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Carl v. Ossietzky Universitat Oldenburg, Germany

Abstract: Graph conditions are most important for graph transforomagystems
and graph programs in a large variety of application are&veNheless, non-local
graph properties like “there exists a path”, “the graph srexted”, and “the graph
is cycle-free” are not expressible by finite graph condgiom this paper, we gen-
eralize the notion of finite graph conditions, expressivedyivalent to first-order
formulas on graphs, to finite HR graph conditions, i.e., éigitaph conditions with
variables where the variables are place holders for graphergted by a hyperedge
replacement system. We show that graphs with variables epldaement mor-
phisms form a weak adhesive HLR category. We investigatexpeessive power
of HR graph conditions and show that finite HR graph condgiare more expres-
sive than monadic second-order graph formulas.

Keywords: Graph conditions, graphs with variables, hyperedge rept@nt sys-
tems, monadic-second order graph formulas, weak adhesifReddtegories.

1 Introduction

Graph transformation systems have been studied exteynsivel applied to several areas of
computer scienceqjoz97 EEKR99 EKMR99] and were generalized to high-level replacement
(HLR) systemsEHKP91 and weak adhesive HLR systentsHPTO6). Graph conditions, i.e.,
graph constraints and application conditions, studied mgEH86, HHT96, HW95, KMPO5,
EEHPO06 HP0Y, are most important for graph transformation systems aag@lgprograms in
a large variety of application areas. Graph conditions aréntuitive, graphical, yet precise
formalism, well-suited for describing structural propest Moreover, finite graph conditions
and first-order graph formulas are expressively equivdle®09. Unfortunately, typical graph
properties like “there exists a path”, “the graph is conedttand “the graph is cycle-free” are
not expressible by first-order graph formul&o[9Q Cou971 andfinite graph conditions. They
only can be expressed Inyfinite graph conditions.

In this paper, we generalize the concept of graph condifibi¥)9 to HR graph conditions,
i.e. graph conditions with variables where the variablespace holders for graphs generated
by a hyperedge replacement (HR) system. By the HR system ptaénaa finite description of
a, in general, infinite set of graphs, e.g., the set of allpaitle investigate the expressive power
of HR graph conditions and show that monadic second-ord&dMgraph formulas can be ex-
pressed by equivalent HR graph conditions, but also sommndearder (SO) graph properties

* This work is supported by the German Research FoundatioGjDRder grant GRK 1076/1 (Graduate School on
Trustworthy Software Systems).
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can be expressed by HR graph conditions.

[HPOY

FO formulas————— conditions

this paper
MSO formulas¢> HR conditions

SO formulafs’

The usefulness of HR conditions is illustrated by an exangbla car platooning maneuver
protocol.

Examplel (Car platooning) In the following, we study “a prototypical instance of a dyma
communication system”, originally taken from the CalifariPath project HESV9]]. It repre-
sents a protocol for cars on a highway that can organize tgessinto platoons, by driving
close together, with the aim to conserve space and fuel. Ale#won is modeled as a directed
graph where the nodes represent the cars and the direct tbdgeisect following relation. Ad-
ditionally, the leader of a car platoon is marked by a loop.

O+ 0O+0+0+09
A car platooning state graph consists of zero or more caogiest

O+0O+0+02 O+0O+0+0+0V
OB OO0

Car platooning operations like splitting a car platoon irotear platoons, or joining two car
platoons into a single one can be described by graph rep&atamles. When performing these
operations, certain car platooning properties have to tisfied:

(1) Every follower has a unique leadet(Q, 3( %13) Vv (3( )NB© 22 1

En))

(2) Leaders are not connected by a directed ;ﬂ)
(3) The car platooning state graph is circle—fré )

with X :=0—0 | O—O-H{X20,

The car platooning properties are described by HR graphitonsl Bauer Bau0g and
PennemannHen09 model the following relation with respect to the leadert bat the direct
following relation. HR graph conditions allow to expresstpeonditions as in the car platooning
example.

The paper is organized as follows: In Sectiyrwe introduce graphs with variables. In Sec-
tion 3, we generalize graph conditions to HR graph conditions,graph conditions with vari-
ables equipped with a hyperedge replacement (HR) syste8edtiord, we present a number of
examples for HR conditions. In Sectibnwe investigate the expressive power of HR conditions.
A conclusion including further work is given in Sectién
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2 Graphs with variables

Graphs with variables consist of nodes, edges, and hypesedifiges have one source and one
target and are labeled by a symbol of an alphabet; hyperduges an arbitrary sequence of
attachment nodes and are labeled by variables.

Definition 1 (Graphs with variables) Let € (Cy,Cg,Var) be a fixed, finite label alphabet
where Var is a set of variables with a mapping rank: ¥YaNg defining the rank of each vari-
able. Agraph with variablesover C is a syster®s = (Vg, Eg, Y, S, e, atlg, Ivg, leg,lyg) con-
sisting of finite sets ¥, Eg, and Yg of nodes(or verticed, edges andhyperedgessourceand
target functionssg, tg: Eg — Vg, anattachment functioatt : Yg — V¢, andlabeling functions
Ivg: Vg — Cv, leg: Ec — Cg, ly: Y — Var such that, for aly € Y, |att(y)| = rank(ly(Y)).
Fory € Yg, rankly) = |att(y)| denotes theank of y. For Yg =0, G is agraph Thesizeof a
graphG is the number of nodes and edges, i.e.,§e= |Vg|+ |Eg|. %ar denotes the set of alll
graphs with variables? the set of all graphs, arid" the set of all graphs of sizé n. Forx € Var
with rank(x) = n, x* denotes the graph with the nodes. .. ,v, and one hyperedge attached to
vi...Vn. A pointedgraph with variablesR, ping) is a graph with variableR together with a
sequence pip= V1 ...V, of pairwise distinct nodes froR. We write rankR) for the numben
of nodes and Pigfor the set{vy,...,vn}.

Remarkl The definition extends the well-known definition of grapb&$79 by the concept

of hyperedges in the sense 6fdb94. Graphs with variables also may be seen as special hyper-
graphs where the set of hyperedges is divided into a set eésddyelled with terminal symbols
(of Cg) and a set of hyperedges labelled by nonterminal symbolafpf

We extend the definition of graph morphisms to the case ofrgrapth variables.

Definition 2 (Graph morphisms with variables) @raph) morphism (with variables):gG —

H consists of functiongy : Vg — Vy, 0e: Ec — Ey, and an injective functiogy : Yg — Yy
that preserve sources, targets, attachment nodes, ansl ldiad is, § cge = gv 0Sg, tH o g =

Ov otg, aty = atlg, vy o9y = Ivg, leq oge = leg, and Iy, ogy =lyg. A morphismgis injective
(surjective if gy, Oe, andgy are injective (surjective), and asomorphisnif it is both injective
and surjective. In the latter cag& andH areisomorphi¢ which is denoted byc =2 H. The
composition v g of g with a graph morphisnin: H — M consists of the composed functions
hv ogv, he o gg, andhy ogy. For a graptG, theidentityidg: G — G consists of the identities
idgv, idgg, and iy on Gy, Gg, andGy, respectively.

Example2 Consider the graphs andH over the label alphab& = ({A,B}, {0}, Var) where

the symbold stands for the invisible edge label and is not drawn¥sd= {x,y} is the set of
variables of rankd and?2, respectively. The grap@ contains five nodes with the labétsand

B, respectively, seven edges with labelvhich is not drawn, and one hyperedge of rank 4 with
labelx. Additionally, the grapMH contains a node, an edge, and a hyperedge of rank 2 with
labely.
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The drawing of graphs with variables combines the drawirgraphs in Ehr79 and the drawing

of hyperedges inHab92 DHK97]: Nodes are drawn by circles carrying the node label inside,
edges are drawn by arrows pointing from the source to thettargde and the edge label is
placed next to the arrow, and hyperedges are drawn as bolesitachment nodes where the
i-th tentacle has its numbewritten next to it and is attached to th¢h attachment node and the
label of the hyperedge is inscribed in the box. Arbitrarypgranorphisms are drawn by usual
arrows -7 the use of " indicates an injective graph morphism. The actual mapmhg
elements is conveyed by indices, if necessary.

In [PH9§ Pra04, variables are substituted by arbitrary graphs. In thisepavariables are
replaced by graphs generated by a hyperedge replacemeemsy# can be shown that sat-
isfiability by substitution and satisfiability by replacemare expressively equivalent. By our
opinion, the second satisfiability notion is the more adégua

Definition 3 (HR systems) Ayperedge replacement (HR) systéfnis a finite set of replace-
ment pairs of the formx/R wherex is a variable andR a pointed graph with rar{k) = rank(R).
Given a graplG, the application of the replacement pajiR to a hyperedgg with labelx and
rank(y) = rank(x) proceeds in two steps: 1. Remove the hypergdgem G, yielding the graph
G—{y}. 2. Construct the disjoint uniofG—{y})+R and fuse thé" node in aig(y) with theit"
attachment point dR, fori =1,... rank(y), yielding the grapiH. ThenG directly derives Hoy
X/R applied toy, denoted byG =, ry H or G =4 H providedx/R € Z. A sequence of direct
derivationsG =4 ... =4 H is called aderivationfrom G to H, denoted byG =7, H. For every
variablex, Z(x) = {G € 4 | x* =, G} denotes the set of all graphs derivable frehby Z.

Example3 The hyperedge replacement systefrwith the rules given in Backus-Naur form

X = e—s | +——{X}*-s generates the set of all directed paths from node 1 to node 2.

Assumptiorl In the following, let% be a fixed HR-system.

Hyperedge replacement systems define replacements. Aeemdat morphism consists of a
replacement and a graph morphism.

Definition 4 (Replacement morphisms) #placements a finite seto = {y1 /Ry, ...,¥n/Rn}
of pairsy; /R, where, fori = 1,... ,n, y; is a hyperedgeR € Z(ly(y;)) is a pointed graph with
rank(y;) = rank(R;), andys,...,y, are pairwise distinct. The application pfto a graph with
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variablesG yields the graplp(G) obtained fronG by applying Iyyi) /R € Z toy; fori=1,...n.

0 denotes themptyreplacement. Areplacement) morphisi= (g,repl): G — H consists of
a graph morphisng: G — H’ and a replacement with(H’) = H. It is injectiveif gis injective.
(g,0) is agraph morphismand(idg, 0) theidentity.

Remark2 For every replacement morphisig,p): G — H with graph morphisng: G — H’
andp(H’) =H, there is a paitp’,d'): G — H with replacemenp’ = {y/R| g(y)/Re€ p} and a
graph morphism withf |c_v, = g andg'| () = id for ally € Y. In the following, we often use
replacement morphisms consisting of a replacement and gisan.

G H

A b

G ——H
g

Remark3 For replacement morphisnigi,p1): G — H and(gz,p2): H — |, thecomposition
is defined by(g, o g1,p20p;5): G — | where the graph morphisms and replacements are as in
the figure below.

O1 9

G ,H/ >|//

le HPI
92

H——]
sz
I

Fact1l The composition of replacement morphisms is a replacemernphsm.

~

Notationl Replacementp with p(G) = H are denoted bp: G =-H.

In [Pra04, Ulrike Prange sketches that graphs and graph morphisris wariables based
on substitution form a category and that the category wighdlass.# of all injective graph
morphisms is an adhesive HLR category. Similarly, one cawshat graphs with variables and
replacement morphisms form a category and the categorythgtblass# of all injective graph
morphisms is a weak adhesive HLR category.

Fact 2 (Category XGraphs) Graphs with variables and replacement morphisms form ttee ca
gory XGraphs

Proof. Consequence of the associativity and identity of replacesnand graph morphisms[J

Fact 3 (XGraphs is weak adhesive HLR)The categoryXGraphs.#) of graphs with variables
with the class# of all injective graph morphisms is a weak adhesive HLR aateg
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Proof. The proof is given in the Appendii. O

3 HR conditions

Graph conditions are a well-known concept for describirapgrproperties in a graphical way
by graphs and graph morphisms (see edH§6, HHT96, HW95, KMPO5, EEHP06 HP(Q9). In

the following, we generalize the concept to HR condition® ¢bnditions are conditions in the
category of graphs with variables where the variables magplaced by graphs generated by a
hyperedge replacement (HR) system. Additionally, HR ctimas may contain conditions of the
form P C C whereP andC are graphs with variables with the meaning “is subgraph ofiis is

a counterpart to the MSO subformwla X with the meaning “is element in”.

Assumptior? In the following, let.#' be the class of all injective replacement morphisms.

Definition 5 (HR conditions) Acondition (with variablespver aP is of the form trueP’ CC
or 3(a,c), whereP’, P, andC are graphs with variable§) C P, a: P — C a morphism, and
c a condition ovelC. Moreover, Boolean formulas over conditions ofare conditions over
P. Ja abbreviatesi(a, true), V(a,c) abbreviates-3(a, —c). A HR condition(c, %) consists of a
condition with variableg and a HR systen#. If # is clear from the context, we only write the
conditionc. A HR condition isfinite, if every conjunction and every disjunction is finite.

3 p—2—C —2])
AP
G

Every replacement morphissatisfiesrue. A replacement morphisp: P — G satisfies PC C

if p(P’) C §(C), and3(a,c) if there exists a replacement morphisnm”~#’ such thagoa = p
and, if c is a condition ovelC, § satisfiesc. The satisfaction of conditions by replacement
morphisms is extended to Boolean formulas over conditionthé usual way. Every graph
satisfiedrue and a grapls satisfieghe conditionc, if ¢ is a condition over 0 and the morphism
0 — G satisfiesc. We write g |= ¢ [G = c] to denote that all replacement morphismfgraphs

G] satisfy c. Two conditionsc andc’ areequivalent denoted byc = ¢, if, for all replacement

morphismsp; p = ciff pEC.

Remarkd The definition generalizes the definitions of conditionsHi[l 96, HW95, KMPO5,
EEHPO6 HP0OY. In the context of graphs, conditions are also calteshstraintsand, in the
context of rules, conditions are also calkepblication conditionsThe generalization is twofold:

(1) Vvariables in HR conditions are allowed. The variables @placed by graphs generated
by a corresponding HR system. By this generalization, sg¢wafinite conditions can be
expressed by finite HR conditions.

(2) Conditions of the forni® C C are allowed. Typical examples are aré_ [x] with X ::=0 |
» and+—- C [x] with X ::= 0| [x] =—=. By this generalization, there is a transformation
of MSO formulas into equivalent HR conditions.
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Example4 Consider the HR conditions

pat h(1,2) = 33 31— Xy

connect ed = V(00— s s,path(1,2)

cycl efree = 30— )

haniltonian = 30— X A=K — +=iX+))

with the HR systenx ::= s—s | s—+—{X>~s. A morphism with domaire ¢ satisfies the
conditionpat h(1,2) iff there exists a path from the image bto the image o® in the range.
A graph satisfiesonnect ed iff, for each pair of distinct nodes, there is a nonempty pa#h,
the graph is strongly connected. It satistig| ef r ee iff there does not exist a cycle, i.e.,the
graph is cycle-free. A graph satisfiaam | t oni an iff there exists a circuit and there is no
additional node outside the circuit, i.e., the graph is Hemian.

Notation2 For a morphisma: P — C in a condition, we just depid€, if P can be unam-
biguously inferred, i.e. for constraints over the emptypgr@ and for conditions over some
left- or right-hand side of a rule. E.g. the constrawam | t oni an has the short notation
315X, B +).

In the following, we investigate the model checking probliEemHR conditions:

Given: A HR conditionc and a graplis
Question: G=c?

For finite HR conditions, the model checking problem is dabld.

Theorem 1(Decidability of the model checking problem)or every finite HR conditiod and
every morphisnp [graph G], it is decidable whether or ngi |= € [G = €].

morphismp Decidep |- ¢ yes/no
conditionC 3

Proof. Let ¢ = (c,#) be a finite HR condition. Without loss of generality, we maguase that
Z is monotone, i.e., for each rulgR € #, sizgx*) < sizgR). Otherwise, we transfori# into

an equivalent monotone HR system (se@lj93, Theorem 1.5). Lep = (po,p): P — G be a
morphism. Suppose that s{iz&) = nfor somen > 0. Let Repl denote the set of all replacements.
For allx € Var, n € Ng, andC € %ar, the sets

X" (X) = {Ge¥"|x =},G}
Repl(C) = {peRepl|p(y) e Z"(ly(y)) forallye Yc}
#Z"(C) = {peRepl'(C)|p(C)<n}

can be constructed effectively. Foe Var andk € N, define setsz(x) recursively as follows:
#1(X) ={Re % | x/Re Z} and, fork > 1, Z{ ,(x) = Z;(X) U{p(R) € 4" | x/Re %Z,p €
Repf(R)} where Refl(R) = {p € Repl| p(y) € Z/(ly(y)) forally € Yr}. SinceZp(x) C
Ky ,(x) € g" for all ke N and¥" is finite, there is somé(x) € N such that%ln(x) (X) =
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%l"(x)ﬂ(x). This implies%’l”(x) (x) = %ln(mm(x) for all m> 1. Now all Z/(x) up to the small-

est possibld (x) can be constructed effectively. Furthermageé?(x) = %QX) (x) may be ver-
ified. Z2"(x) = U_1Zy. Since the setsz(x) are monotonically increasing subsets 4t
and since?" is finite, there is somé(x) € N such that@lrzx) (x) C ,%’QX)H(X). By definition,
%l"(x) (x) = %l"(x) ()= %l"(x) (X)) = ... Thus,Ul 1%, = %n(x) (x). The second and third
statement follow directly from the first one.

For “existential” HR conditionsi = (d, %) with d = 3(a,c) with a: P — C,

p’:<dv%> — p):Vpe%”(C)p(d)-

1117

4= (p,q) € #"'.Goa=PpAG[cC

Jp € Repl3ge .Z.qop(a) = pAgEp(c)
p ’: \/peRepIp(d)

P Vpesn(c)p(d).

Since#"(C) is finite, \ pczn(c) p(d) is a finite. For all existential subconditions, satisfiaili
can be tested and, for non-existential conditions, satitifiacan be inferred. For a graph and
a HR condition(d,#) whered is a condition over 0G = (d,#) <= 0— G = (d,Z%). O

Remarks Theoreml makes use of the monotonicity property of HR systems. Alfgwnono-
tone replacement system instead of (monotone) HR systemsvonld get a corresponding
decidability result.

4 A classification of graph properties

By agraph property we mean a predicate on the class of graphs that is stable isodgrphism.

In the following, we collect a number of graph properties \noto be first order, monadic
second-order, and second order, respectively, and shdvmitst of them can be expressed by
HR conditions.

Fact 4 (classification of graph propertie€du9q) The following properties of a directed, la-
belled graphz and nodes andw are first order (FO), monadic second-order (MSQO), and second
order (SO), respectively:

Proc. GMT 2010



@ ECEASST

properties of a directed, labelled gra@h FO MSO SO
—simple yes  yes yes
—k-regular yes yes yes
— degree< k yes  yes yes

— has a nonempty path fromtow no yes yes

— (strongly) connected no yes yes
— planar no yes yes
—k-colorable no yes yes
— Hamiltonian no yes yes
—lis atree no yes yes
—is a square grid no yes yes
— has an even number of nodes no no yes
— has as many edges labeledsb no no yes

— has a nontrivial automorphism no no yes

—cardVg) belongs to a given nonrecursive set  no no no

The following monadic second-order graph properties caexpeessed by HR conditions.

Exampleb (MSO graph properties) For the hyperedge replacement system with the rules
X:= s—s | s+—+={X}%s , we have the following:

1 2

1. Paths. A nonempty pathin G is here a sequence of nodas, V-, ... ,V,) withn> 2 such
that there is an edge with sourgeand target;1 for alli andv; =v; = {i,j} = {1,n};
if vi = Vi, this path is aircuit. The HR conditiorpat h(1,2) =3( s 3 — X )
requires that there is a nonempty path from the image of letintlage of 2.

2. ConnectednessThe HR conditiorconnect ed =V(s s,pat h(1,2)) requires that, for
each pair of distinct nodes, there is a nonempty path, he.gtaph is strongly connected.

3. Cycle-freeness. The HR conditioncycl ef r ee = #( ) requires that the graph is
cycle-free.

4. Planarity. By Kuratowski’'s Theorem (see e.gEye79) a graph isplanarif and only if
it has no subgraph homeomorphicKgs or Ks. Two graphs arénomeomorphiaf both
can be obtained from the same graph by insertion of new nddiegoee 2, in edges, i.e.
an edge is replaced by a path whose intermediate nodes arevallThe HR condition
pl anar = A(KZ) A A(K3 5) whereKZ andKj 5 are obtained from the graphs andKs 3
by replacing all edges by hyperedges with labekspectively, requires that the graph has
no subgraph homeomorphic@ orKs 3, i.e. that the graph is planar.

5. Coloring. A coloring of a graph is an assignment of colors to its nodes so that two ad
jacent nodes have the same colorkAoloring of a graphs usesk colors. By Kénig’s
characterization (see e.gH#r69), a graph is 2-colorable if and only if it has no odd
cycles. For undirected graphs, i.e., graphs in which eactirected edge stands for
two directed edges in opposite direction, the HR condilonl or = E() with
Xi=eo—3 |1 “[X}*- requires that there are no cycles of odd length, i.e., the
graph is 2-colorable.
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6. Hamiltonicity. A graph isHamiltonian if there exists a Hamiltonian circuit, i.e. a sim-
ple circuit on which every node of the graph appears exacibeqsee e.g. Hve79).
For undirected graphs, the HR conditibani | t oni an = 3( LA( *)) with
Xi= 3| requires that there exists a simple circuit in the graph and
there is no additional node in the graph, i.e. every nodeefgtaph lies on the circuit, the
graph is Hamiltonian.

7. Trees. A graphG is atreeif is connected, cycle-free, and has a root. A gr&phas a
rootv if v is a node inG and every other nodé in G is reachableromyv, i.e. there is a
directed path fronv to V' (see e.g. [fve79). For undirected graphs, the HR condition
tree = uconnect ed Aucycl efree A3(s,V(s s,upath(1,2))) (with the undi-
rected versions otonnect ed, cycl ef r ee, andpat h(1,2)) requires that the graph

is connected, cycle-free, and has a root, i.e., the graplréea
The following second-order graph properties can be expdelsg HR graph conditions.
Example6 (SO graph properties)

1. Even number of nodes.The HR conditioreven = 3( (X, A([X] ¢)) withx::= 0|« »
expresses the SO graph property “the graph has an even noifedes”.

2. Equal number of a's and b's. The HR conditiorequal =3([X,3(X1 @)AH(X ©@))
with X .= expresses the SO graph property “the graph has as many nodes
labelleda asb”.

3. Paths of same length.The HR conditior2pat hs, 2=3( 23— I-— ) with x:
lo——e?2

3o o4 3._,.'>I<.' expresses the SO graph property “there ex:st two nodemwsm
paths of same Iength from the image of 1 to the image of 2.

5 Expressiveness of HR conditions

We are interested in classifying HR conditions, i.e. we wartlassify the kind of graph prop-
erties that can be expressed by HR conditions. To this effeetcompare HR conditions and
monadic second-order formulas on grapf®({9Q Cou974. We show that there is transfor-
mations from MSO formulas into equivalent HR conditions.céd/iversa, there is no such a
transformation: HR graph conditions can express secoder@raph properties.

Let Rel be a finite set of relation symbols. Let Var containiiitial variables and relation
variables of arity one. Since a relation with one argumemtathing but a set, we call these
variablesset variables A monadic second-order formulaver Rel is a second-order formula
written with Rel and Var: the quantified and free variables iadividual or set variables; there
iS no restriction on the arity of symbols in Rel. In order td gwre readable formulas, we shall
write x € X instead ofX(x) whereX is a set variable.

Definition 6 (MSO graph formulas) Let Var be a countable set of indivicurad set variables.
The set of allmonadic second-order (MSO) graph formul@wer Var) is inductively defined:
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Forb e C andx,y,z X € Var, Ip(X), inc(x,y,z), X =Y, andx € X are formulas. For formulas,
F (i € 1) and variables, X € Var, —=F, Ajc/F, 3xF, and3XF are formulas. For a formulk,
FregF) denotes the set of ditee variables ofF. A formula isclosed if FregF) # 0 does not
contain free variables. Theemantic GF](o) of a formulaF in a non-empty grapl@ under
assignment : Var — Vg+Eg is inductively defined as follows. The semantics of the fdamu
Ih(X), Inc(x,y,2), x =y, -F, AielF, and3xF in G undero is defined as usual (seeliP09).
G[x € X](o) = true iff o(x) € o(X) and G[IXF](0) = true iff G[F](cg{X/D}) = true for
someD C Vg or D C Eg whereag{X/D} is the modified assignment with{ X /D}(X) =D and
o{X/D}(x) = o(x) otherwise. A graplG satisfiesa formulaF, denoted byG = F, iff for all
assignments : Var — Dg, G[F] (o) = true.

Notation3 The expressioNic|F abbreviates the formulanic) —F, F = G abbreviates-F v
G, VXF abbreviates-3x—F, andvXF abbreviates-3X—F.

Example7r The MSO formuldr(x1,%2) = YX[{VYVz(y € X Aeddy, z) = z€ X) AVy(edd Xy, Y) =
ye X)} = x2 € X] [Cou974 expresses the property “There is a nonempty path oo x,”

. The formulaF, = (x=Y) V Fy(X,y) expresses the propertx =y or there is a nonempty path
from x to y” and the formula=, = Vx,y[F1(x,y)] expresses the property “the graph is strongly
connected”.

MSO graph formulas can be transferred in equivalent finitegrdph conditions.

Theorem 2 (From MSO formulas to HR conditions) There is a transformatiof€ond,, from
MSO formulas to HR conditions, such that, for all MSO graptmiglas F and all graphs G,
GEF < GECondy(F).

Proof. LetF be a MSO formula. Without loss of generality, we may assuraeRtis closed and
rectified, i.e. distinct quantifiers bind occurrences ofidet variables; otherwise, we build the
universal closure oF and rename the variables. Sir€ds rectified, the variables df can be
represented by isolated nodes, edges, and hyperedgesgrafites of a constructed condition.
Let P be a graph with variables. If the sBf, = Isop + Ep + Yp), the set of all isolated nodes,
edges, and hyperedgesHnis a subset of the set Var of variables, then every morppisi = G
into a non-empty grap@® induces an assignmeat Var — D¢ such thatp= g[Dp], i.e., p(x) =
o(x) for eachx € Dp. Vice versa, an assignmeat: Var — D¢ induces a mappin®p — Dg
that may be extended to a graph morphignP™— G with p = o[Dp].

FregF)
IN
Var2Dp - P
ot s
Dg - G

The HR condition is given by Cor#t) = Cond0,F ), where 0 denotes the empty graph. For a
MSO formulaF and a graptP with FregF) C Dg C Var, the HR condition CondP,F) is con-
structed as follows: For the expressions known from firgeotheory, we use the construction
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in [HPOY. For the atomic MSO expressions= X and3XF, wherex is an individual variable
andX a set variable, we define the transformation as follows:
s O if xeVp
CondPx € X) { e CE i xe Ep
CondP,3XF) = V;(3(P—C,CondC,F)),Z) where
C=P+x,Z1: X:=0|x]* andZ2: X :=0| [x] «—=

The following claim is based on/’-satisfiability obtained from the usual satisfiability by re-
placing all occurrences o7’ by <7’, the class of all replacement morphisms. We wkitg
to denotew/’-satisfiability. For all rectified MSO graph formulds all graphsG, all assign-
mentso : Var — Dg, and all morphism®:"P — G with 0 = p[Dp|, G[F](0) =true < p =y
CondP,F). The proof makes use of the proof of the corresponding setefor rectified FO
formulas given in HP09 and is done by structural induction.
Basis. For the atomic formulas,(x), inc(x,y,z), andx =y, the proof is as in{iP09. For atomic
formulas of the fornx € X, the statement follows directly from the definitions:

G[x € X](o) = true

& o(x) € a(X) (Semantics ok € X)

< P(e) Cp(X) (b= 0o[Dp], x,X € FregxeX) € FregxeX) C Dp)
& PEa 2 E (Semantics ok C X))

< P~ CondPxe X) (Definition of Cond)

Hypothesis. Assume, the statement holds for rectified formuttas

Step. For formulas of the form-F, A F, IXF, the proof is as infiP09. For formulas of
the form3XF, graphsG, and assignments, the statement follows from the definitions and the
induction hypothesis:

G[3XF](o) =true

< 3ID C Dg.G[F](o{X/D}) =true (Semantics oBXF)
< dD CVg.G[F](og{X/D})=trueor
dD C Eg.G[F](0o{X/D}) = true (Assignment)
& J:C—-Ged.p=G§oaN(Ex CondC,F) (Hypothesisg= o{X/D}Dp])
< PEs3I(P—C,CondC,F)) (Definition |=,,, p= o[Dp])
&< Pl CondP 3XF) (Definition Cond)

wherea: P — CwithC =P+ [x].

o/ -satisfiability is closely related to the satisfiability obmadic second-order graph formu-
las. As in HPOQ9, there is a transformation from?’- to .#'-satisfiability. [from.«7’- to .#'-
satisfiability HPO09J] There is a transformation Msat such that, for every caadit over 0 and
every graplG, G =, c< G = 4, Msat(c). . Let(p, p) be a replacement morphisty', p’) the
corresponding pair consisting of a morphism and a replangraedc’= (c,%#) a HR condition.
By the corresponding theorem P09, p’ =, c < p' = Msaf(c). By the definition of the
classes of replacement morphism$ and.Z’, (p',p’) =« c< (P, p") = Msat(c) and, for the
corresponging paifp*, p*), (p*,p*) E« c< (p*,p*) = Msat(c). As a consequence, for every
graphG, ¥ =, ¢ < G = Msat(c). Now, for all graph< and all closed, rectified MSO formulas
F, we have:
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GEF <« Vo:Var— Dg.G[F](0)=true (Definition =)

< 0—GE, Cond0,F) (Claim5)
< GE, CondF) (Definition =,,, Cond)
< Gl MsafCondF)) (Claim5).
Now, the HR condition Cong (F) = MsatCondF)) has the wanted property. O

Example8 The closure of the MSO graph formula

F(x1,%2) = VX[{VyVz(y € X Aeddy,z) = z€ X)AVY (eddx,Y) =Y € X)} = x € X
(‘3r1 Gy Gs

is transformed into the HR condition

Cond Vx1VxoF (x1,X2))
Cond 0, Vx1VxoF (X1, %2))

2 X1, [Cond ], G1 A Gz = Gg)

V(2 2, [Cond [x],G1) A Cond [x],G,) = Cond[x],G3)])
V(e [V(aadys, (s EXAI(gaXs—s) = ¢ EXI)A
v( A ey) = s EX)= s CX])

1 |
<C
—
X X
o

with X ::= 0| ] * using the equivalenc&(x(V(y,c)) =V(yox,c)) in [HPO].

Inspecting the proof of Theore) one may see that only rules of the foXt:= 0| [x]« of
X ::=0| [x]*—= are used. A HR condition with rules of this form is calld&0 condition

Corollary 1 There is a transformatioicond , from MSO formulas to HRO conditions, such
that, for all MSO graph formulas F and all graphs G,}sF < G = Cond 4 (F).

In Example6, second-order graph properties are expressed by finite HRitmns. As a
consequence, we obtain the following.

Corollary 2 There is no transformation from finite HR conditions to eglént MSO formulas.

6 Conclusion

In this paper, we have generalized the notion of graph comditto the one of HR graph condi-
tions. The variables in the graphs can to be replaced by giggrerated by a assigned hyperedge
replacement system. It is shown that there is a transfoomd@tom MSO formulas to HR con-
ditions, but HR conditions are more powerful: they can egpreertain SO formulas. It remains
the question whether or not there are transformations fré®@ Eonditions to MSO formulas
and from HR conditions to SO formulas, respectively.
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[HPOY

FO formulas—————— conditions

thi
MSO formulasMHRO conditions

299
SO formulas———— HR conditions

Graphs with variables and all replacement morphisms formtegory. Distinguishing the
class of all injective replacement morphisms, we obtain alknedhesive HLR category. As a
consequence, we have

e conditions with variables,

e rules with variables as irfH94,

e rules with application conditions based on graphs withalzes.

We can adapt all results known for weak adhesive HLR categori
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A Weak adhesive HLR categories

We recall the notions of weak adhesive HLR categories, i&tegories based on objects of
many kinds of structures which are of interest in comput@rse and mathematics, e.g. Petri-
nets, (hyper)graphs, and algebraic specifications, tegetith their corresponding morphisms
and with specific properties. Readers interested in theyogteheoretic background of these
concepts may consult e.g=EPTO6H.

Definition 7 (Weak adhesive HLR category) A categafywith a morphism class# is aweak
adhesive HLR categoryf the following properties hold:

1. # is a class of monomorphisms closed under isomorphisms, agitigm, and decom-
position i.e., for morphismsf andg, f € .#, g isomorphism (or vice versa) implies
gofe#; f,ge # impliesgof € #;andgo f € #,gc .# impliesf € 4.

2. % has pushouts and pullbacks along-morphismsi.e. pushouts and pullbacks, where at
least one of the given morphisms is.i#, and.#-morphisms are closed under pushouts
and pullbacksi.e. given a pushout (1) as in the figure belows: .# impliesn € .# and,
given a pullback (1)n € .# impliesme .# .

3. Pushouts irg” along.#-morphisms are weak VK-square£. for any commutative cube
(2) in ¢ with pushout (1) wittme .# and (f € .# orb,c,d € .#) in the bottom and where
the back faces are pullbacks, the following statement hdtuks top face is a pushout iff
the front faces are pullbacks.
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A/_};cl
A—C // ‘; / CJ (2)
ml 1) ln B 1 Df

. P rva

B——D

Fact5 (Graphs is weak adhesive HLREPTO6l) The categoryGraphsinj) of graphs with
classinj of all injective graph morphisms is a weak adhesive HLR aateg

Further examples of weak adhesive HLR categories are tlegaaes of hypergraphs with
all injective hypergraph morphisms, place-transitionsneith all injective net morphisms, and
algebraic specifications with all strict injective spegtion morphisms.

Weak adhesive HLR-categories have a number of nice prepedalled HLR properties.

Fact 6 (HLR-properties I[S04, EEPTO6) For a weak adhesive HLR-categoly', %), the
following properties hold:

1. Pushouts alongZ-morphisms are pullbacks.
2. ./ pushout-pullback decompositionif the diagram (1)+(2) in the figure below is a

pushout, (2) a pullback) — F in .# and & — B or A— C in .#), then (1) and (2)
are pushouts and also pullbacks.

3. Cube pushout-pullback decompositio@iven the commutative cube (3) in the figure be-
low, where all morphisms in the top and the bottom are/iin the top is pullback, and the
front faces are pushouts, then the bottom is a pullback éffiick faces of the cube are

pushouts.
P A *>/ c
A—C—E e j@
|o| @ | 8—rh
A ﬁ—> C
B—D—F J / S

B——D

4. Uniqueness of pushout complementiven morphism# — C in .# andC — D, then
there is, up to isomorphism, at most ddievith A — B andB — D such that diagram (1)
is a pushout.

B Constructions and proofs

In this section, show that the categdi¥Graphs.#) of graphs with variables with the clasg
of all injective graph morphisms is a weak adhesive HLR aatggFor this purpose, we show
that.# is a class of monomorphisms closed under isomorphisms, @sitign, and decomposi-
tion (Lemmal), the category has pushouts and pullbacks alaftgnorphisms (Lemma&), and
pushouts alongZ-morphisms are weak VK squares (LemB)a
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Lemmal In XGraphs the following properties hold:

1. .#-morphisms are monomorphisms.

2. ./ -morphisms are closed under composition and decomposition

Proof. Straightforward O

In the following, we have to show the existence of pushoutispatibacks along#-morphisms.
Since every morphism consists of a replacement and a graphismos, we first give a construc-
tion for an injective graph morphism and a replacement. €hsinder construction can be done
as usual for graph morphisms.

Lemma 2 (Pushouts and pullbacks along’-morphisms) For every morphism mA — B in
.« and every replacememt: A = C, there is an object D, a morphism' n€C — D in .# and
areplacemenp’: B =- D forming a pushout. Vice versa, for every morphish @— D in .#
and every replacememt’: B = D, there is an object A, a morphism:mM — B in .#Z, and a
replacemenp’: A=-C and forming a pullback.

Proof. The pushout objedd, ', andp’ are constructed as follows.
e Vp=Vg+(Vc—Va)
e Ep =Eg+ (Ec—Ep)
e Yp=Yg+(Yc—Ya)—my(Dom(p))

e 5p(e) = if ec Egthen g(e) else ifec Ec and g(e) € Vc—Vathen
sc(e) elsemy(sc(e)) for e€ Ep. tp(e) and atp(y) are defined analogously.

e lvp(v) = if ve Vg then (V) else (V) for v e Vp. lep(e) and lyy(y) are defined
analogously.

e m': C— Dis given by(m,, m) where nj, is defined by rj(v) = if ve Vathenmy (v) elsev
for all v e V¢, andnt. is defined analogouslyp’: B = D is defined byp’ = {m(y)/R|
y/Re p}.

Thenm': C — D is a morphism in#, p’: B=- D is a replacement, and the constructed diagram
is a pushout. The pullback obje&t m, andp are as follows.

° VA:VBQ{W(/(V) ‘VEVc}
e En=Egn{mc(e) |ec Ec}
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YA:YBﬂ{n’Q(y) \ye Yc}UYC

sa(e) =sg(e) for all e € Ea. ta(e) is defined analogously.
atta(y) = if ye Cthen atg(y) else atg(y) for all y € Y a.

Iva(v) = Ivg(v) for all v e V. lea(e) and Iy, (y) are defined analogously.

e m: A— Bis restriction ofm/: C — Dto Aandp: A— C is defined byp = {y/R|y €
Ya, (My(y)/R) € p'}.

Thenm: A — B a graph morphism in#, p: A= C is a replacement, and the constructed
diagram is a pullback. O

Lemma 3 In XGraphs pushouts along#-morphisms are weak VK squares.

Proof. By case analysis, similar to the proof IBEPTO6& In the following, we will use the

notationABCDto designate the square frddn— A— Cto B— D « C. In the commutative cube
below, letABCDbe a pushout witlm € .# and the back face& AB'B andA’AC'C be pullbacks.

Assume thaff € .# orb,c,d e ..

A’LC’ *
é ’/n* B/L)D/
B-g+—D |C JwB g/j
b 292 |d

bJ A«c%f%(*; /by
¢ M B——D

B——D f

f*

We proceed by case distinction.

Case 1.f € .# and one of the back arrows, i.a,b,c, is in.Z. By Lemmaz2, all morphisms
except the “vertical” morphisma,b,c,d are in.#. Because the back sides of the cube are
pullbacks, all ofa, b, c are in.#. By commutativity of the cubed € .#. The proof proceeds as
for the category of hypergraphs iBEPTO64

Case 2.b,c,d € .# and one ofy, f, f* is in .#. Analogous to Case 1.

Case 3. f is in .# and none of the back arrovesb,c are in.#Z. Because the back sides are
pullbacks,f*,ge ..

Case 3.1.Assume the top is a pushout. Thgrg* € .#. Assume a pullback obje®; with
morphismsy;: B, — D’ andb,: B, — B. Then, there is a unique: B’ — B with g* = g;u and

b = byu. Similar to EEPT063 we can show that is bijective and thereforB’ = B,.

Case 4.b,c,d e .# andg, f, f* & .#. The proof is analogous to Case 3. O

Proof of Theoren®. 1.# is a class of monomorphisms closed under isomorphisms, @asimp
tion and decomposition: The class of all injective graph ph@ms in XGraphs is a class of
monomorphisms. It suffices, then, to show thatf is in .# for morphismsg, f € .#, and that
go f € .# implies f € .#. Both propositions are true due tAHiS90, Proposition 7.34].

2. XGraphs has pushouts and pullbacks ala#igmorphisms: FoA — B in .#, the pushout of
B — A — E is constructed by splitting the morphist— E into a replacemenp: A=-C and

a morphisnC — E, constructing (1) as pushout Bf<— A = C accoring to Lemma& and (2) as
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pushout oD «— C — E as usual (e.g. in the category of hypergragb& PTO6K). Then (1)+(2)
is a pushout.

ForE — F in .#, the pullback oB — F «— E is constructed by splitting the morphisgr— F
into a replacement: B=- D and a morphisnb — F, constructing (2) as usual as pullback (e.g.,
as in the category of hypergrapHsHPTO6[) and (1) as pullback according to LemraThen
(D)+(2) is a pullback. O
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