 4.14. Let G.x be the skeleton grammar associated fo a W-

Wﬁnﬁ,ﬁmﬂ ﬁm‘ Let % = i Tipy 4 Ti, be o left parse of w € L(G) and let

= TiaTiyy oo+, Ti, be a left parse of w € L(Gyy). E' is referred as corre-

spondingto B if for all 1< j <n,r. € R e(ri) O
% § i)

Theorem 4.7. For every W-grammar G and for every left parse E of w e

hhm% tn G, there exists exactly one corresponding left perse B of w € L(G k)
in G, ’
0

O T U:N.H.T Q.H. H‘ Q .e...m, aq -gQramm. .‘ 3 3 0 s.nﬁ “..u
oro “v T (454 Q.ﬁ..& 2 Q LT
ﬁ u ﬁ v sk % 5 ASSoC & M\ﬂﬂmﬁ n

GoHdﬂm:.u\ 4.2. If G is a W-grammar such that the skeleton grammar G
of G is proper, then for each two left parses By, By of w € L(G) )

mu.“um.m s&a..m._. = Ef,

21

where B! denotes the corresponding left parse of E;, 1 =1,2. ]

- Aspects of Classical Language Theory 217

Definition 4.15. 4 W-grammar G is ambiguous if for some w € L(G) there
is more than one leftmost derivation of w in G. Otherwise 7 is unambiguous.
O

Theorem 4.8. If G is a locally unambiguous W-grammar and if the skele-
ton grammar associated to G, G, 15 proper and unembiguous, then G is
unambiguous. [

The above results lead to the following parsing algorithm for a restricted
class of W-grammars, see [135]:

Algorithm:

Input: A W-grammar G locally unambiguous, the proper and unrambigu-
ous skeleton grammar G, associated to G, a word w € ™.

Output: “ves” if w € L(G), “no” otherwise.

Method:

Step 1. Apply any of the known parsing algorithms for context-free gram-
mars, see for instance [2, 3], to G5 and w to obtain the left parse E'. If
w & L{G.) then the output is “no”.

Step 2. Compute the left parse £ in G starting from the start symbol z (if
G is left-hand side u.a. and rightbound) or from w (if G is right-hand side u.a.
and leftbound). Apply hyperrule r to those strict notions which correspond to
the terminals and nonterminals used in the derivation step in which skeleton
rule v’ € Rg(r) was applied. Because G is locally unambiguous, giving the
handle and hyperrule is sufficient to reduce a; to o1 or, respectively, to
extend a; to a;y:. The output is “no” and stop if r cannot be applied or,
otherwise, if the derivation in ( is complete, then the output is “yes” and
stop. )

Observe that the above aigorithm requires as input the unambiguous
skeleton-grammar G, This condition cannot be removed, since Ggp is
a context-free grammar and for context-free grammars it is undecidable
whether the grammar is unambiguous or not.

There are other interesting results in the area of W-grammars. Some
of these results concern normal forms for W-grammars, see for example S.
Greibach, [55], J. van Leeuwen, [87], P. Turakainen, [131]. The parsing prob-
lem is studied also in J. L. Baker, [11], P. Dembinsky and J. Maluszynski, (33],
A. J. Fisher, [42], C. H. A. Koster, {80]. The generative power of W-grammars
is studied in J. de Graaf and A. Ollongren, [54]. Many other formalisms can be
expressed in terms of W-grammars, such as the first order logic, P. Deussen,
136], W. Hesse, [59], the recursively enumerable functions, I. Kupka, [82]. For
a bibliography of van Wijngaarden grammars the reader is referred to [38].
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4.3 W-grammars and complexity

W-grammars provide a framewyork to evaluate the complexity of recursively

enumerable languages, see [92, 91, 95]. Our presentation below requires some

basic knowledge about recursive functions on the part of the reader.
Assume that S is a fixed alphabet and let w be the set of natural numbers.

Definition 4.16. A criterion over S is a recursive sequence, C = (Colnew,
such that for any n € w, C,, C 8* is a recursive language. O

Let D = (Dn)new be a given class of generative devices such that, for any
language L over §, L is a recursively enumerable language iff there is a d in
D such that L(d) = L, where L{d) is the language generated by d.

Definition 4.17. A generative Blum space ( GBS) is an ordered system B =
(§,D,A,C) where §, D, C are as above and A = (Aidicw 15 the set of cost

functions, i.e., a set of partial recursive functions that satisfy the following
lwo exioms:

GBI Ai{n) < oo iff L{d:) N C,, # 1.
GB2. the predicate R(i,z,y) =1 iff Ai(z) =y and
R(i,x,y) = O otherwise, is a total recursive predicate, O

Let W be the Gédel enumeration, W = (w;)sc,,, of all recursively enu-
merable languages over S using W-grammars as generative devices. For a W-
grammar, &, let K, be the n-th Kleene's iteration of the W system associated
to G (the extension for W-grammars of the algebraic system of equations
associated to a context-free grammar, see [81]). Define the cost functions,
TW = (TW;)icw, such that they measure the “time” necessary for the device
w, with respect to the criterion C, to generate the language L(w;). If there
is an 7 € w, such that K N C, # @ then TW;(n) = min {r | KinC, £ 2},
else TWi(n) = oo.

Note that the ordered system Br = (S, W,TW,C) is a GBS.

Definition 4.18. Let B = (S,D,4,C) be a GBS and let I be a recursive
function. The generative complexily class bounded by f is

Cs(f{n)) = {L| thereis an i € w such that
L{d;) = L and A;(z) < f(z) almost everywhere }. o

If the GBS is Br then the generative complexity class bounded by f is
denoted by TIMEW{f(n)).

Theorem 4.9. (the linear speed-up theorem) For every GBS,
Br = {§,W,TW,C), for every recursive function [ and for every constant
g>0

TIMEW(f(n)) = TIMEW {(gf(n)). ]
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Definition 4.19. 4 W-grammar G is related to the graph of e function f :
w—wif {§,#}CV, Lx =1 forevery X € M, Ry C H x H* and, for
allm,m € w

z =< P4 > iff f(n) =m. O
Definition 4.20. A function f : w = w is TW-self bounded 3f f 45 a
constant function or there is ¢ W-grammar G related to the graph of f and
there are constants ng,c1,Ce € w such that for every n > ng, f(n) > 1 and,
moreover, if the hyperrule < i*#if{") >—— @ is added to the hyperrules of
G, then for all p € w, Ky = {a}, where p =1 f(n) + ca. .

Let TWSB be the class of all TW-self bounded functions. Intuitiveily, a
function f in TWSB has the property that the graph of f can be generated
by a W-grammar that is W-time bounded by f.

Theorem 4.10. (the T'W-separation property} Let [ be in TWSB such
that f(n) > log,n almost everywhere and let g be a function .m,:na that
infamoo(g{n)/f(n)) = 0. There exists a language L such that, with respect
to the criterion C = (a0 new, L is tn TIMEW(f(n)) but L 45 not in
TIMEW (g(n)).

Proof. Consider the language
L={ag"b"|m= 2™ n e w).

We prove that L € TIMEW(f(n)). Since f € TWSB, there exists a W-
grammar G = (G1,Ge,z), where Gh = (M,V,Ry) and G; = (H, X, Rg),
such that G is related to the graph of f and let ng, 1, ¢2 € w be the constants
for which the Definition 4.20 is satisfied for f.
Define the W-grammar G7, such that M’ = MU{N, N1}, V' = Vu{e, 3},
2 =X U{e,b}, Ry =RyU{A— B|Ae {N,M} Be M}, 2 =zand
b = Rp U {hy,...,hs} where:
1. < N#N; >—< alN >< 8N >
hy. < aNN >—< aN >< aN >
3. <alNNi>—a<alN ><alN >
flg. < 0 >=——r A
hs. < BNi>—< BN >< N >
hg. < 3>—b
Observe that L(G') = L and note that a terminal derivation in G’ is
equivalent with a derivation of the following form:

R Fin)
Z=h < T s—= < ait >< B s=y |, a8

One can easily see that K, (< ai™ >) = {a"} and K], (< /™ >) =
.?m:iT where p; = log, n+1 and pa = f(n)+ 1. Let p3 be maz{p,p2} + 1.
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Since f(n) > logyn, it follows that ps = f(n) + 2. Now observe that for

all n > ng, K, = {a"b”"}, where p = (c; + 1)f{(n) + c2 + 2 and hence
L e TIMEW(F(n)). )

Now we show that L g TIMEW(g(n)). Assume by contrary that there

exists a W-grammar G” such that L{G") = L and TWgn(n) < g(n) almost
everywhere. Define the constants:

.Q.HHSQ_HA_Q.O...Q.».__AA?onQoAB.HVQ.H...A.RwVQer m....mw

jr=masllall(<u>——a)€ R, ac I}

Ja=maz{q| (< up >— 0o <uz >o01... <uy>0,) € RE).

Note that for every n > 1, for every strict hypernotion < A > and for
every v € K)/(< h >)

n—2
|vi< 35 e+ > dh.
=0

Let 5 be maz{j1, j2, f3}. It follows that

n—2 n
i<+ Y 5= i <t <2t = (25)™
i=0 i=1
Denote s = 2j and note that for every v € K", | w |£ s™. Therefore,
for each v € K[, it follows that | v [< s9(™). Since TWgn(n) < g(n)

almost everywhere we deduce that Mﬁ a1 Cn @ almost everywhere. Hence

)
a™b®™" € K, almost everywhere. Thus
r(n)
27 < ™" < 59 almost everywhere.

Hence log, 2 < g(n)/f(n) almost everywhere. But this is contrary to the

assumption that infn.oo(g(n)/f(n)) = 0 and, consequently
L g TIMEW (g(n)). =

Theorem 4.11. (o dense hierarchy) If C = (a™0" Yncw, then for all real
numbers 0 < o < B8, TIMEW (n®) is a proper subset of TIMEW(»®). D
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5. Attribute grammars

5.1 Definitions and terminology

Attribute grammars were introduced by D. Knuth, see [78, 79]. Informally,
attribute grammars consist of:

1) a context-free grammar G = (Viv, V1, 5, P) such that & does not occur on
the right side of any production.

2} two disjoint sets of symbols associated with each symbol of G, called inker-
ited and synthesized attributes, where 5 must have at least one synthesized
attribute and no inherited attributes.

3) a semaentic domain D, for each attribute a.

4) a set of semantic rules associated with each production. Each semantic
rule is a function

Ppio * Pay X ... X Dy, — Dy

which defines the value of an attribute o of an instance i of a symbol
appearing in a production p in terms of the values of attributes ay,..., o
associated with other instances of symbols in the same production.

Attribute grammars are also referred to as K-systems. In the sequel, sym-
bols with indices denote (rename) the symbols without indices. For instance,
X1, X7 rename the symbol X.

We consider the first example in [78]. The same example is considered
also in [17, 26, 27].

Ezample 5.1. TLet G = (Vn,Vr, S5, P) be the context-free grammar with:
Vv = {B,L,N}, Vp = {0,1,-}, § = N. The productions from P are listed
in sequence together with the semantic rules associated:

Productions ; Semantic rules

1.B—0; v(B)=0

2.B—1; v(B) =28

3.L-— B; v(L)=v(B), s(B)=s(L),I(L)=1

4. Ly — LaB 5 v(ly) =v(L2) + v(B), s(B) = s{l1},

mmhwv = .m.mhu.v + “_; hﬂ.ﬁuu = hm.ﬁwv +1
5N — L; v(N)=w»(L),s(L}y=0
6§ N — L1 - Loy v{N)=u(L1)+v(La), s(L1) =0, s(Ly) = —I(Lz) DO

It is easy to observe that the language generated by G is the set of all
rational numbers in binary notation.

The main purpose of the semantic rules is to define the meaning of each
string from L{G).

The synthesized attributes are v(B}, v(L), I{L) and v{N}, based on the
attributes of the descendants of the nonterminal symbol. Inherited attributes
are s{B) and s{L), and they are based on the attributes of the ancestors.
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Synthesized atiributes are evaluated bottom up in the tree structure,
while the inherited attributes are evaluated top down in the tree structure.

For instance, consider the string 1101.01 from L(G).

The evaluated structure corresponding to this string is:

N{v = 13.25)

L{v=13,1=4,5=0) . __Eeu.nu.huu;uluv
N
W? =12,i=3,3=1)8(v=1,5 =40} __w?no._ = Hluulcmﬁ_en.uu;u -
AN
H?HE..un.buSh?noLn: 1 %ﬁeuo,uulz 1
AN
L_n?umLHH;nEmenPuHB ] 0

Note that v{/N') = 13.25 and that the binary representation of 13.25 is the
string 1101.01.

Here the semantic domains are: Z {the set of integer numbers) for s{B),
s(L), I(L) and @ (the set of rational numbers) for v(B), v(L) and v(N).

5.2 Algorithms for testing the circularity

The semantic rules are well defined or noncircular iff they are formulated in
such a way that all attributes can always be computed at all nodes, in any
possible derivation tree. '

Note that the definition of semantic rules can lead to circular definitions of
attributes and consequently such attributes cannot be evaluated. Moreover,
since in general there are infinitely many derivation trees, it is immportant to
have an algorithm for deciding whether or not a given grammar has weil-
defined semantic rules. An algorithm for testing this property was given in
(78, 79).

Let G be an attribute grammar. Witkout loss of generality, we may assume
that the grammar contains no useless productions, i.e., that each production
of G appears in the derivation of at least one terminal string. Let 7 be any
derivation tree obtainable in the grammar, allowed to have any symbol of V'
as the label of the root. Define the directed graph D(77) corresponding to 7
by taking the ordered pairs (X, o) as vertices, where X is a node of 7 and
@ is an atiribute of the symbol which is the label of the node X. The arcs
of D(T} go from (X3, 01) to (X2, az) if and only if the semantic rule for the
value of the attribute ; depends directly on the value of the attribute .
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For instance, assume (& is the attribute grammar from Example 5.1 and
consider the derivation tree 7

N
Y 7Y
n>k_m 1 N_w 1
_>ﬂ b ’
_“w H
1
The directed graph D(7T} is:
" u{N)
=w(L) *UL) = s(L) *u(l) <+ ¥L) *s(L}
- (L) * L) mose/ il u(L) HL) (L) 4w(B) [ s(B)
=u(L) UL} *s(L)Trw(B) *s(B) *u(B) " s(B)
“w(L) L) *s(L} ..e_ﬁmv * s{B)

~v(B) *s(B)

The semantic rules are well defined iff no directed graph D(7T) contains
an oriented cycle.

Assume that for some (77} there is an oriented cycle. Since & contains
no useless productions, there is an oriented cycle in some D(7) for which the
root of 7 has the label S. 7 is a derivation tree of the language for which it
is not possible to evaluate all the attributes.

Let p be the production
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Nﬁclu@p.. X

KXo, -
Corresponding to p, consider the directed graph D, defined as follows:

the vertices are (X, , ) where ¢ is an attribute associated to X,
arcs emanate from (X, , o) to (X,
J

attribute, if j = 0, and « is an inherited attribute of X, if5>0
LR -

For example, the six productions of & from Example 5.1 have the following

six directed graphs:

Dy :*v{B) *s(B) Dy : 2u(B) =s(B)

L iy

Dy :=wlL}) «UL) <s{L) Dy =w(Ly) *YL1) 1s(L1)

S u(B) - =(B) Z

*v(Lz) "HL3) =s{Lg) *u(B) *s(B)

Dg o *uw(N) Dg : * w{N)

tu{L} c UL} e s(L) *u(l1) " UL} *s(L1) *w(La) = I(L2) *s(Ly)

Note that each directed graph D7) is obtained it
uch dhrects oot diree (T) ained as the superposition of

Let Ax be ﬁ.rm set 9.@ attributes of X. Consider a production p and assume
Mﬁn G;, 1 € j < nyp, is any directed graph whose vertices are a subset of
X, :
Denote by D[Gh, ..., G, the directed graph obtained from D, by adding
Nb arc from (X, ¢) to (X,,,a’') whenever there is an arc from o to o in
i
For instance, assume that

: ps» and
;o0) for 0 < § < ny and a is a synthesized

e Aspects of Classical Language Theory 225
] I 8 v 5
Gl . . Gn: e .
U A

and if D, is the directed graph defined above, then Dy[G;, G} is

s u{Ly) *i(Ly) * s(Ly)

TN

wo(Lz) " (L2} *s(L2) s(B) °s(B)

Theorem 5.1. There exists an algorithm to decide whether or not the se-
mantic rules of an attribute grammar are well defined.

Proof. Let X bein V = Vy U Vr and let §(X) be a set of directed graphs
on the vertices Ax. Initially S(X) = 8 if X € Vy, and S(X) is the single
directed graph with vertices Ax and no arcs if X € Vir.

New directed graphs are added to the sets S(X) until no further directed
graphs can be added.

Let m be card{P) and let the k-th production be:

Xeg — X1 Xz -« Xiene -
For each integer p, 1 < p < m, and for each 7, 1 £ j < np, choose
a directed graph D} in S{Xp;). Add to the set S{Xpq) the directed graph
whose vertices are Ax,, and whose arcs go from a to ¢ if and only if there

is an oriented path from (X0, ) to (Xp0,@') in the directed graph

@L‘UT:J\UNL.

Note that only finitely many directed graphs are possible and hence this
procedure cannot continue forever.

If T is a derivation tree with root X, let D'(7) be the directed graph
with vertices Ay whose arcs go from « to o iff there is an oriented path
from (X, a} to (X,a) in D{T).

We claim that for all X € V, S(X} is the set of D'(7), where 7 is a
derivation tree with root X.

To prove this claim, note that the construction adds to S {X) only such
directed graphs D'(T). Moreover, from each such D'(7) one can obtain an
appropriate derivation tree 7. .

Conversely, if 7 is a derivation tree, we can show by induction on the
pumber of nodes in 7 that D'(7) is in the corresponding S(X). ]
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ﬂcwo__mu.% 5.1. The semantic rules of an attribute grammar are well defined
iff none of the graphs D,[D],. .. , Dy, |, for any choice of p and D, € 8(X,.)
1 £ j € ny contains an oriented cycle. ! ?m

Example 5.2. Cousider the attribute grammar G from Example 5.1. Using
the above algorithm we obtain

sy =03, sLy={ ! s v ! s

. . - - u._

-

S(By={ < o S Y S0 =80)={}.

g

Now one can apply the above corollary in order to verify that the semantic
rules of G are well defined. 0

The above algorithm, also referred to as the algorithm for testing the

u.owomﬁnim&d% of definitions in an attribute grammar, requires exponential
time, see [69, T4].

5.3 Restricted attribute grammars

>. Eon.Hmmﬁmoﬂﬁw property of attribute grammars, called the strong non-
SR:SE@ was studied in [26, 27]. The property of strong noncircularity is
m.mn&mEm in polynomial time. Most attribute grammars arising in applica~
tions such as compiler construction have this property, see [34].

Notation. Let G = (Vn,Vr,S,P) be an attribute grammar. The set of
synthesized attributes associated to a symbol X € V = Vv U Vr is denoted
by A% and the set of inherited attributes associated to X is A% . Moreover
Ax = A% UA%, A° = Uyey A%, A" = oy Al, 4= 4° U A" n
Definition 5.1. Let p € P be a production

ﬁ“klkukm...uﬂﬁ.

Consider the sets

Wilp) ={a(X:) |1 <i<n,a€ Ax},
Wo(p) = {a(X) | o € Ax},

and
W(p) = Wi(p) U Wy(p).
Define on W(p) a binary relation, denoted —y,, by

w —, W iff w' occurs on the right-hand side of ¢ semantic rule defining
w and the semantic rule is associated to p. |
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Definition 5.2. An argument selector is a mapping
y 1 A% X Vy — P(AR)

such that:
v(a, X) C A%, if a € A% and y(a, X) =0, otherwise. m]

Argument selectors are ordered componentwise, Le., v & ~" iff y(a, X) C
v (a, X) for all a € A® and all X € Vy.

Definition 5.3. For each argument selector v, we define the binary relation,
—s., on Wi(p) as:

w—y w iffw = a{Xi), w = y(X:) endy € v(a, X;) for somel <1< n,
a€ Ak, andy € A%, 0

Denote by — , the relation —, U —»., considered only on W) (p).

Definition 5.4. An attribute grammar is strongly noncircular if there evists
an argument selector -y such that

(1) v is closed, t.e., forallpe P, p: X — X1 X5... Xy, foraily € Ab and
o € A%, whenever a{X) —p y(X) ora(X) —pw —p w —p y(X)
for some w,w’ € Wy(p), then y € y(a, X).

(2) « is noncircular, i.e., for allp € P as in (1), the relation —p o has no
cycles, that is, there exists no w € Wi(p) such that w —7  w. O

Definition 5.5. Let t be a derivation tree and let W(t) be the set of all
attributes associated to vertices of t. The binary relation v, is defined on W (t)
by w — s w' iff w' occurs on the right-hand side of an equation defining w.

a

We still consider some related subclasses of attribute grammars.

Let o be in A%, let v be in A" and let X be in V2 N V. The attribuie a
may call y at X iff a(X) —} y(X) for some derivation tree .

Let CALL(a, X) denote the set of inherited attributes that ¢ may call at
X € V. It is easy to see that CALL{a, X) C v{a, X} whenever v(a, X) is a
closed argument selector.

Definition 5.6. An attribute grammar is benign if CALL, as an argument
selector, is noncircular.

An attribute grammar is ordered if it is noncircular and if there exists
a family (6x)xecvy, where Ox is a partial order on Ax such that for all
derivation trees t, for all occurrences w in t, whenever a{u) —; b(u), then
by a, where Y is the label of the ool of t. a

The following theorems, see [26, 27, show the relations between these
families of attribute grammars.
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Theorem 5.2. Ordered atiribute grammars are contained in strongly noncir-
cular ones. Strongly noncircular attribute grammars ure contained in benign
ones. Benign attribute grammars are contained in noncircular ones. All of
the above confainments are proper. a

Hrmmuma 5.3. .m._?w property of an attribute grammar being ordered (strongly
noncircular, benign, noncircular) is decideble and moreover,

(1) whether an attribute grammar is ordered or strongly noncircular can be
decided in polynomial time,

(it) deciding whether an attribute grammar is benign or noncircular requires
exponential fime. 0

Theorem 5.4. For any attribute grammar there ezists a minimal closed ar-

nﬁSmﬁ selector vo. The attribute grammar is strongly noncircular iff ~o is
noncircular. ()

.d”&nm the above theorem, the following polynomial time algorithm for
deciding the property of strong noncircularity was introduced in [26]. In the
sequel an argument selector v is considered as a set of triples:

R={{yaX)|yveva,X}} CAx AxVy.

The argument selector corresponding to R is denoted by v(R).
Algorithm:

Step 1. Set Rp = @.
Step 2. For all 1 > 1 compute:

R; =R, U{(y5,0,X}|3pePp: X — a,such that y € Al o e A%
and a{X) lm‘im?: y(X)}.
Step 3. Stop as soon as R; = R;_;, and the result is vy = “(R;).

After the computation of g, one has to check its noncircularity which
can be also done in polynomial time.

Ummdmam.ub 5.7. An attribute grammar is purely synthesized if A = 0. An
attribute grammar is nonnested if inherited atiributes are defined only n
terms of inhertted attributes. 0

. Clearly, every purely synthesized attribute grammar is a nonnested at-
tribute grammar.

Theorem 5.5. Euvery nonnested attribute grammar is strongly noncircular.
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Proof. Assume G is a nonnested attribute grammar and let 4 be the argument

selector:
+a, X) = A.

Note that v is closed. Cousider now the sequence:
Wy —py W2 —py - —py Wme
It may be either a({X) —, y(X) forsome a € A® and y € A" or
a(X) —=p B(X;) —p v ¥(Xj) —p 2(X)

for some a,b € A%, y,z € A* X, X, X; € Vi, or it is a subsequence of the
last one. Consequently, there cannot be cycles. Therefore, v is noncircular.
Hence, G is strongly noncircular. ]

Corollary 5.2. Every purely synthesized attribute grammar is strongly non-
crrcular. o

5.4 Other results

In [17] it is proved that each attribute grammar can be converted to an
equivalent purely synthesized one that possibly uses the yx operator, i.e., the
Jeast fixed point of a function. The idea is to consider the semantic rules as a
system of equations. After this the inherited attributes are eliminated using
the so-cailed recursion theorem.

Purely synthesized attribute grammars can be related to initial algebra
semantics, see [17] and see [53] for initial algebra semantics.

Attribute grammars have been used in parsing theory and practice. At-
tribute translation grammars were introduced in [89] as a device to specify
a translation. The translated symbols can have a finite set of attributes.
An attributed translation grammar is in some sense a generalization of a
context-free grammar. A context-free grammar is first extended to a trans-
Jation grammar and then the attributes are added. Attributed translation
grammars apply also ideas from syntax directed translations.

Attribute grammars were extended to aftributed tree grammers in [12]. An
algorithm for testing noncircularity of attributed tree grammars is described
in [12].

LR-attributed grammars are a combination between LR(k) and attribute
grammars. They have both features, an efficient parsing algorithm and an
algorithm to evaluate the attributes. Informally, an LR-attributed grammar
is an attribute grammar that has the possibility of atiribute evaluation during
the LR parsing by an LR parser/evaluaior. An LR parser/evoluator 1s a
deterministic algorithm which is an extension of a shift/reduce LR parsing
algorithm in such a way that it evaluates all synthesized attribute instances
of a node in a derivation tree as soon as it has recognized this node and
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has parsed the subtree rooted in this node. The LR parser/evaluator also
computes all inherited attributes of this node.

Various families of L R-attributed grammars are studied and compared in
[4]. See also [134] for an early approach of this subject.

Attribute grammars are used to study natural languages, too. They can
be used to encode an algebraic specification of a natural language and at-
tributed translation is used to compute representations of the “meaning” of
a sentence at different levels of abstraction, including a treatment of seman-
tic ambiguities. For more details, as well as for an example of a parser that
translates a significant subset of English into predicate logic, the reader is
referred to [107].

In [88] a system is presented, called Vinci, for generating sentences and
phrases in natural languages. The system is based on attribute grammars
and has been used for experiments in linguistics, and for teaching linguistic
theory. Attribute grammars provide the basis of the syntax definition and the
use of attributes ensures the “semantic agreement” between verbs and their
subjects and objects, nouns and adjectives, etc. For instance, the sentence
“The bear ate the banana” is accepted, whereas the sentence “The table ate
colourless green ideas” is not accepted.

For a large bibliography on attribute grammars see [34].

6. Patterns

6.1 Erasing and nonerasing patterns

The study of patterns goes back to the beginning of this century. Some of
the classical results of Axel Thue, see [128}, can be expressed in terms of pat-
terns and pattern languages. Recent research concerning inductive inference,
learning theory, combinatorics on words and term rewriting is also related
to the study of patterns. Classical devices such as grammars and automata
characterize a language completely. Patterns provide an alternative method
to define languages, giving more leeway.

Let %' and V be two disjoint alphabets. X is the alphabet of terminals
and V is the alphabet of variables. A pottern is a word over X U V. The
language defined by a pattern a consists of all words obtained from o by
leaving the terminals unchanged and substituting a terminal word for each
variable X. The substitution has to be uniform, i.e., different occurrences of
X have to be replaced by the same terminal word. In the case when variables
have to be replaced always by nonempty words, the pattern will be referred
to a3 a nonerasing pattern, or NE-pattern. These patterns have been studied
systematically first by Dana Angluin, see [3, 6].

However, the situation is essentially different if the empty word is al-
lowed in the substitutions. The study of such patterns, referred to as erasing
patterns, or E-patterns, was initiated in [70)].
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The formal definitions are the following. Denote by Hx v the set of all
morphisms from (XU V)* to (ZU V)",

Definition 6.1. The language generated by an E-pattern o € (XU V)" s
defined as

Lgzla)={we X" |w=~h(a) for some he Hp v
such that h{e) = a for each a € X},
The language generated by an NE-pattern o € (X U V)" is defined as

Lyg sla) ={we X" | w=h{a) for some A-free h € Hz v
such that h{a) = a for each a € L}. O

Whenever X is understood we use also the notations Lg(a) and Lyg(a).
Note that in the sequel the symbol “C” denotes the proper inclusion.

A sample is a finite nonempty language. For many purposes, both theo-
-atical and practical, given a sample F it is useful to find a pattern « such
thas F C Lyg(a) or F C Lg(a) and, furthermore, « describes F' as closely
as possible. Consider the following example, see [70].

Eromple 6.1. Assume that the terminal aiphabet is £ = {0,1} and let F be
the following sample

F = {0000, 000000, 001100, 00000000, 00111100, 0010110100, 0001001000}.

For each E-pattern « from the following list, F is a subset of the language

Le(a).
ay = XYX, a3 = XYYX, a3 = XXYXX,

oy = XXYY XX, as = 00X00, ag = 00X X00. O

The above list can be continued with other examples of patterns as well
as with descriptions of the form X X%, where X7 is the mirror image of X,
00X X E00 or for instance X X ¥, where X is some permutation of X. In the
sequel we will not consider the mirror image or the permutation of variables.

Finding a pattern common to all words in a given sample is especially
appropriate if the sample set is growing, for instance through a learning
process, or if one may enquire whether or not some specified words belong to
the set. For instance, a positive answer to the query 00011000 will reject the
patterns aq and ag, but not the patterns oy, g, aa, as.

Also, trying to infer a pattern common to all words in a given sample is a
very typical instance of the process of inductive inference, that is, the process
of inferring general rules from specific examples. For more details on this line
see for instance [7] or [65].

For an interconnection between patterns and random numbers see [70].



