
Electronic Communications of the EASST
Volume X (2010)

International Colloquium on
Graph and Model Transformation –

On the occasion of the 65th birthday of Hartmut Ehrig
(GMT 2010)

Expressiveness of graph conditions with variables

Annegret Habel and Hendrik Radke

20 pages

Guest Editors: Claudia Ermel, Hartmut Ehrig, Fernando Orejas, Gabriele Taentzer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/


ECEASST

Expressiveness of graph conditions with variables

Annegret Habel1 and Hendrik Radke2∗

1 habel@informatik.uni-oldenburg.de
2 radke@informatik.uni-oldenburg.de

Carl v. Ossietzky Universität Oldenburg, Germany

Abstract: Graph conditions are most important for graph transformation systems
and graph programs in a large variety of application areas. Nevertheless, non-local
graph properties like “there exists a path”, “the graph is connected”, and “the graph
is cycle-free” are not expressible by finite graph conditions. In this paper, we gen-
eralize the notion of finite graph conditions, expressivelyequivalent to first-order
formulas on graphs, to finite HR graph conditions, i.e., finite graph conditions with
variables where the variables are place holders for graphs generated by a hyperedge
replacement system. We show that graphs with variables and replacement mor-
phisms form a weak adhesive HLR category. We investigate theexpressive power
of HR graph conditions and show that finite HR graph conditions are more expres-
sive than monadic second-order graph formulas.

Keywords: Graph conditions, graphs with variables, hyperedge replacement sys-
tems, monadic-second order graph formulas, weak adhesive HLR categories.

1 Introduction

Graph transformation systems have been studied extensively and applied to several areas of
computer science [Roz97, EEKR99, EKMR99] and were generalized to high-level replacement
(HLR) systems [EHKP91] and weak adhesive HLR systems [EEPT06b]. Graph conditions, i.e.,
graph constraints and application conditions, studied e.g. in [EH86, HHT96, HW95, KMP05,
EEHP06, HP09], are most important for graph transformation systems and graph programs in
a large variety of application areas. Graph conditions are an intuitive, graphical, yet precise
formalism, well-suited for describing structural properties. Moreover, finite graph conditions
and first-order graph formulas are expressively equivalent[HP09]. Unfortunately, typical graph
properties like “there exists a path”, “the graph is connected”, and “the graph is cycle-free” are
not expressible by first-order graph formulas [Cou90, Cou97b] andfinitegraph conditions. They
only can be expressed byinfinite graph conditions.

In this paper, we generalize the concept of graph conditions[HP09] to HR graph conditions,
i.e. graph conditions with variables where the variables are place holders for graphs generated
by a hyperedge replacement (HR) system. By the HR system, we obtain a finite description of
a, in general, infinite set of graphs, e.g., the set of all paths. We investigate the expressive power
of HR graph conditions and show that monadic second-order (MSO) graph formulas can be ex-
pressed by equivalent HR graph conditions, but also some second-order (SO) graph properties

∗ This work is supported by the German Research Foundation (DFG) under grant GRK 1076/1 (Graduate School on
Trustworthy Software Systems).
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can be expressed by HR graph conditions.

FO formulas

MSO formulas

SO formulas

conditions

HR conditions

[HP09]

this paper

The usefulness of HR conditions is illustrated by an exampleof a car platooning maneuver
protocol.

Example1 (Car platooning) In the following, we study “a prototypical instance of a dynamic
communication system”, originally taken from the California Path project [HESV91]. It repre-
sents a protocol for cars on a highway that can organize themselves into platoons, by driving
close together, with the aim to conserve space and fuel. A carplatoon is modeled as a directed
graph where the nodes represent the cars and the direct edgesthe direct following relation. Ad-
ditionally, the leader of a car platoon is marked by a loop.

A car platooning state graph consists of zero or more car platoons.

Car platooning operations like splitting a car platoon in two car platoons, or joining two car
platoons into a single one can be described by graph replacement rules. When performing these
operations, certain car platooning properties have to be satisfied:

(1) Every follower has a unique leader:∀(
1
,∃(

1
)∨ (∃(

1
x2 1 )∧∄(

1

x
x

2 1

2
1

)))

(2) Leaders are not connected by a directed path:∄( x1 2 )

(3) The car platooning state graph is circle-free:∄( x1

2
)

with x ::=
1 2

|
1 2

x1 2 .
The car platooning properties are described by HR graph conditions. Bauer [Bau06] and

Pennemann [Pen09] model the following relation with respect to the leader, but not the direct
following relation. HR graph conditions allow to express path conditions as in the car platooning
example.

The paper is organized as follows: In Section2, we introduce graphs with variables. In Sec-
tion 3, we generalize graph conditions to HR graph conditions, i.e. graph conditions with vari-
ables equipped with a hyperedge replacement (HR) system. InSection4, we present a number of
examples for HR conditions. In Section5, we investigate the expressive power of HR conditions.
A conclusion including further work is given in Section6.
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2 Graphs with variables

Graphs with variables consist of nodes, edges, and hyperedges. Edges have one source and one
target and are labeled by a symbol of an alphabet; hyperedgeshave an arbitrary sequence of
attachment nodes and are labeled by variables.

Definition 1 (Graphs with variables) Let C= 〈CV ,CE,Var〉 be a fixed, finite label alphabet
where Var is a set of variables with a mapping rank: Var→ N0 defining the rank of each vari-
able. Agraph with variablesover C is a systemG = (VG,EG,YG,sG, tG,attG, lvG, leG, lyG) con-
sisting of finite sets VG, EG, and YG of nodes(or vertices), edges, andhyperedges, sourceand
target functionssG, tG : EG→ VG, anattachment functionatt : YG→ V∗G, andlabeling functions
lvG : VG→ CV, leG : EG→ CE, ly : YG→ Var such that, for ally∈ YG, |att(y)| = rank(lyG(y)).
For y∈ YG, rank(y) = |att(y)| denotes therank of y. For YG = /0, G is agraph. Thesizeof a
graphG is the number of nodes and edges, i.e., size(G) = |VG|+ |EG|. GVar denotes the set of all
graphs with variables,G the set of all graphs, andG n the set of all graphs of size≤ n. Forx∈Var
with rank(x) = n, x• denotes the graph with the nodesv1, . . . ,vn and one hyperedge attached to
v1 . . .vn. A pointedgraph with variables〈R,pinR〉 is a graph with variablesR together with a
sequence pinR = v1 . . .vn of pairwise distinct nodes fromR. We write rank(R) for the numbern
of nodes and PinR for the set{v1, . . . ,vn}.

Remark1 The definition extends the well-known definition of graphs [Ehr79] by the concept
of hyperedges in the sense of [Hab92]. Graphs with variables also may be seen as special hyper-
graphs where the set of hyperedges is divided into a set of edges labelled with terminal symbols
(of CE) and a set of hyperedges labelled by nonterminal symbols (ofVar).

We extend the definition of graph morphisms to the case of graphs with variables.

Definition 2 (Graph morphisms with variables) A(graph) morphism (with variables) g: G→
H consists of functionsgV : VG→ VH , gE : EG→ EH , and an injective functiongY : YG→ YH

that preserve sources, targets, attachment nodes, and labels, that is, sH ◦gE = gV ◦sG, tH ◦gE =
gV ◦ tG, attH = attG, lvH ◦gV = lvG, leH ◦gE = leG, and lyH ◦gY = lyG. A morphismg is injective
(surjective) if gV , gE, andgY are injective (surjective), and anisomorphismif it is both injective
and surjective. In the latter caseG andH are isomorphic, which is denoted byG∼= H. The
composition h◦ g of g with a graph morphismh: H → M consists of the composed functions
hV ◦gV , hE ◦gE, andhY ◦gY . For a graphG, the identity idG : G→ G consists of the identities
idGV , idGE, and idGY on GV , GE, andGY , respectively.

Example2 Consider the graphsG andH over the label alphabetC = 〈{A,B}, {2},Var〉 where
the symbol2 stands for the invisible edge label and is not drawn andVar = {x,y} is the set of
variables of rank4 and2, respectively. The graphG contains five nodes with the labelsA and
B, respectively, seven edges with label2 which is not drawn, and one hyperedge of rank 4 with
label x. Additionally, the graphH contains a node, an edge, and a hyperedge of rank 2 with
labely.
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The drawing of graphs with variables combines the drawing ofgraphs in [Ehr79] and the drawing
of hyperedges in [Hab92, DHK97]: Nodes are drawn by circles carrying the node label inside,
edges are drawn by arrows pointing from the source to the target node and the edge label is
placed next to the arrow, and hyperedges are drawn as boxes with attachment nodes where the
i-th tentacle has its numberi written next to it and is attached to thei-th attachment node and the
label of the hyperedge is inscribed in the box. Arbitrary graph morphisms are drawn by usual
arrows “→”; the use of “֒→” indicates an injective graph morphism. The actual mappingof
elements is conveyed by indices, if necessary.

In [PH96, Pra04], variables are substituted by arbitrary graphs. In this paper, variables are
replaced by graphs generated by a hyperedge replacement system. It can be shown that sat-
isfiability by substitution and satisfiability by replacement are expressively equivalent. By our
opinion, the second satisfiability notion is the more adequate.

Definition 3 (HR systems) Ahyperedge replacement (HR) systemR is a finite set of replace-
ment pairs of the formx/R wherex is a variable andR a pointed graph with rank(x) = rank(R).
Given a graphG, the application of the replacement pairx/R to a hyperedgey with labelx and
rank(y) = rank(x) proceeds in two steps: 1. Remove the hyperedgey from G, yielding the graph
G−{y}. 2. Construct the disjoint union(G−{y})+R and fuse theith node in attG(y) with the ith

attachment point ofR, for i = 1, . . . , rank(y), yielding the graphH. ThenG directly derives Hby
x/R applied toy, denoted byG⇒x/R,y H or G⇒R H providedx/R∈R. A sequence of direct
derivationsG⇒R . . .⇒R H is called aderivationfrom G to H, denoted byG⇒∗

R
H. For every

variablex, R(x) = {G∈ G | x•⇒∗
R

G} denotes the set of all graphs derivable fromx• by R.

Example3 The hyperedge replacement systemR with the rules given in Backus-Naur form
x ::=

1 2
|

1 2
x1 2 generates the set of all directed paths from node 1 to node 2.

Assumption1 In the following, letR be a fixed HR-system.

Hyperedge replacement systems define replacements. A replacement morphism consists of a
replacement and a graph morphism.

Definition 4 (Replacement morphisms) Areplacementis a finite setρ = {y1/R1, . . . ,yn/Rn}
of pairsyi/Ri where, fori = 1, . . . ,n, yi is a hyperedge,Ri ∈R(ly(yi)) is a pointed graph with
rank(yi) = rank(Ri), andy1, . . . ,yn are pairwise distinct. The application ofρ to a graph with
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variablesG yields the graphρ(G) obtained fromG by applying ly(yi)/Ri ∈R to yi for i = 1, . . .n.
/0 denotes theemptyreplacement. A(replacement) morphism̂g = 〈g, repl〉 : G→ H consists of
a graph morphismg: G→ H ′ and a replacement withρ(H ′) = H. It is injectiveif g is injective.
〈g, /0〉 is agraph morphismand〈idG, /0〉 the identity.

Remark2 For every replacement morphism〈g,ρ〉 : G→ H with graph morphismg: G→ H ′

andρ(H ′) = H, there is a pair〈ρ ′,g′〉 : G→H with replacementρ ′ = {y/R | g(y)/R∈ ρ} and a
graph morphism withg′|G−YG = g andg′|ρ ′(y) = id for all y∈ YG. In the following, we often use
replacement morphisms consisting of a replacement and a morphism.

G H ′

G′ H

g

ρ ′ ρ

g′

Remark3 For replacement morphisms〈g1,ρ1〉 : G→ H and〈g2,ρ2〉 : H→ I , thecomposition
is defined by〈g′2 ◦g1,ρ2 ◦ρ∗1〉 : G→ I where the graph morphisms and replacements are as in
the figure below.

G H ′

H

I ′′

I ′

I

g1 g′2

g2

ρ1 ρ∗1

ρ2

Fact 1 The composition of replacement morphisms is a replacement morphism.

Notation1 Replacementsρ with ρ(G) = H are denoted byρ : G⇒ H.

In [Pra04], Ulrike Prange sketches that graphs and graph morphisms with variables based
on substitution form a category and that the category with the classM of all injective graph
morphisms is an adhesive HLR category. Similarly, one can show that graphs with variables and
replacement morphisms form a category and the category withthe classM of all injective graph
morphisms is a weak adhesive HLR category.

Fact 2 (Category XGraphs) Graphs with variables and replacement morphisms form the cate-
gory XGraphs.

Proof. Consequence of the associativity and identity of replacements and graph morphisms.

Fact3 (XGraphs is weak adhesive HLR)The category〈XGraphs,M 〉 of graphs with variables
with the classM of all injective graph morphisms is a weak adhesive HLR category.
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Proof. The proof is given in the AppendixB.

3 HR conditions

Graph conditions are a well-known concept for describing graph properties in a graphical way
by graphs and graph morphisms (see e.g. [EH86, HHT96, HW95, KMP05, EEHP06, HP09]). In
the following, we generalize the concept to HR conditions. HR conditions are conditions in the
category of graphs with variables where the variables may bereplaced by graphs generated by a
hyperedge replacement (HR) system. Additionally, HR conditions may contain conditions of the
form P⊑C whereP andC are graphs with variables with the meaning “is subgraph of”.This is
a counterpart to the MSO subformulax∈ X with the meaning “is element in”.

Assumption2 In the following, letM ′ be the class of all injective replacement morphisms.

Definition 5 (HR conditions) Acondition (with variables)over aP is of the form true,P′ ⊑C
or ∃(a,c), whereP′, P, andC are graphs with variables,P′ ⊆ P, a: P→ C a morphism, and
c a condition overC. Moreover, Boolean formulas over conditions overP are conditions over
P. ∃a abbreviates∃(a, true), ∀(a,c) abbreviates¬∃(a,¬c). A HR condition〈c,R〉 consists of a
condition with variablesc and a HR systemR. If R is clear from the context, we only write the
conditionc. A HR condition isfinite, if every conjunction and every disjunction is finite.

P

G

C,a

p̂ q̂
=

c

|=
∃( )

Every replacement morphismsatisfiestrue. A replacement morphism ˆp: P→G satisfies P′ ⊑C
if p̂(P′) ⊆ q̂(C), and∃(a,c) if there exists a replacement morphism ˆq in M ′ such that ˆq◦a = p̂
and, if c is a condition overC, q̂ satisfiesc. The satisfaction of conditions by replacement
morphisms is extended to Boolean formulas over conditions in the usual way. Every graph
satisfiestrue and a graphG satisfiesthe conditionc, if c is a condition over /0 and the morphism
/0→G satisfiesc. We write p̂ |= c [G |= c] to denote that all replacement morphisms ˆp [graphs
G] satisfy c. Two conditionsc andc′ areequivalent, denoted byc≡ c′, if, for all replacement
morphisms ˆp, p̂ |= c iff p̂ |= c′.

Remark4 The definition generalizes the definitions of conditions in [HHT96, HW95, KMP05,
EEHP06, HP09]. In the context of graphs, conditions are also calledconstraintsand, in the
context of rules, conditions are also calledapplication conditions. The generalization is twofold:

(1) Variables in HR conditions are allowed. The variables are replaced by graphs generated
by a corresponding HR system. By this generalization, several infinite conditions can be
expressed by afinite HR conditions.

(2) Conditions of the formP⊑C are allowed. Typical examples are arex ⊑ X with X ::= /0 |
X and ⊑ X with X ::= /0 | X . By this generalization, there is a transformation

of MSO formulas into equivalent HR conditions.
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Example4 Consider the HR conditions

path(1,2) = ∃(
1 2
→

1 2
x1 2 )

connected = ∀( /0→
1 2

,path(1,2))
cyclefree = ∄( /0→

1
x1

2
)

hamiltonian = ∃( /0→
1

x1

2
,∄(

1
x1

2
→

1
x1

2
))

with the HR systemx ::=
1 2

|
1 2

x1 2 . A morphism with domain
1 2

satisfies the
conditionpath(1,2) iff there exists a path from the image of1 to the image of2 in the range.
A graph satisfiesconnected iff, for each pair of distinct nodes, there is a nonempty path, i.e.,
the graph is strongly connected. It satisfiescyclefree iff there does not exist a cycle, i.e.,the
graph is cycle-free. A graph satisfieshamiltonian iff there exists a circuit and there is no
additional node outside the circuit, i.e., the graph is hamiltonian.

Notation 2 For a morphisma: P→ C in a condition, we just depictC, if P can be unam-
biguously inferred, i.e. for constraints over the empty graph /0 and for conditions over some
left- or right-hand side of a rule. E.g. the constrainthamiltonian has the short notation
∃( 1

x1

2
,∄( 1

x1

2
)).

In the following, we investigate the model checking problemfor HR conditions:

Given: A HR conditionc and a graphG
Question: G |= c?

For finite HR conditions, the model checking problem is decidable.

Theorem 1(Decidability of the model checking problem)For every finite HR condition̂c and
every morphism̂p [graph G], it is decidable whether or not̂p |= ĉ [G |= ĉ].

morphismp̂

conditionĉ
Decidep̂ |= ĉ yes/no

Proof. Let ĉ = 〈c,R〉 be a finite HR condition. Without loss of generality, we may assume that
R is monotone, i.e., for each rulex/R∈R, size(x•)≤ size(R). Otherwise, we transformR into
an equivalent monotone HR system (see [Hab92], Theorem 1.5). Let ˆp = 〈ρ0, p〉 : P→ G be a
morphism. Suppose that size(G) = n for somen≥ 0. Let Repl denote the set of all replacements.
For all x∈ Var, n∈ N0, andC∈ GVar, the sets

Rn(x) = {G∈ G n | x•⇒∗
R

G}
Repln(C) = {ρ ∈ Repl| ρ(y) ∈Rn(ly(y)) for all y∈ YC}
Rn(C) = {ρ ∈ Repln(C) | ρ(C)≤ n}

can be constructed effectively. Forx∈ Var andk ∈ N, define setsRn
k(x) recursively as follows:

Rn
1(x) = {R∈ Gn | x/R∈ R} and, fork≥ 1, Rn

k+1(x) = Rn
k(x)∪{ρ(R) ∈ G n | x/R∈ R,ρ ∈

Replnk(R)} where Replnk(R) = {ρ ∈ Repl | ρ(y) ∈ Rn
k (ly(y)) for all y ∈ YR}. SinceRn

k(x) ⊆
Rn

k+1(x) ⊆ G n for all k ∈ N and G n is finite, there is somel(x) ∈ N such thatRn
l(x)(x) =
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Rn
l(x)+1(x). This impliesRn

l(x)(x) = Rn
l(x)+m(x) for all m≥ 1. Now all Rn

k(x) up to the small-
est possiblel(x) can be constructed effectively. Furthermore,Rn(x) = Rn

l(x)(x) may be ver-
ified. Rn(x) =

⋃∞
k=1Rn

k . Since the setsRn
k(x) are monotonically increasing subsets ofG n

and sinceG n is finite, there is somel(x) ∈ N such thatRn
l(x)(x) ⊆ Rn

l(x)+1(x). By definition,
Rn

l(x)(x) = Rn
l(x)+1(x) = Rn

l(x)+2(x) = . . . . Thus,
⋃∞

k=1Rn
k = Rn

l(x)(x). The second and third
statement follow directly from the first one.

For “existential” HR conditionsd̂ = 〈d,R〉 with d = ∃(a,c) with a: P→C,

p̂ |= 〈d,R〉 ⇐⇒ p |=
∨

ρ∈Rn(C) ρ(d).

p̂ |= d̂ ⇐⇒ ∃q̂ = 〈ρ ,q〉 ∈M ′.q̂◦a = p̂∧ q̂ |= c
⇐⇒ ∃ρ ∈Repl.∃q∈M .q◦ρ(a) = p∧q |= ρ(c)
⇐⇒ p |=

∨

ρ∈Replρ(d)

⇐⇒ p |=
∨

ρ∈Rn(C) ρ(d).

SinceRn(C) is finite,
∨

ρ∈Rn(C) ρ(d) is a finite. For all existential subconditions, satisfiability
can be tested and, for non-existential conditions, satisfiability can be inferred. For a graphG and
a HR condition〈d,R〉 whered is a condition over /0,G |= 〈d,R〉 ⇐⇒ /0→G |= 〈d,R〉.

Remark5 Theorem1 makes use of the monotonicity property of HR systems. Allowing mono-
tone replacement system instead of (monotone) HR systems one would get a corresponding
decidability result.

4 A classification of graph properties

By agraph property, we mean a predicate on the class of graphs that is stable under isomorphism.
In the following, we collect a number of graph properties known to be first order, monadic
second-order, and second order, respectively, and show that most of them can be expressed by
HR conditions.

Fact 4 (classification of graph properties [Cou90]) The following properties of a directed, la-
belled graphG and nodesv andw are first order (FO), monadic second-order (MSO), and second
order (SO), respectively:
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properties of a directed, labelled graphG FO MSO SO
– simple yes yes yes
– k-regular yes yes yes
– degree≤ k yes yes yes
– has a nonempty path fromv to w no yes yes
– (strongly) connected no yes yes
– planar no yes yes
– k-colorable no yes yes
– Hamiltonian no yes yes
– is a tree no yes yes
– is a square grid no yes yes
– has an even number of nodes no no yes
– has as many edges labelleda asb no no yes
– has a nontrivial automorphism no no yes
– card(VG) belongs to a given nonrecursive set no no no

The following monadic second-order graph properties can beexpressed by HR conditions.

Example5 (MSO graph properties)For the hyperedge replacement system with the rules
x ::=

1 2
|

1 2
x1 2 , we have the following:

1. Paths.A nonempty pathin G is here a sequence of nodes(v1,v2, . . . ,vn) with n≥ 2 such
that there is an edge with sourcevi and targetvi+1 for all i andvi = v j ⇒ {i, j} = {1,n};
if v1 = vn, this path is acircuit. The HR conditionpath(1,2) = ∃(

1 2
→

1 2
x1 2 )

requires that there is a nonempty path from the image of 1 to the image of 2.

2. Connectedness.The HR conditionconnected= ∀(
1 2

,path(1,2)) requires that, for
each pair of distinct nodes, there is a nonempty path, i.e., the graph is strongly connected.

3. Cycle-freeness.The HR conditioncyclefree= ∄(
1

x1

2
) requires that the graph is

cycle-free.

4. Planarity. By Kuratowski’s Theorem (see e.g. [Eve79]) a graph isplanarif and only if
it has no subgraph homeomorphic toK3,3 or K5. Two graphs arehomeomorphicif both
can be obtained from the same graph by insertion of new nodes of degree 2, in edges, i.e.
an edge is replaced by a path whose intermediate nodes are allnew. The HR condition
planar= ∄(K∗5)∧∄(K∗3,3) whereK∗5 andK∗3,3 are obtained from the graphsK5 andK3,3

by replacing all edges by hyperedges with labelx, respectively, requires that the graph has
no subgraph homeomorphic toK5 or K3,3, i.e. that the graph is planar.

5. Coloring. A coloring of a graph is an assignment of colors to its nodes so that two ad-
jacent nodes have the same color. Ak-coloring of a graphG usesk colors. By König’s
characterization (see e.g. [Har69]), a graph is 2-colorable if and only if it has no odd
cycles. For undirected graphs, i.e., graphs in which each undirected edge stands for
two directed edges in opposite direction, the HR condition2color = ∄(

1
x1

2
) with

x ::=
1 2

|
1 2

x1 2 requires that there are no cycles of odd length, i.e., the
graph is 2-colorable.
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6. Hamiltonicity. A graph isHamiltonian, if there exists a Hamiltonian circuit, i.e. a sim-
ple circuit on which every node of the graph appears exactly once (see e.g. [Eve79]).
For undirected graphs, the HR conditionhamiltonian= ∃(

1
x1

2
,∄(

1
x1

2
)) with

x ::= 1 2 | 1 2
x1 2 requires that there exists a simple circuit in the graph and

there is no additional node in the graph, i.e. every node of the graph lies on the circuit, the
graph is Hamiltonian.

7. Trees. A graphG is a tree if is connected, cycle-free, and has a root. A graphG has a
root v if v is a node inG and every other nodev′ in G is reachablefrom v, i.e. there is a
directed path fromv to v′ (see e.g. [Eve79]). For undirected graphs, the HR condition
tree = uconnected∧ ucyclefree∧ ∃(

1
,∀(

1 2
,upath(1,2))) (with the undi-

rected versions ofconnected, cyclefree, andpath(1,2)) requires that the graph
is connected, cycle-free, and has a root, i.e., the graph is atree.

The following second-order graph properties can be expressed by HR graph conditions.

Example6 (SO graph properties)

1. Even number of nodes.The HR conditioneven= ∃( x ,∄( x )) with x ::= /0 | x
expresses the SO graph property “the graph has an even numberof nodes”.

2. Equal number of a’s and b’s. The HR conditionequal=∃( x ,∄( x a )∧∄( x b ))
with x ::= /0 | a b x expresses the SO graph property “the graph has as many nodes
labelleda asb”.

3. Paths of same length.The HR condition2paths1,2=∃( 1 2
→

1 2
x1

3 4

2
) with x ::=

1 2
3 4 |

1
3

2
4

x
1 2

3 4
expresses the SO graph property “there exist two node-disjoint

paths of same length from the image of 1 to the image of 2”.

5 Expressiveness of HR conditions

We are interested in classifying HR conditions, i.e. we wantto classify the kind of graph prop-
erties that can be expressed by HR conditions. To this effect, we compare HR conditions and
monadic second-order formulas on graphs [Cou90, Cou97a]. We show that there is transfor-
mations from MSO formulas into equivalent HR conditions. Vice versa, there is no such a
transformation: HR graph conditions can express second-order graph properties.

Let Rel be a finite set of relation symbols. Let Var contain individual variables and relation
variables of arity one. Since a relation with one argument isnothing but a set, we call these
variablesset variables. A monadic second-order formulaover Rel is a second-order formula
written with Rel and Var: the quantified and free variables are individual or set variables; there
is no restriction on the arity of symbols in Rel. In order to get more readable formulas, we shall
write x∈ X instead ofX(x) whereX is a set variable.

Definition 6 (MSO graph formulas) Let Var be a countable set of individualand set variables.
The set of allmonadic second-order (MSO) graph formulas(over Var) is inductively defined:
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For b∈ C andx,y,z,X ∈ Var, lb(x), inc(x,y,z), x = y, andx∈ X are formulas. For formulasF,
Fi (i ∈ I ) and variablesx,X ∈ Var, ¬F, ∧i∈I Fi, ∃xF, and∃XF are formulas. For a formulaF,
Free(F) denotes the set of allfreevariables ofF. A formula isclosed, if Free(F) 6= /0 does not
contain free variables. Thesemantic GJFK(σ) of a formulaF in a non-empty graphG under
assignmentσ : Var→ VG+EG is inductively defined as follows. The semantics of the formulas
lb(x), inc(x,y,z), x = y, ¬F, ∧i∈I Fi, and∃xF in G underσ is defined as usual (see [HP09]).
GJx ∈ XK(σ) = true iff σ(x) ∈ σ(X) and GJ∃XFK(σ) = true iff GJFK(σ{X/D}) = true for
someD⊆ VG or D⊆ EG whereσ{X/D} is the modified assignment withσ{X/D}(X) = D and
σ{X/D}(x) = σ(x) otherwise. A graphG satisfiesa formulaF, denoted byG |= F, iff for all
assignmentsσ : Var→ DG, GJFK(σ) = true.

Notation3 The expression∨i∈I Fi abbreviates the formula¬∧i∈I ¬Fi, F⇒G abbreviates¬F ∨
G, ∀xF abbreviates¬∃x¬F, and∀XF abbreviates¬∃X¬F.

Example7 The MSO formulaF0(x1,x2)= ∀X[{∀y∀z(y∈X∧edg(y,z)⇒ z∈X)∧∀y(edg(x1,y)⇒
y∈ X)} ⇒ x2 ∈ X] [Cou97a] expresses the property “There is a nonempty path fromx1 to x2”
. The formulaF1 = (x = y)∨F0(x,y) expresses the property “x = y or there is a nonempty path
from x to y” and the formulaF2 = ∀x,y[F1(x,y)] expresses the property “the graph is strongly
connected”.

MSO graph formulas can be transferred in equivalent finite HRgraph conditions.

Theorem 2 (From MSO formulas to HR conditions)There is a transformationCondM from
MSO formulas to HR conditions, such that, for all MSO graph formulas F and all graphs G,
G |= F ⇔G |= CondM (F).

Proof. Let F be a MSO formula. Without loss of generality, we may assume thatF is closed and
rectified, i.e. distinct quantifiers bind occurrences of distinct variables; otherwise, we build the
universal closure ofF and rename the variables. SinceF is rectified, the variables ofF can be
represented by isolated nodes, edges, and hyperedges in thegraphs of a constructed condition.
Let P be a graph with variables. If the setD′P = IsoP + EP + YP], the set of all isolated nodes,
edges, and hyperedges inP, is a subset of the set Var of variables, then every morphism ˆp: P→G
into a non-empty graphG induces an assignmentσ : Var→DG such that ˆp= σ [D′P], i.e., p̂(x) =
σ(x) for eachx ∈ D′P. Vice versa, an assignmentσ : Var→ DG induces a mappingD′P→ DG

that may be extended to a graph morphism ˆp: P→G with p̂ = σ [D′P].

PD′PVar

Free(F)

DG G

p̂σ

⊆

⊇

=

The HR condition is given by Cond(F) = Cond( /0,F), where /0 denotes the empty graph. For a
MSO formulaF and a graphP with Free(F) ⊆ D′P⊆ Var, the HR condition Cond(P,F) is con-
structed as follows: For the expressions known from first-order theory, we use the construction
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in [HP09]. For the atomic MSO expressionsx∈ X and∃XF, wherex is an individual variable
andX a set variable, we define the transformation as follows:

Cond(P,x∈ X) =

{

x ⊑ X if x∈ VP
x
⊑ X if x∈ EP

Cond(P,∃XF) =
∨

i〈∃(P→C,Cond(C,F)),Ri〉 where
C = P+ X ,R1 : X ::= /0 | X andR2 : X ::= /0 | X

The following claim is based onA ′-satisfiabilityobtained from the usual satisfiability by re-
placing all occurrences ofM ′ by A ′, the class of all replacement morphisms. We write|=A

to denoteA ′-satisfiability. For all rectified MSO graph formulasF, all graphsG, all assign-
mentsσ : Var→ DG, and all morphisms ˆp: P→G with σ = p̂[D′P], GJFK(σ) = true⇔ p̂ |=A

Cond(P,F). The proof makes use of the proof of the corresponding statement for rectified FO
formulas given in [HP09] and is done by structural induction.
Basis.For the atomic formulas lb(x), inc(x,y,z), andx = y, the proof is as in [HP09]. For atomic
formulas of the formx∈ X, the statement follows directly from the definitions:

GJx∈ XK(σ) = true
⇔ σ(x) ∈ σ(X) (Semantics ofx∈ X)
⇔ p̂( x )⊆ p̂( X ) (p̂ = σ [D′P], x,X ∈ Free(x∈X) ∈ Free(x∈X)⊆ D′P)
⇔ p̂ |=A x ⊑ X (Semantics ofx ⊑ X )
⇔ p̂ |=A Cond(P,x∈ X) (Definition of Cond)

Hypothesis.Assume, the statement holds for rectified formulasF .
Step. For formulas of the form¬F, ∧i∈I Fi, ∃xF, the proof is as in [HP09]. For formulas of
the form∃XF, graphsG, and assignmentsσ , the statement follows from the definitions and the
induction hypothesis:

GJ∃XFK(σ) = true
⇔ ∃D⊆ DG.GJFK(σ{X/D}) = true (Semantics of∃XF)
⇔ ∃D⊆ VG.GJFK(σ{X/D}) = true or
∃D⊆ EG.GJFK(σ{X/D}) = true (Assignment)

⇔ ∃q̂: C→G∈A .p̂ = q̂◦a∧ q̂ |=A Cond(C,F) (Hypothesis, ˆq = σ{X/D}[D′P])
⇔ p̂ |=A ∃(P→C,Cond(C,F)) (Definition |=A , p̂ = σ [D′P])
⇔ p̂ |=A Cond(P,∃XF) (Definition Cond)

wherea: P→C with C = P+ X .
A -satisfiability is closely related to the satisfiability of monadic second-order graph formu-

las. As in [HP09], there is a transformation fromA ′- to M ′-satisfiability. [fromA ′- to M ′-
satisfiability [HP09]] There is a transformation Msat such that, for every condition c over /0 and
every graphG, G |=A ′ c⇔G |=M ′ Msat(c). . Let〈ρ , p〉 be a replacement morphism,〈p′,ρ ′〉 the
corresponding pair consisting of a morphism and a replacement, and ˆc = 〈c,R〉 a HR condition.
By the corresponding theorem in [HP09], p′ |=A c⇔ p′ |= Msat(c). By the definition of the
classes of replacement morphismsA ′ andM ′, 〈p′,ρ ′〉 |=A ′ c⇔ 〈p′,ρ ′〉 |= Msat(c) and, for the
corresponging pair〈p∗,ρ∗〉, 〈p∗,ρ∗〉 |=A ′ c⇔ 〈p∗,ρ∗〉 |= Msat(c). As a consequence, for every
graphG, G |=A ′ c⇔G |= Msat(c). Now, for all graphsG and all closed, rectified MSO formulas
F, we have:
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G |= F ⇔ ∀σ : Var→ DG.GJFK(σ) = true (Definition |=)
⇔ /0→G |=A Cond( /0,F) (Claim 5)
⇔ G |=A Cond(F) (Definition |=A , Cond)
⇔ G |= Msat(Cond(F)) (Claim 5).

Now, the HR condition CondM (F) = Msat(Cond(F)) has the wanted property.

Example8 The closure of the MSO graph formula

F(x1,x2) = ∀X[{∀y∀z(y∈ X∧edg(y,z)⇒ z∈ X)
︸ ︷︷ ︸

G1

∧∀y′(edg(x1,y
′)⇒ y′ ∈ X)

︸ ︷︷ ︸

G2

} ⇒ x2 ∈ X
︸ ︷︷ ︸

G3

]

is transformed into the HR condition

Cond(∀x1∀x2F(x1,x2))
= Cond( /0,∀x1∀x2F(x1,x2))
≡ ∀(x1 x2

,Cond( /0,∀X[G1∧G2⇒G3])))
≡ ∀(x1 x2

X , [Cond( X ,G1∧G2⇒G3])
= ∀(x1 x2

X , [Cond( X ,G1)∧Cond( X ,G2)⇒ Cond( X ,G3)])
≡ ∀(x1 x2

X , [ ∀(x1 x2
X y z ,( y ⊑ X ∧∃(x1 x2

X y z )⇒ z ⊑ X )∧
∀(x1 x2

X
y′
,∃(x1 y′ x2

X
y′
)⇒

y′
⊑ X )⇒ x2

⊑ X ] )

with X ::= /0 | X using the equivalence∀(x(∀(y,c)) ≡ ∀(y◦x,c)) in [HP05].

Inspecting the proof of Theorem2, one may see that only rules of the formX ::= /0 | X of
X ::= /0 | X are used. A HR condition with rules of this form is calledHR0 condition.

Corollary 1 There is a transformationCondM from MSO formulas to HR0 conditions, such
that, for all MSO graph formulas F and all graphs G, G|= F ⇔G |= CondM (F).

In Example6, second-order graph properties are expressed by finite HR conditions. As a
consequence, we obtain the following.

Corollary 2 There is no transformation from finite HR conditions to equivalent MSO formulas.

6 Conclusion

In this paper, we have generalized the notion of graph conditions to the one of HR graph condi-
tions. The variables in the graphs can to be replaced by graphs generated by a assigned hyperedge
replacement system. It is shown that there is a transformation from MSO formulas to HR con-
ditions, but HR conditions are more powerful: they can express certain SO formulas. It remains
the question whether or not there are transformations from HR0 conditions to MSO formulas
and from HR conditions to SO formulas, respectively.
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FO formulas

MSO formulas

SO formulas

conditions

HR0 conditions

HR conditions

[HP09]

this paper

???

Graphs with variables and all replacement morphisms form a category. Distinguishing the
class of all injective replacement morphisms, we obtain a weak adhesive HLR category. As a
consequence, we have

• conditions with variables,

• rules with variables as in [PH96],

• rules with application conditions based on graphs with variables.

We can adapt all results known for weak adhesive HLR categories.
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A Weak adhesive HLR categories

We recall the notions of weak adhesive HLR categories, i.e. categories based on objects of
many kinds of structures which are of interest in computer science and mathematics, e.g. Petri-
nets, (hyper)graphs, and algebraic specifications, together with their corresponding morphisms
and with specific properties. Readers interested in the category-theoretic background of these
concepts may consult e.g. [EEPT06b].

Definition 7 (Weak adhesive HLR category) A categoryC with a morphism classM is aweak
adhesive HLR category, if the following properties hold:

1. M is a class of monomorphisms closed under isomorphisms, composition, and decom-
position, i.e., for morphismsf and g, f ∈M , g isomorphism (or vice versa) implies
g◦ f ∈M ; f ,g∈M impliesg◦ f ∈M ; andg◦ f ∈M , g∈M implies f ∈M .

2. C has pushouts and pullbacks alongM -morphisms, i.e. pushouts and pullbacks, where at
least one of the given morphisms is inM , andM -morphisms are closed under pushouts
and pullbacks, i.e. given a pushout (1) as in the figure below,m∈M impliesn∈M and,
given a pullback (1),n∈M impliesm∈M .

3. Pushouts inC alongM -morphisms are weak VK-squares, i.e. for any commutative cube
(2) inC with pushout (1) withm∈M and (f ∈M orb,c,d∈M ) in the bottom and where
the back faces are pullbacks, the following statement holds: the top face is a pushout iff
the front faces are pullbacks.
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A

B

C

D

m n(1)

A′

A C

C′

f

cB′

B D

D′

b d
m

(2)

Fact 5 (Graphs is weak adhesive HLR [EEPT06b]) The category〈Graphs, Inj〉 of graphs with
classInj of all injective graph morphisms is a weak adhesive HLR category.

Further examples of weak adhesive HLR categories are the categories of hypergraphs with
all injective hypergraph morphisms, place-transition nets with all injective net morphisms, and
algebraic specifications with all strict injective specification morphisms.

Weak adhesive HLR-categories have a number of nice properties, called HLR properties.

Fact 6 (HLR-properties [LS04, EEPT06b]) For a weak adhesive HLR-category〈C ,M 〉, the
following properties hold:

1. Pushouts alongM -morphisms are pullbacks.

2. M pushout-pullback decomposition.If the diagram (1)+(2) in the figure below is a
pushout, (2) a pullback,D→ F in M and (A→ B or A→ C in M ), then (1) and (2)
are pushouts and also pullbacks.

3. Cube pushout-pullback decomposition. Given the commutative cube (3) in the figure be-
low, where all morphisms in the top and the bottom are inM , the top is pullback, and the
front faces are pushouts, then the bottom is a pullback iff the back faces of the cube are
pushouts.

A C E

B D F

(1) (2)

A′

A C

C′

B′

B D

D′
(3)

4. Uniqueness of pushout complements. Given morphismsA→C in M andC→ D, then
there is, up to isomorphism, at most oneB with A→ B andB→ D such that diagram (1)
is a pushout.

B Constructions and proofs

In this section, show that the category〈XGraphs,M 〉 of graphs with variables with the classM

of all injective graph morphisms is a weak adhesive HLR category. For this purpose, we show
thatM is a class of monomorphisms closed under isomorphisms, composition, and decomposi-
tion (Lemma1), the category has pushouts and pullbacks alongM -morphisms (Lemma2), and
pushouts alongM -morphisms are weak VK squares (Lemma3).
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Lemma 1 In XGraphs, the following properties hold:

1. M -morphisms are monomorphisms.

2. M -morphisms are closed under composition and decomposition.

Proof. Straightforward

In the following, we have to show the existence of pushouts and pullbacks alongM -morphisms.
Since every morphism consists of a replacement and a graph mophisms, we first give a construc-
tion for an injective graph morphism and a replacement. The remainder construction can be done
as usual for graph morphisms.

Lemma 2 (Pushouts and pullbacks alongM -morphisms) For every morphism m: A →֒ B in
M and every replacementρ : A⇒C, there is an object D, a morphism m′ : C →֒ D in M and
a replacementρ ′ : B⇒ D forming a pushout. Vice versa, for every morphism m′ : C →֒ D in M

and every replacementρ ′ : B⇒ D, there is an object A, a morphism m: A →֒ B in M , and a
replacementρ ′ : A⇒C and forming a pullback.

A

B

C

D

m

ρ

ρ ′

m′(1)

Proof. The pushout objectD, m′, andρ ′ are constructed as follows.

• VD = VB +(VC−VA)

• ED = EB +(EC−EA)

• YD = YB +(YC−YA)−mY(Dom(ρ))

• sD(e) = if e∈ EB then sB(e) else ife∈ EC and sC(e) ∈ VC−VA then
sC(e) elsemV(sC(e)) for e∈ ED. tD(e) and attD(y) are defined analogously.

• lvD(v) = if v ∈ VB then lvB(v) else lvC(v) for v ∈ VD. leD(e) and lyD(y) are defined
analogously.

• m′ : C→D is given by〈m′V ,m′E〉where m′V is defined by m′V(v)= if v∈VA thenmV(v) elsev
for all v ∈ VC, andm′E is defined analogously.ρ ′ : B⇒ D is defined byρ ′ = {m(y)/R |
y/R∈ ρ}.

Thenm′ : C →֒D is a morphism inM , ρ ′ : B⇒D is a replacement, and the constructed diagram
is a pushout. The pullback objectA, m, andρ are as follows.

• VA = VB∩{m′V(v) | v∈ VC}

• EA = EB∩{m′E(e) | e∈ EC}
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• YA = YB∩{m′Y(y) | y∈ YC}∪YC

• sA(e) = sB(e) for all e∈ EA. tA(e) is defined analogously.
attA(y) = if y∈C then attC(y) else attB(y) for all y∈ YA.

• lvA(v) = lvB(v) for all v∈ VA. leA(e) and lyA(y) are defined analogously.

• m: A→ B is restriction ofm′ : C→ D to A andρ : A→C is defined byρ = {y/R | y ∈
YA,(mY(y)/R) ∈ ρ ′}.

Then m: A→ B a graph morphism inM , ρ : A⇒ C is a replacement, and the constructed
diagram is a pullback.

Lemma 3 In XGraphs, pushouts alongM -morphisms are weak VK squares.

Proof. By case analysis, similar to the proof in [EEPT06a]. In the following, we will use the
notationABCDto designate the square fromB←A→C to B→D←C. In the commutative cube
below, letABCDbe a pushout withm∈M and the back facesA′AB′B andA′AC′C be pullbacks.
Assume thatf ∈M or b,c,d ∈M .

A′

A C

C′

B′

B D

D′

m

f ∗

f
m∗

a
n

g∗

g

n∗

b

c

d

B′

B D

D′

B2

f ∗

g∗

b d
u g∗2

b2

We proceed by case distinction.
Case 1. f ∈M and one of the back arrows, i.e.a,b,c, is in M . By Lemma2, all morphisms
except the “vertical” morphismsa,b,c,d are in M . Because the back sides of the cube are
pullbacks, all ofa,b,c are inM . By commutativity of the cube,d ∈M . The proof proceeds as
for the category of hypergraphs in [EEPT06a].
Case 2.b,c,d ∈M and one ofg, f , f ∗ is in M . Analogous to Case 1.
Case 3. f is in M and none of the back arrowsa,b,c are inM . Because the back sides are
pullbacks,f ∗,g∈M .
Case 3.1.Assume the top is a pushout. Theng,g∗ ∈M . Assume a pullback objectB2 with
morphismsg∗2 : B2→ D′ andb2 : B2→ B. Then, there is a uniqueu : B′→ B with g∗ = g∗2u and
b = b2u. Similar to [EEPT06a], we can show thatu is bijective and thereforeB′ ∼= B2.
Case 4.b,c,d ∈M andg, f , f ∗ 6∈M . The proof is analogous to Case 3.

Proof of Theorem3. 1.M is a class of monomorphisms closed under isomorphisms, composi-
tion and decomposition: The class of all injective graph morphisms in XGraphs is a class of
monomorphisms. It suffices, then, to show thatg◦ f is in M for morphismsg, f ∈M , and that
g◦ f ∈M implies f ∈M . Both propositions are true due to [AHS90, Proposition 7.34].
2. XGraphs has pushouts and pullbacks alongM -morphisms: ForA →֒ B in M , the pushout of
B ←֓ A→ E is constructed by splitting the morphismA→ E into a replacementρ : A⇒C and
a morphismC→ E, constructing (1) as pushout ofB ←֓ A⇒C accoring to Lemma2 and (2) as
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pushout ofD ←֓ C→ E as usual (e.g. in the category of hypergraphs [EEPT06b]). Then (1)+(2)
is a pushout.

A C E

B D F

(1) (2)

For E →֒ F in M , the pullback ofB →֒ F ← E is constructed by splitting the morphismB →֒ F
into a replacementρ : B⇒D and a morphismD→ F, constructing (2) as usual as pullback (e.g.,
as in the category of hypergraphs [EEPT06b]) and (1) as pullback according to Lemma2. Then
(1)+(2) is a pullback.
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