
ELAN
USER MANUAL

November 29, 2006
ELAN V3.7

Peter Borovanský
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The American Heritage Dictionary

1. ÉLAN. n.m. (vers 1420 selon Bloch ; de élancer .
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Foreword

This manual presents the version V3.7 of the ELAN language and of its environment.
This is an update of version V3.6 with the new builtin integers with overflow control. V3.6 was

an update of version V3.4 with bug corrections with several new features offered by the compiler
such that the Input/Output facilities, the new builtins (array, hashing tables) and the possibility
to trace the normalisation process in ELAN programs. The ELAN compiler compiles now all
possible patterns that contain AC symbols. No program transformation is required for the user.
Furthermore, from V3.4 we distribute the sources of the system. The compilation/installation
process follows the same procedure as other GNU softwares.

—————————–
This is the user manual of ELAN version V3.7

We will be pleased to know any inaccuracy, error or typos.
Your comments on any part of the language, the system or this manual are welcome

on the elan-user mailing-list at elan-user@loria.fr.
—————————–
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Chapter 1

A short introduction to ELAN

This chapter presents in a top-down approach the ELAN main features. If you are beginning to
use ELAN, you should certainly have a look at this chapter first. Complementarily Chapter 3
presents a bottom-up complete description of the language.

For a gently introduction to ELAN we recommend to read [BKK+98b] or to access to
http://elan.loria.fr.

1.1 What could you do in ELAN?

Relying on the premiss that inferences rules can be quite conveniently described by rewrite rules,
we started in the early nineties to design and implement a language in which inference systems
can be represented in a natural way, and executed reasonably efficiently.

This leads us quickly to formalise such a language using the rewriting logic introduced by
J. Meseguer [Mes92] and to see ELAN as a logical framework where the frame logic is rewriting
logic extended with the fundamental notion of strategies [Vit94, KKV95, BKKM02]. A rewrite
theory and an associated strategy is called a computational system.

In ELAN, a logic can be expressed by specifying its syntax, its inference rules and a description
of how these rules should be applied. The syntax of the logic can be described using mixfix
operators as in the OBJ language [GKK+87] or SDF [HHKR89]. The inference rules of the
logic are described by conditional rewrite rules with where assignments allowing to introduce
variables local to a rule.

From this description of the logic and a theory written in this logic, we infer automatically
a computational system consisting of a rewriting theory plus strategies.

Since we wanted ELAN to be modular, with a syntactic level well-adapted to the user’s needs,
the language is designed in such a way that three programming levels are possible.

• First the design of a logic is done by the so-called super-user, with the help of a powerful
preprocessor that expands specific macros into ELAN constructions.

• Such a logic can be used by the (standard) user in order to write a specification.

• Finally, the end-user can evaluate queries in the specification, following the semantics
described by the logic.

This corresponds to the general diagram given in Figure 1.1. The query is interactively given
by the end-user at the ELAN prompt level.
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8 A short introduction to ELAN

Logic
and

Strategies

Computational System

Specification

Query

Result

Super User

User

End User Preprocessing

Rewrite Engine

Figure 1.1: Elan: general execution schema

1.2 A very simple example

Let us fully detail a complete example. The next module illustrates what the programmer has
to write in order to describe the derivative operation on simple polynomials. The first part
contains:

• the module name: poly1

• modules you want to import: int (the integer library module)

• sort declaration: variable and poly

• operators definitions: constructors and functions declarations

The second part contains the computation definition. Given a query, ELAN repeatedly
normalises the term using unlabelled rules. This is done in order to perform functional evaluation
and thus it is recommended for the user to provide a confluent and terminating unlabelled rewrite
system to ensure termination and unicity of the result. This normalisation process is built in the
evaluation mechanism and consists in a leftmost innermost normalisation. This yields always a
single result.

You can control the ELAN construction of terms by giving parsing annotations like associa-
tivity or priority to operators.

ElanExamples/poly1.eln

The top level of the logic description given in the following module describes the way to run
the system. The logic declaration just introduces the sorts of interest (query and result) and
defines .eln modules to be imported: this is the “top level”.

ElanExamples/poly1.lgi
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1.3 A more generic example 9

Once defined, we can use the two previous modules by calling the interpreter as detailed in
section 2.1.1.

% elan poly1.lgi
enter query term finished by the key word ’end’:
deriv(X) end

[] start with term: deriv(X)
[] result term: 1

enter query term finished by the key word ’end’:
deriv(3*X*X + 2*X + 7) end

[] start with term: deriv(3*X*X+2*X+7)
[] result term: 0*X*X+3*1*X+X*1+0*X+2*1+0

1.3 A more generic example

The next example, introduces more ELAN features. It consists of the specification of elementary
polynomials built over a finite set of variables, and the derivative functions to compute the
derivated form with respect to a given variable. Tasks are divided as follows:

1. the super-user describes in a generic way the derivative and factorisation inferences, i.e. a
logic for polynomial differentiation,

2. the user gives the specification of an algebra in which (s)he wants to derivate polynomials;
in this case, this is quite simple since it amounts to specify the variables of the considered
polynomial algebra,

3. the end-user gives a differentiation problem.

The diagram in Figure 1.1 thus instantiates as described in Figure 1.2.
The description of the logic and of the specification is done in the ELAN syntax described in

the Chapter 3 and it can be further extended by the super-user. These descriptions are assumed
to be done in files with specific extensions:

1. .lgi for the top level logic description, this file is written by the ELAN super-user,

2. .eln for a module used in a logic description, this file is also written by the ELAN super-
user,

3. .spc for a specification, i.e. a program written in the defined logic by an ELAN user.

The .eln module of our example is the following:

ElanExamples/poly2.eln

Then, the logic declaration describes the way to parse the specification file that contains a
finite list of variables.

ElanExamples/poly2.lgi

To instantiate the Logic and build the Computational System, you have to give a specification.
An example of such specification is:

ElanExamples/someVariables.spc
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10 A short introduction to ELAN

Differentiation Logic
and

Strategies

Computational System

Specification
of the

signature

deriv(3 ∗X ∗X + 2 ∗X + 7, X)

Result

Expand
Factorize
. . .

Vars X.Y.Z.nil

Query

Rewrite Engine

Figure 1.2: Elan: how to implement polynomial differentiation

It contains a list of variables that is read and transformed into a rewrite rule: Vars =>
X.Y.Z.nil

The FOR EACH preprocessor construction used in the poly2.eln module performs a textual
replacement that extracts identifiers X, Y, Z from the list X.Y.Z.nil and declare them of sort
variable.

You can notice that operators * and + are now declared as associative and commutative,
which is helpful to implement some simplification rules. One rule contains a conditional part.

Now let us call ELAN with the specification someVariables.spc:

% elan poly2 someVariables.spc
enter query term finished by the key word ’end’:
deriv(3*X*X + 2*X + 7 , X) end

[] start with term: deriv(3*X*X+2*X+1,X)
[] result term: X+X*3+2

The result has been simplified in a better way, but it is still difficult to read due to the lack
of parenthesis.

1.4 An extended example

This last example shows how to play with labelled rules and strategies.
Unlabelled rules are applied repeatedly, at any position, to normalize the term. A labelled

rule is applied only when a strategy calls it. In this case, the rule is applied at top position
on the term. In the next module, you can recognize labelled rules: names are given between
brackets.

You can define strategies in the same way you define rules and use them in local affectation
parts introduced by the key word where. When a rule is applied, before constructing the right-
hand-side, conditional parts are evaluated and variables involved in local affectation parts are
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1.4 An extended example 11

instantiated by the result of the application of a strategy on a term.

ElanExamples/poly3.eln

And now we can use it:

% elan poly3 someVariables.spc
enter query term finished by the key word ’end’:
deriv(3*X*X + 2*X + 7 , X) end

[] start with term: deriv(3*X*X+2*X+1,X)
[] result term: ((X*6)+2)
[] end

November 29, 2006 ELAN user manual



12 A short introduction to ELAN

November 29, 2006 ELAN user manual



Chapter 2

How to use ELAN

2.1 Using ELAN

The language can be used either through an interpreter or a compiler as described below in
section 2.1.1 and 2.1.3 respectively.

2.1.1 How to run the ELAN interpreter

You can now execute ELAN by just typing the elan command with the following usage:

ELAN version 3.7a

Copyright (C) 1994-2006 LORIA (CNRS, INPL, INRIA, UHP, U-Nancy 2)

Nancy, France.

Usage:

elan [options] lgi_file [spc_file]

Options:

--dump, -d : dump of signature, strategies and rules

--trace, -t [num] : tracing of execution (default max)

--statistic, -s/-S : statistics: short/long

--warningsoff, -w : suppress warning messages of the parser

--quiet, -q : quiet regime of execution

--batch, -b : batch regime (no messages at all)

--elanlib : elanlib

--secondlib, -l lib : second elan library (by default ..)

--command, -C : command language

--export, --cexport : export to a .ref file

--import : import from a .ref file

Both the logic description file (lgi_file) and the specification file (spc_file) may be written
without their suffixes. Default suffixes for ELAN files are:

.lgi – for the top level logic description file,

.eln – for modules used in the top level logic description file,

.spc – for the specification file,

.ref – for the file in REF format.

The system ELAN searches these files (i.e. .eln, .lgi, .spc, .ref) in the following directories
with the decreasing priorities:
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14 How to use ELAN

• in the current directory,

• in the directory described by the value of a system variable SECONDELANLIB,

• in the directories described as ELANLIB/commons, ELANLIB/noquote, ELANLIB/strategy
and ELANLIB/ref, in this order.

The default value of the variable ELANLIB is set to the subdirectory elan library/elanlib of
the source directory but it can be locally replaced by the switch --elanlib. The default value
of the variable SECONDELANLIB is set to the parent directory, however, it can be also locally
replaced by the switch --secondlib (or, -l) (for details, see below).

In Chapter 1, we have shown, how to simply run the ELAN interpreter with a logic description.
We now illustrate on several examples the usage of the different switches.

-d, (or, --dump) dumps out the signature of the described logic (i.e. all sorts and function
symbols with their profiles), definitions of all strategies and rewrite rules. For the example
poly3 from Chapter 1:

> elan -d poly3 someVariables

we obtain a list of rewrite rules of the form:

local rule expand:poly/poly3[Vars] [1/3/fsym=233/vars=9]

( VAR(0)+(( VAR(1)+ VAR(2))*( VAR(3)+ VAR(4)))) =>

( VAR(0)+( VAR(5)+( VAR(6)+( VAR(7)+ VAR(8)))))

where VAR(8) := (simplify:poly/poly3[Vars]) ( VAR(2)* VAR(4))

where VAR(7) := (simplify:poly/poly3[Vars]) ( VAR(2)* VAR(3))

where VAR(6) := (simplify:poly/poly3[Vars]) ( VAR(1)* VAR(4))

where VAR(5) := (simplify:poly/poly3[Vars]) ( VAR(1)* VAR(3))

local rule expand:poly/poly3[Vars] [2/4/fsym=233/vars=6]

( VAR(0)+(( VAR(1)+ VAR(2))* VAR(3))) => ( VAR(0)+( VAR(4)+ VAR(5)))

where VAR(5) := (simplify:poly/poly3[Vars]) ( VAR(2)* VAR(3))

where VAR(4) := (simplify:poly/poly3[Vars]) ( VAR(1)* VAR(3))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . etc

Names of rewrite rules (e.g. expand) are displayed together with their sorts (e.g. poly),
over which these rules work, and with a module name, where they have been defined (e.g.
poly3[Vars]). An internal code of the top-most function symbol of its left-hand side
and the number of variables of each rule are also displayed as an additional information.
Variables appearing in rewrite rules are displayed in a uniform way: VAR(i), where i is an
internal index.
The print-out continues with a list of strategies in the form:

strategy global simplify:poly/poly3[Vars]

repeat* (

dc one(expand:poly )

);

repeat* (

dc one(factorize:poly )

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . etc

The label of the strategy is composed of the name of the strategy, its sort and the name
of the module where it has been defined (as for labelled rules).
The specification of the signature of the described logic is composed of a set of defined
(and internal) sorts:
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2.1 Using ELAN 15

Sorts

intern int, ident, identifier, string, list[identifier],

intern ident, int, variable, intern string, bool,

poly,

and of a list of function symbols with their profiles in the following form:

Function symbols

@ : (variable)poly pri 0 code 231;

@ : (int)poly pri 0 code 232;

@ ’+’ @ : (poly poly)poly assocRight pri 1 code 233;

’(’ @ ’+’ @ ’)’ : (poly poly)poly pri 0 code 233;

@ ’*’ @ : (poly poly)poly assocRight pri 2 code 234;

’(’ @ ’*’ @ ’)’ : (poly poly)poly pri 0 code 234;

’deriv’ ’(’ @ ’,’ @ ’)’: (poly variable)poly pri 0 code 235;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . etc

-t (or, --trace) allows tracing ELAN programs. The maximal depth of tracing can be speci-
fied, like -t 9, however, by default (i.e. -t), it traces all levels. The number specified as
the trace level counts matchings of a left-hand side, verifications of the conditional part
of a rule, and evaluations of strategies applied over terms in local affectations. Thus, if
the user wants to trace his/her rewrite derivation up to the 5-th level, the trace argument
should be specified as -t 15.

> elan -t poly3 someVariables

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . etc

enter query term finished by the key word ’end’:

deriv(X*X,X) end

[] start with term :

deriv((X*X),X)

[reduce] start:

[0] deriv((X*X),X)

[reduce] start:

[0] (X*deriv(X,X))

[1] (X*1)

[2] X

[reduce] stop :

applying strategy ’simplify:poly/poly3[Vars]’ on X

trying ’expand:poly’ on X

fail of ’expand:poly’

trying ’expand:poly’ on X

fail of ’expand:poly’

trying ’factorize:poly’ on X

fail of ’factorize:poly’

trying ’factorize:poly’ on X

fail of ’factorize:poly’

trying ’factorize:poly’ on X

fail of ’factorize:poly’

setting VAR(4) on X

[reduce] start:

[0] (deriv(X,X)*X)

[1] (1*X)

[2] X

[reduce] stop :

applying strategy ’simplify:poly/poly3[Vars]’ on X

trying ’expand:poly’ on X

fail of ’expand:poly’

trying ’expand:poly’ on X
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fail of ’expand:poly’

trying ’factorize:poly’ on X

fail of ’factorize:poly’

trying ’factorize:poly’ on X

fail of ’factorize:poly’

trying ’factorize:poly’ on X

fail of ’factorize:poly’

setting VAR(5) on X

[reduce] start:

[0] (X+X)

[reduce] stop :

applying strategy ’simplify:poly/poly3[Vars]’ on (X+X)

trying ’expand:poly’ on (X+X)

fail of ’expand:poly’

trying ’expand:poly’ on (X+X)

fail of ’expand:poly’

trying ’factorize:poly’ on (X+X)

fail of ’factorize:poly’

trying ’factorize:poly’ on (X+X)

fail of ’factorize:poly’

trying ’factorize:poly’ on (X+X)

fail of ’factorize:poly’

setting VAR(3) on (X+X)

[1] (X+X)

[reduce] stop :

trying ’expand:poly’ on (X+X)

fail of ’expand:poly’

trying ’expand:poly’ on (X+X)

fail of ’expand:poly’

trying ’factorize:poly’ on (X+X)

fail of ’factorize:poly’

trying ’factorize:poly’ on (X+X)

fail of ’factorize:poly’

trying ’factorize:poly’ on (X+X)

fail of ’factorize:poly’

[] result term:

(X+X)

[] end

-s (-S, or --statistics) displays a brief (-s) or a complete (-S) version of statistics. These
statistics contain the information about the running time of the last query, average speed
in rewrites per second, the statistics of labelled and unlabelled rules, which were tried and
applied.

> elan -S poly3 someVariables

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . etc

enter query term finished by the key word ’end’:

deriv(X*X,X) end

[] start with term :

deriv((X*X),X)

[] result term:

(X+X)

[] end

Statistics:
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total time (0.007+0.000)=0.007 sec (main+subprocesses)

average speed 714 inf/sec

5 nonamed rules applied, 23 tried

0 named rules applied, 20 tried

named rules

applied tried rule for symbol

0 8 expand:poly

0 12 factorize:poly

nonamed rules

applied tried rule for symbol

0 4 ( poly + poly )

2 12 ( poly * poly )

3 7 deriv( poly , variable )

end of statistics

The complete statistics show a detailed list of applications and tries for labelled and
unlabelled rules. The brief statistics do not precise the last paragraph about unlabelled
rules.

-w (or, --warningsoff) eliminates all ambiguity warnings produced during parsing of the
ELAN description of a logic.

-q (or, --quiet) suppresses all error messages and warnings during the execution of the ELAN
program.

-b (or, --batch) suppresses all messages, thus this mode is useful when the ELAN system is
executed from a script file in the batch mode.

--elanlib dir locally redefines the value of the system variable ELANLIB by the string dir.

--secondlib dir (or, --secondlib dir) does the same with the variable SECONDELANLIB.

--export fname, --cexport fname exports the input specification into the REF format stored
in the file fname. The switch cexport is used only when the produced REF file is compiled
by the ELAN compiler.

--import fname imports a specification in the REF format from the REF file fname produced,
in general, by the switch --export.

> elan --export poly3.ref poly3 someVariables.spc

ELAN version 3.7a

Copyright (C) 1994-2006 LORIA (CNRS, INPL, INRIA, UHP, U-Nancy 2)

Nancy, France.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . etc

Export file poly3.ref has been created

> elan --import poly3.ref

ELAN version 3.7a

Copyright (C) 1994-2006 LORIA (CNRS, INPL, INRIA, UHP, U-Nancy 2)

Nancy, France.

Import form file poly3
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Importing Identifiers

Importing Sorts

Importing Modules

Importing RuleNames

Importing StrategyNames

Import rule extractrule1:identifier/list[identifier]!LO form module list[identifier]

Import rule extractrule2:identifier/list[identifier]!LO form module list[identifier]

Import rule expand:poly/poly3[Vars]!LO form module poly3[Vars]

Import rule expand:poly/poly3[Vars]!LO form module poly3[Vars]

Import rule factorize:poly/poly3[Vars]!LO form module poly3[Vars]

Import rule factorize:poly/poly3[Vars]!LO form module poly3[Vars]

Import rule factorize:poly/poly3[Vars]!LO form module poly3[Vars]

Import strategy listExtract:identifier/list[identifier]

Import strategy simplify:poly/poly3[Vars]

Import strategy last_simplify:poly/poly3[Vars]

enter query term finished by the key word ’end’:

-C runs the ELAN interpreter with a simple command language interpreted on the top-most
level. This mode is described in Section 2.1.2.

After loading all modules specified in the logic description file, ELAN requires to enter a query
term, which has to be finished by the word ’end’ or by character ^D (control-D). Its evaluation
can be interrupted by typing ^C, the interpreter then proposes a simple run-time menu:

• ExecutionAbort - A - aborts the current execution and allows to enter another query
term,

• Continue - C - continues the interrupted execution,

• Dump - D - dumps the signature, rules and strategies of the currently loaded logic,

• Exit - E - quits the ELAN system,

• Statistics - S, s - writes the actual statistics corresponding to the last evaluated query,

• ChangeTrace - T - changes trace level of the current derivation such that the interpreter
asks for a new trace level,

• ChangeQuiet - Q - switches between two displaying modes: quiet – unquiet,

2.1.2 Top level interpreter

The command language of the ELAN interpreter improves the user’s interface by offering to the
user several commands, which allow to:

• change several parameters of the system,

• debug programs using break-points,

• keep the history of queries and their results,

• runs the current logic with different strategies, different entries, etc.
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When the ELAN interpreter is started with the option -C, instead of asking:
enter query term finished by the key word ’end’
ELAN prompts the user:
enter command finished by ’;’
We show a brief description of all commands of the top level command language which will be
later illustrated on several examples.

quit terminates the session and leaves the ELAN interpreter.

load mod loads (i.e. imports) an additional module, where the identifier mod describes its name
(possibly with its arguments),

batch mod calls a script file with the name mod (an identifier), which contains a stream of
commands of the command language. It tries to evaluate all commands of the script file,
and it returns the control to the interactive mode. The script files can be also concatenated.

qs shows the queue of input queries (i.e. the history up to the last ten queries). The terms in
this queue of queries qs can be referenced by the identifiers Q, Q1, ..., Q9 respecting their
sorts. These sorted identifiers could be used in constructions of further queries.

rs shows the queue of the latest results (i.e. the history up to the last ten results). Terms
in this queue of results rs are referenced by identifiers R, R1, ..., R9. In the case of non-
deterministic computations, there is no correspondence between query terms Qi and result
terms Ri.

startwith (str)term redefines the ’start with’ pattern originally defined in the logic descrip-
tion file .lgi. The pattern term may contain also symbols query standing as a place-holder
of an input term entered by the user using the command run, or symbols Q, . . ., Qi or R,
. . ., Ri standing for values of previously put queries or results.

checkwith term redefines the ’check with’ pattern originally defined in the logic description
file. The boolean pattern term may contain any symbol amongst query, Q, . . ., Qi or R,
. . ., Ri.

printwith term sets-up the ‘print-with’ pattern. The ‘print-with’ pattern may contain the
symbol result, which is a place-holder for result terms. Intuitively, the meaning of the
‘print-with’ term P is that any result r of the computation is substituted for the place-
holder result in the pattern P . The substituted term P [result/r] is normalized and
printed out. This command can be used for the automatic transformation of results into
different formats, e.g. a transformation of very large result terms into more readable or
incomplete notation, or a conversion into a LATEX notation. The default value of the
‘print-with’ pattern is result, i.e. the identity.

run term evaluates the term term as a query w.r.t. rewrite rules of the current logic and
eventually returns results. The entry term term may contain identifiers Q, Q1, ..., Q9,
(resp. R, R1, ..., R9) referring to values of preceding queries or results, e.g. items of the
queue of queries qs (resp. results rs).

sorts type type type sets-up sorts of the symbols query, result and of the ‘print-with’
pattern.

stat prints the statistics,

dump prints rules, strategies and the signature,
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dump name dumps only labelled rules with the name name, strategies labelled by name or unla-
belled rules with the head symbol name.

dump n dumps only unlabelled rules of a function symbol with the internal code n.

display n if n is not zero, all printed terms are in the internal form. The internal form of
a term attaches to a symbol name its internal code, which allows to identify overloaded
function symbols. display 0 switches all print-outs into traditional (thus, overloaded)
format.

trace n sets-up the trace level to the value n.

break name (resp. unbreak name) sets (resp. removes) break-points to all labelled rules with
the name name, to all strategies labelled by name and to all unlabelled rewrite rules with
the head symbol name.

break n (resp. unbreak n) sets (resp. removes) break-points to unlabelled rules with the head
symbol with the internal code n.

breaks shows a list of all breakpoints.

We illustrate the command language on a small ELAN session with the example poly3 from
the previous Chapter. When the switch -C is specified, the ELAN interpreter loads the module
Query describing the syntax of commands.

> elan -q -C poly3 someVariables

ELAN version 3.7a

Copyright (C) 1994-2006 LORIA (CNRS, INPL, INRIA, UHP, U-Nancy 2)

Nancy, France.

handling module identifier

handling module ident

handling module bool

end of bool

end of ident

handling module eq[identifier]

handling module cmp[identifier]

end of cmp[identifier]

end of eq[identifier]

end of identifier

handling module list[identifier]

handling module int

handling module builtinInt

end of builtinInt

end of int

end of list[identifier]

handling module poly3[Vars]

handling module eq[variable]

handling module cmp[variable]

end of cmp[variable]

end of eq[variable]

end of poly3[Vars]

handling module Query[poly,poly,poly]

end of Query[poly,poly,poly]

We can run simple queries using the command run:
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enter command finished by ’;’:

run deriv(X*X,X);

[] start with term :

deriv((X*X),X)

[] result term:

(X+X)

[] end

enter command finished by ’;’:

run deriv(X*X*X+X*X+X+1,X);

[] start with term :

deriv(((X*(X*X))+((X*X)+(X+1))),X)

[] result term:

(1+(X*(((X*2)+2)+X)))

[] end

The queries and their results are stored in two queues, which can be listed by commands qs, rs:

enter command finished by ’;’:

qs;

Queries ... 2 : elements

Q1 poly deriv((X*X),X)

Q poly deriv(((X*(X*X))+((X*X)+(X+1))),X)

enter command finished by ’;’:

rs;

Results ... 2 : elements

R1 poly (X+X)

R poly (1+(X*(((X*2)+2)+X)))

The previous queries and their results can be referenced in the construction of the new ones:

enter command finished by ’;’:

run deriv(R,X) ;

[] start with term :

deriv((1+(X*(((X*2)+2)+X))),X)

[] result term:

((X*6)+2)

[] end

enter command finished by ’;’:

run deriv(Q*Q,X) ;

[] start with term :

deriv((deriv((1+(X*(((X*2)+2)+X))),X)*deriv((1+(X*(((X*2)+2)+X))),X)),X)

[] result term:

(24+(X*72))

[] end

Function symbols defined by unlabelled rules can be debugged, for example, if we know their
internal code. In the following example, the command dump displays the symbol with the internal
code 216, and then, we can put a break-point on this function.

dump 235;

function dump

’deriv’ ’(’ @ ’,’ @ ’)’ : (poly variable)poly pri 0 code 235;

enter command finished by ’;’:

break 235;

function dump

’deriv’ ’(’ @ ’,’ @ ’)’ : (poly variable)poly pri 0 code 235;

Having break-points set, the execution shows all entry and exit points of traced functions, or
strategies:
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enter command finished by ’;’:

run deriv(X*X,X);

[] start with term :

deriv((X*X),X)

[0] deriv((X*X),X)

[0] deriv(X,X)

[1] 1

[0] deriv(X,X)

[1] 1

[1] (X+X)

[] result term:

(X+X)

[] end

We can switch all outputs into the internal format by the command display 1:

enter command finished by ’;’:

display 1;

enter command finished by ’;’:

run deriv(X*X,X);

[] start with term :

deriv_235((X_228*X_228),X_228)

[0] deriv_235((X_228*X_228),X_228)

[0] deriv_235(X_228,X_228)

[1] 1

[0] deriv_235(X_228,X_228)

[1] 1

[1] (X_228+X_228)

[] result term:

(X_228+X_228)

[] end

We can change the ‘start-with’ pattern to (last_simplify)deriv(query,X), and the command
stat informs us about the current setting and the performance of the last executed query.

enter command finished by ’;’:

startwith (last_simplify)deriv(query,X);

enter command finished by ’;’:

stat;

Input type : poly

Output type: poly

Print type : poly

Strategy : last_simplify

Start_with : deriv_235( VAR(0),X_228)

Check_with : true_1

Print_with : VAR(0)

------------

Statistics:

total time (0.013+0.010)=0.023 sec (main+subprocesses)

average speed 384 inf/sec

5 nonamed rules applied, 23 tried

0 named rules applied, 20 tried

named rules

applied tried rule for symbol

0 8 expand:poly

0 12 factorize:poly

nonamed rules
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applied tried rule for symbol

0 4 ( poly + poly )

2 12 ( poly * poly )

3 7 deriv( poly , variable )

end of statistics

2.1.3 How to run the ELAN compiler

The ELAN compiler transforms a logic description into an executable binary file. The compiler
(for detailed description, see [Vit96, MK98]) produces an efficient C code, which is later compiled
by the cc or the gnu gcc compiler. The executable binary code is dependent on the particular
architecture, because a small part of the ELAN library performing the basic non-deterministic
operations is written in assembly language [Mor98]. Up to now, this is the only reason that
makes the compiler available only on the architectures DEC-ALPHA, SUN4 and Intel-PC. This
release of the ELAN compiler does not compile the whole ELAN language: the main restriction
is that the ELAN compiler does not treat input/output and reflective capabilities of the ELAN
language. There is also a restriction on the class of rules containing AC-symbols that can be
compiled. Thus, any logic description containing AC-symbols should be carefully studied before
being compiled (see Section 4.5 for more details).

To run the ELAN compiler, a Java Virtual Machine (JAVA 2 SDK, aka jdk 1.2, or newer), a
C compiler (gcc recommended) and a C-shell (tcsh recommended) have to be installed on your
system. To complete the installation, the script PWD/bin/elanc has to be modified: CLASSPATH
and JAVA variables have to be set according to your system. Then, you can now execute the
ELAN compiler by just typing the elanc command with the following usage:
elanc [[elan options][compiler options]] file[.lgi] [file.[spc]]

Options:

-output <name>

-verbose

-nocode

-nosplit

-quiet

-debug

-noOptimiseChoicePoint [default]

-optimiseChoicePoint

-proofterm

By default, the compiler produces a lot of C files and a lgiName.makefile file, which are later
compiled.

The switch -output nqueens produces the executable file with the name nqueens.

The switch -nosplit generates only two files: lgiName.c and lgiName.core.c. This switch
is useful to compile small specifications.

The switch -nocode directly builds an executable file and deletes all generated C files.

The switch -quiet suppresses all printed messages during compilation phase.

The switch -debug activates the debugging mode: more messages are printed during compi-
lation and the generated code becomes less efficient.

The switch -noOptimiseChoicePoint [default] avoids the deterministic analysis phase.

The switch -optimiseChoicePoint reduces the number of set choice-points: this switch re-
duces the runtime needed memory and improve the efficiency. It is recommended to not
activate this switch if your specification contains AC symbols.
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The switch -proofterm generates the complete trace of the normalisation process with respect
to a set of labelled rules by the strategy normin described in Section 3.

We illustrate the compiler on a simple example of a distributed file. The first example shows
the compilation of the program nqueens with the query queens(8) (given in the .lgi file):

> elanc -output queens -nosplit -nocode -optimiseChoicePoint nqueens

elan --cexport nqueens.ref ./nqueens.lgi

ELAN version 3.7a

Copyright (C) 1994-2006 LORIA (CNRS, INPL, INRIA, UHP, U-Nancy 2)

Nancy, France.

handling module nqueens

handling module int

handling module builtinInt

handling module bool

end of bool

end of builtinInt

end of int

end of nqueens

Export file nqueens.ref has been created

java -classpath classes.zip:elanlib/Compiler/classes REM nqueens.ref

-output queens -nosplit -nocode -optimiseChoicePoint

Reduce ELAN Code Machine. Reading from file nqueens.ref . . .

Parsing...........

Compiling nonamed rules...................

Compiling strategies..

Building queens...

> queens

result = .([](4),.([](2),.([](7),.([](3),.([](6),.([](8),.([](5),.([](1),nil))))))))

result = .([](5),.([](2),.([](4),.([](7),.([](3),.([](8),.([](6),.([](1),nil))))))))

result =

.([](3),.([](5),.([](2),.([](8),.([](6),.([](4),.([](7),.([](1),nil))))))))

...

after 91 solutions:

result = .([](5),.([](7),.([](2),.([](6),.([](3),.([](1),.([](4),.([](8),nil))))))))

rewrite_step = 227356

It is also possible to get the whole trace of the execution. In order to produce this information
the executable code has to be compiled in the debugging mode and the switch -trace has to
be used:

> elanc -debug -nosplit nqueens

...

Reduce ELAN Code Machine. Reading from file nqueens2.ref . . .

Parsing

Compiling nonamed rules...................

Compiling strategies..

execute the following line to build your program

gmake -f nqueens.make

> gmake -f nqueens.make

gcc -pipe -g3 -DDEBUG -DPDEBUG -DBITSET32 ...

...
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> a.out -trace

|start with: fun_221_queens()_([](8))

|rewrite[1] queens(,,)([](8),[](8),nil)

|start with: str_176(queens(,,)([](8),[](8),nil))

| start with: fun_211_greater_int(,)_([](8),[](0))

| rewrite[2] true

| start with: str_278([](8))

| rewrite(str_278)[3] [](1)

| start with: fun_222_noattack(,,)_([](1),[](1),nil)

| rewrite[4] true

| start with: fun_202_minus(,)_([](8),[](1))

| rewrite[5] [](7)

| start with: str_176(queens(,,)([](7),[](8),.([](1),nil)))

| start with: fun_211_greater_int(,)_([](7),[](0))

| rewrite[6] true

| start with: str_278([](8))

| rewrite(str_278)[7] [](1)

| start with: fun_222_noattack(,,)_([](1),[](1),.([](1),nil))

| start with: fun_210_neq_int(,)_([](1),[](1))

| rewrite[8] false

| rewrite[8] noattack(,,)([](1),[](1),.([](1),nil))

...

A more detailed description of the compiler can be found in Section 4.5.
� Another way to call the ELAN compiler (also known as Reduced ELAN Machine) consists in
running Java as follows:
java -classpath ${ELANLIB}/Compiler/classes REM <REF file name> <options>
The <REF file name> must be created by the option --cexport <REF file name> of the ELAN
interpreter simply used here to parse the <LGI file name> .

2.2 Keep in touch

In case you have any problems, questions or comments about ELAN, or just only to be keeping
in touch with the ELAN team, please post on the elan-users mailing-list:

elan-users@loria.fr
More informations on ELAN can be found on the web page:

http://elan.loria.fr.
ELAN is issued from the PROTHEO research team, information about this research project can
be found at the following address:

http://www.loria.fr/equipes/protheo.
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Chapter 3

ELAN: the language

This chapter presents a full bottom-up description of the language features that, contrary to
Chapter 1, uses a construction of the language only when it has been introduced before.

The ELAN syntax is given in the Extended Backus-Naur Form (EBNF). We assume that the
reader is familiar with this well-known notation, where for instance { X } + (resp. { X } ∗ )
denotes a non-empty (resp. a possibly empty) repetition of X, and [ X ] means that X is optional,
and may be omitted.

All examples given below are running under the current implementation of the ELAN version
V3.7.

3.1 Lexicographical conventions

3.1.1 Separators

All ASCII characters whose code are less or equal than 32 are considered by the parser as
separators. Thus spaces, tabulations and newlines are separators.

3.1.2 Lexical unities

A lexical unity in ELAN is either an identifier, a natural number or a special character.
Identifiers are composed by concatenation of letters, numerals and the character “ ”, and

they should begin with a letter.

<letter> ::= A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z
| a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

<numeral> ::= 0|1|2|3|4|5|6|7|8|9

<identifier> ::= <letter> { <letter> | <numeral> | } ∗

<quoted identifier> ::= ’ { <letter> | <qchar> | <numeral> | } + ’

<elan identifier> ::= <identifier> except ELAN’s keywords

All characters different from the previously introduced ones (letters, numerals, separators)
and the characters ‘{’, ‘}’, ‘̃ ’, are considered as special characters and are referenced as <char> .

<nchar> ::= <char> except ‘@’ and ‘:’
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<qchar> ::= <char> except ‘’’

A number is the concatenation of numerals.

<number> ::= { <numeral> } +

3.1.3 Comments

All strings enclosed between the strings “/*” and “*/” or between the string “//” and the end
of line, are considered by the parser as comments.

3.2 Element modules

Element modules are the basic unit blocks of the language. They allow to define computational
systems i.e. to define a rewrite theory together with a strategy. For modularity reasons, im-
portations are made possible in ELAN modules, under the condition that no cycle exists in the
importation relation. This is described in the modularity section 3.7.

The syntax is the following:

<module> ::= module <formal module name>
[ <imports> ]
[ <sort definition> ]
[ <operator definition> ]
[ <stratop definition> ]
{ <family of rules> } ∗

{ <family of strategies> } ∗

end

The module of name ModuleName should be declared in the file ModuleName.eln. Only one,
and exactly one module can be described in a given file.

Importations can be made local or global:

<imports> ::= import { <instantiated module name> } + ; end
| import [ <global imports> ] [ <local imports> ] end

<global imports> ::= global { <instantiated module name> } + ;

<local imports> ::= local { <instantiated module name> } + ;

An instantiated module name like List[List[Int]] is described by:

<instantiated module name> ::= <identifier>
| <identifier> [ <instantiated module name>

{ , <instantiated module name> } ∗ ]

Sorts are always global:

<sort definition> ::= sort { <sort name> } + ; end
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but operators can be exported, and thus declared global, or just local in which case they can be
used only in the module where they are defined.

<operator definition> ::= operators
[ <global operator definition> ] [ <local operator definition> ]

end

<global operator definition> ::= global { <operator declaration> } + ;

<local operator definition> ::= local { <operator declaration> } + ;

And similarly for strategy operator definition:

<stratop definition> ::= stratop
[ <global stratop definition> ] [ <local stratop definition> ]

end

<global stratop definition> ::= global { <strategy declaration> } + ;

<local stratop definition> ::= local { <strategy declaration> } + ;

<family of rules> is defined in Section 3.4. <family of strategies> is defined in Section 3.5.

3.3 Definition of signatures

ELAN is a multi-sorted language, and signatures are composed by the definitions of the sorts and
operators symbols. The operator syntax is given in a mix-fix form which allows the super-user
to define very conveniently its own syntax.

3.3.1 Sort declarations

A sort declaration is either a sort name (an identifier) or a sort name followed by the list of sort
names it depends on:

<sort name> ::= <identifier>
| <identifier> [ <sort name> { , <sort name> } ∗ ]

Example 3.1 bool, int, list[bool], pair[int,list[bool]], list[X] are sort names in ELAN.

Remark: A sort name is always global in ELAN. Two sort declarations using the same sort
name, will result in the creation of only one sort.

Built-in sorts For efficiency, sorts could be defined as built-ins. See section 5.2 for details.
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3.3.2 Operator declarations

A function symbol, also called operator, is given either by defining a new symbol together with
its rank or by aliasing an existing operator. Optional properties can be specified:

<operator declaration> ::= <new operator declaration>
| <operator alias>

<new operator declaration> ::= <operator name> : <rank> [ { <operator option> } + ]

<operator alias> ::= <new operator declaration> alias <old operator name> :

In case of aliasing, <new operator declaration> is only another name for the function symbol
<old name> . The two names are then accessible and refer to the same object.
� The last alias defined is considered by the parser as having the highest priority with respect to
the previously defined ones.

<old operator name> ::= <operator name>

<operator name> ::= <name>

The name of a function symbol contains information that will be used by the mixfix parser
to read a term:

<name> ::= { <symbol> } +

<symbol> ::= <single lexem>

| @
| <quoted single lexem>

| ’\ <number> ’

<single lexem> ::= <elan identifier>
| <number>
| <nchar>

<quoted single lexem> ::= <quoted identifier>

where, as defined on page 27, <elan identifier> is any identifier except keywords. Notice that
indeed keywords can be used without their special meaning when placed between quotes.

The characters ‘{’, ‘}’, ‘̃ ’ are restricted to the pre-processor use. Thus they cannot be used in
any module, but they can be used in the specification file or in the description of the query, since
both are not pre-processed. The ‘:’ character indicates the end of the name and the character
‘@’ is the place-holder for an operator ‘@’rgument. These two last characters can be used with
another semantics than their built-in one, when placed between quotes.

A quoted number after the character ‘\’ represents the definition of a character by its ascii
code. This facility can be used in order to add to the syntactic form of a term non-visible
characters or the characters ‘{’, ‘}’, ‘̃ ’.

Finally an operator declaration is achieved by defining its rank, which is just a list of sort
names with optional description of selectors.
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<rank> ::= <sort name>
| ( { <sort name> } + ) <sort name>
| ( { <identifier> : <sort name> } + ) <sort name>

Example 3.2 With the two declarations:
@ + @ : ( int int ) int
+(@,@) : ( int int ) int alias @+@:

the strings “x + y” and “+(x, y)” represent the same term.

When defining a constructor operator, it is possible to define the related selectors and mod-
ifiers, as outlined in the next example.

Example 3.3 In the following module example, the selector first and second are specified and
the system will automatically generate the corresponding selector and modifier operators and the
corresponding rewrite rules.

ElanExamples/simplePairSelectors.eln

This is similar to the following module:

ElanExamples/simplePair.eln

where the following rewrite rules are in fact automatically generated:

(x,y).first => x
(x,y).second => y
(x,y)[.first<-z] => (z,y)
(x,y)[.second<-w] => (x,w)

3.3.3 Function declaration options

As in languages like OBJ or ASF+SDF, an operator declaration carries many informations
about the syntax and the semantics of the operator. We also need to specify complementary
information like the precedence of the operator for the parser, or some of its semantic properties
like associativity. This is done in ELAN using the following syntax:

<operator option> ::= assocLeft
| assocRight
| pri <number>
| ( AC )
| code <number>
| builtin <number>

Parsing Associative operators The first two options are useful for defining syntactic asso-
ciativity of symbols:

Example 3.4 The declarations:
@ * @ : ( int int ) int assocLeft
*(@,@) : ( int int ) int alias @*@:

allow to parse the term x ∗ y ∗ z as ∗(∗(x, y), z).
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Priorities The priority parsing problems can be solved using the priority option:

Example 3.5 The declarations:
@ + @ : ( int int ) int assocLeft pri 10
@ * @ : ( int int ) int assocLeft pri 20

allow to parse an expression like x + y ∗ z as usual in x + (y ∗ z).

Coercions can be defined and even hidden as in the following example:

Example 3.6 Assume that equations are constructed with the equality symbol:
@ = @ : ( term term ) equation;

and equational systems as conjunctions of equational systems:
@ & @ : ( eqSystem eqSystem ) eqSystem;

An equation should be considered as an equational system, which corresponds to consider the sort
equation as a subsort of eqSystem. This is done by the declaration of an invisible operator:

@ : ( equation ) eqSystem;
This (invisible) coercion allows parsing the expression (P & e) where P:eqSystem;
e:equation.

Semantic properties Semantic properties can be used. Currently only associativity and
commutativity (abbreviated AC) is allowed and only for binary operators. The user should be
aware that in interpreted mode, AC matching can be quite inefficient. It is strongly recommended
to use the compiled mode in presence of AC operators.

Example 3.7 One can define a union operator which is associative and commutative in the
following way:

@ ∪ @ : ( set set ) set (AC)

User built-in operators In order to improve efficiency of the evaluation, built-in operators
can be specified using the code and builtin options. The natural number specified after the
code and builtin keywords specifies the index of this symbol in the symbol table of ELAN. A
builtin option is for built-in operators without attached code defining its semantics, while the
code option is for built-in operators with an attached procedure.

Example 3.8 The symbol true is defined in the bool module as the first symbol of the symbol
table:

true : bool builtin 1

Section 5.2 summarizes the codes already defined for ELAN’s standard built-ins.
� Adding built-in operators is of course a delicate matter since the ELAN source code has to modified.

3.3.4 Strategy declaration

A strategy operator is similar to a function symbol as defined previously except that at least one
of the sorts involved in the strategy rank is a strategy sort.

<strategy declaration> ::= <new strategy declaration>
| <strategy alias>
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<new strategy declaration> ::= <strategy name> : <strategy rank> [ <strategy option> ]

<strategy alias> ::= <new strategy declaration> alias <old strategy name> :

In case of aliasing, <new strategy declaration> is only another name for the strategy operator
<old strategy name> . The two names are then accessible and refer to the same object.
� The last alias defined is considered by the parser as having the highest priority with respect to
the previously defined ones.

<old strategy name> ::= <strategy name>

<strategy name> ::= <name>

<strategy rank> ::= <strategy sort name>
| ( <strategy args> ) <sort name>
| ( { <strategy arg> } + ) <strategy sort name>

<strategy arg> ::= <sort name>
| <strategy sort name>

<strategy args> ::= <sort name> <strategy args>
| <strategy sort name> { <strategy arg> } ∗

<strategy sort name> ::= < <strategy sort name> -> <strategy sort name> >
| < <sort name> -> <sort name> >
| < <sort name> -> <strategy sort name> >
| < <strategy sort name> -> <sort name> >

<strategy option> ::= <elementary strategy option>
| <defined strategy option>

<elementary strategy option> ::= bs

<defined strategy option> ::= assocLeft
| assocRight
| pri <number>
| ( AC )

The bs attribute (for basic strategy) indicates that the definition of the strategy is given
by a rewrite rule whose right-hand side only uses the constructions of the elementary strategies
language defined in Section 3.5.1.

3.4 Definition of rules

Rewriting is the basic concept underlying the design of ELAN. The language allows defining la-
belled conditional rules with local assignments. It is important to realize the difference between:

– labelled rules whose evaluation is fully controled by the user defined strategies and,

– unlabelled rules which are intended to perform functional evaluation. They are applied
using a built-in left-most inner-most strategy.

A condition controling the firing of a rule is a term of sort bool introduced by the if keyword.
A local assignment is introduced by the keyword where. Its main purpose is to assign to local
variables the result of the application of a strategy on a term.
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3.4.1 Rule syntax

Rules are introduced in families, possibly restricted to a single element.

<family of rules> ::= rules for <sort name>
[ { <variable declare> } + ]
[ global { <labelled or unlabelled rule> } + ]
[ local { <labelled rule> } + ]
end

<labelled or unlabelled rule> ::= <labelled rule>
| <unlabelled rule>

<labelled rule> ::= [ <rule label> ] <rule body> end

<rule label> ::= <identifier> [ ( variable { , <variable> } ∗ ) ]

<unlabelled rule> ::= [ ] <rule body> end

<rule body> ::= <term> => <term> [ { <if-where-choose> } ∗ ]

<if-where-choose> ::= if <boolean term>

| where <variable name> := ( [ <Estrategy term> ] ) <term>

| where <variable name> := [ <Dstrategy term> ] <term>

| where ( <sort name> ) <term> := ( [ <Estrategy term> ] ) <term>

| where ( <sort name> ) <term> := [ <Dstrategy term> ] <term>
| choose

{ try <if-where-choose> } +

end

<variable declare> ::= [ { <variable name> , } ∗ <variable name> ] : <sort name> ;

<variable name> ::= <elan identifier>

<Estrategy term> defined in Section 3.5.1 is a constant strategy name declared with the
attribute bs. Note that it is optional.

<Dstrategy term> defined in Section 3.5.2 is a term built on the signature of strategy
operators.
Remark: The syntax for terms is not defined here since it is user defined and induced from
the rank of the operators. Because of the very liberal way of defining operator ranks, the term
syntax in mixfix in the tradition of algebraic specification languages like ASF+SDF or OBJ.
The term parser is based on Earley’s context free parser [Ear70] where the grammar is extracted
from the operator rank definitions.
— Release Note: Since V.3.0, the choose-try construction, the patterns in where facility and
the user defined strategies call by “[ ]” have been introduced.

The rule labels accept now arguments that should be variables used in the rule.
In the where construction with a term, the sort is just used to declare the sort of the term

used as pattern. This is useful for the parser which then just checks that this is also the sort
of the result on the right hand side of “:=”. Note that the sort declarations is useless for the
where construction using only variables, since the sort of the variable is always attached to it.
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There are two ways for calling strategies, according to the strategy language used by the
programmer:
� A strategy call of the form “( )” can only be done using a strategy that is declared as bs.

� A strategy call of the form “[ ]” can only be done using a strategy that is not declared as bs.

Example 3.9 Here is one way for defining the idempotency rules for booleans. Notice that the
two rules are local to the module so that their label can only be used for defining strategies in
this module. Note also that the two rules have, on purpose, the same label:

ElanExamples/rule-ex.eln

Since several rules may have the same label, the resulting ambiguities are handled by the
strategy evaluation as explained later. The rule label is optional and rules may have no name.
This last case is designed in such a way that the intended semantics is functional, and it is cur-
rently the responsability of the rewrite rule designer to check that the rewrite system composed
of all unlabelled rules is confluent and terminating. Unlabelled rules are handled by a built-in
strategy (left-most inner-most) as fully described in Section 3.6.

3.4.2 The where construction

The where construction has several purposes. The first one is to modularize the computations
by computing auxiliary results affecting them to local variables, thus providing computation
sharing. The second is to direct the evaluation mechanism using strategies and the built-in
left-most inner-most evaluation reduction. Let us review the possibilities offered by ELAN.

The where statement is first useful when one wants to call a strategy on subterms.

Example 3.10 As a first introducing example, let us consider the module:

ElanExamples/ruleWithWhere.eln

Using the rule r0, the term a reduces in one step to b. Using the rule r1, the term b is first
normalized into b’ using unlabelled rules and then a is replaced by b’. Using the rule r2, the
term b is first normalized into b’ using unlabelled rules and then the strategy strat, defined
elsewhere by the super-user, is applied on b’ and the result is substituted to a.

One can also perform more complex affectations of the local variables by using patterns.
The current syntax of the where statement with patterns can be rephrased as follows:

where (sort)p ::= ()term | (s)term | [s]term

where the pattern p should be of sort sort. AC-operators as well as non-linearity are allowed
for patterns.

This pattern in where capability is exemplified in the next subsection.
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3.4.3 Choose-Try

The construction Choose try allows factorizing common parts of rules with the same left-hand
side. For instance the two rules

[`] l ⇒ r where y1 := ()u1

if c′2(l, y1)
where y3 := ()u3

[`] l ⇒ r where y1 := ()u1

if c′′2(l, y1)
where y3 := ()u3

are factorized into one rule:

[`] l ⇒ r where y1 := ()u1

choose
try if c′2(l, y1)
try if c′′2(l, y1)

end
where y3 := ()u3

In this factorized form, the term u1 is normalized only once and the assignment to y1 is performed
also only once.

Example 3.11 This example shows the use of patterns as well as the Choose try construction.

ElanExamples/quick.eln

3.4.4 Conditions

The boolean term c given in a condition is reduced using the strategy that results from normal-
ization using the non labelled rules and by the user defined strategies. If the computation stops
and the resulting term is the boolean true then the condition is considered to be satisfied and
the rule can be applied. If the computation stops and the resulting term is not true then the
condition is considered as false.

3.4.5 Labels visibility

The global and local attributes make sense only for labelled rules. When a labelled rule is:

– local, then its label can only be used in the module in which the rule is declared,

– global, then its label can be used in all the modules importing the module defining the rule,
with the visibility described in the section on modularity (see section 3.7).

� According to their semantics, unlabelled rules are always global.

— Release Note: Since version V.3.0, the notion of single rule has been removed and the notion of
rule locality has been introduced, so that rule labels can now be declared to be local to a module
or, on the contrary, globally accessible. See section 3.9 for details concerning these changes.

Remark: We will see next on page 49 how rule families can be constructed automatically in
ELAN using the pre-processor construction “for each”.
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3.5 Definition of strategies

The notion of strategy is one of the main originalities of ELAN. In practice, a strategy is a way to
describe which rewrite computations the user is explicitly interested in. It specifies when a given
rule should be applied in the term to be reduced. From a theoretical point of view, a strategy
can be viewed either as a function or as a subset of all proof terms defined by the current rewrite
theory. The application of a strategy to a term results in the (possibly empty) collection of all
terms that can be derived from the starting term using this strategy [KKV95, Vit94]. When a
strategy returns an empty set of terms, we say that it fails.
� A strategy enumerates all the terms it describes, should this collection be finite or not. Con-
sequently the user should note that in case (s)he writes a strategy that enumerates an infinity of
terms, then the evaluation process will of course not terminate.

Two strategy languages are offered in ELAN. The language of elementary strategies is mainly
based on regular expressions built from rule labels, while the language of defined strategies allows
the user to define his own elaborated strategies, possibly recursively. Although the language of
defined strategies embeds all the constructions of the language of elementary strategies, the
latter is maintained since it is based on a more efficient implementation.

Families of strategy rules are intended to give a semantics to the strategy operators. The
syntax of strategy rule families is the following:

<family of strategies> ::= strategies for <sort name>
[ { <strategy variable declare> } + ]

{ implicit { <elementary strategy rule> } +

| implicit { <defined strategy rule> } +

| explicit { <defined strategy rule> } + } +

end

<strategy variable declare> ::= [ { <variable name> , } ∗ <variable name> ]
:
<sort or strategy sort name> ;

<sort or strategy sort name> ::= <sort name>
| <strategy sort name>

The keyword explicit is only used with defined strategies and introduces a strategy rule that
contains explicitly in its left-hand side the application operator [@]@ that will be introduced in
Section 3.5.2. Otherwise, the strategy rule is introduced by the keyword implicit.

3.5.1 Elementary strategies syntax

.
The general syntax of elementary strategy rules is the following:

<elementary strategy rule> ::= [] <Estrategy name> => <Estrategy term> end

An elementary strategy rule has no label. Thus it is always global.
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<Estrategy term> ::= <Estrategy name>
| <choosing>
| <concatenation>
| <iterator>
| <normalize>
| <normalize with trace>
| fail
| id

<choosing> ::= dc ( <Estrategy term> { , <Estrategy term> } ∗ )
| dk ( <Estrategy term> { , <Estrategy term> } ∗ )
| first ( <Estrategy term> { , <Estrategy term> } ∗ )
| dc one ( <Estrategy term> { , <Estrategy term> } ∗ )
| first one ( <Estrategy term> { , <Estrategy term> } ∗ )

<concatenation> ::= <Estrategy term> ; <Estrategy term>

<iterator> ::= iterate* ( <Estrategy term> )
| iterate+ ( <Estrategy term> )
| repeat* ( <Estrategy term> )
| repeat+ ( <Estrategy term> )

<normalize> ::= normalize ( <Estrategy term> )
| normalise ( <Estrategy term> )

<normalize with trace> ::= normin ( <Estrategy name> { , <Estrategy name> } ∗ )

<Estrategy name> is a constant strategy name declared with the attribute bs.

Labelled rules

A labelled rule is the most elementary strategy and is called a primal strategy.
The application of a rewrite rule in ELAN yields a set of results. There are in general

several ways to apply a given conditional rule with local assignments. This is first due to
equational matching (e.g. AC-matching) and second to the where assignment, since it may
itself recursively return several possible assignments for variables when using for example non-
deterministic strategies.

Note that there may be several rules with the same label. If no rule labelled ` applies on the
term t, the set of results is empty and we say that the rule ` fails.

A labelled rule ` can be considered as the simplest form of a strategy which returns all results
of the rule application.

Thus the language provides basic constructions to handle this non-determinism through
choice strategy operators.

Choice strategy operators

Let us first concentrate on expressing choices among the set of results on a primal strategy `. By
default the strategy ` returns all results of this primal strategy. If at most one result is needed,
` has to be encapsulated by the strategy operator dc one that returns a non-deterministically
chosen result, or first one that returns the first result, when it exists.
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Example 3.12 Let us consider the following module (incompletely described here):

ElanExamples/indeterminism.eln

The application of the rule extractrule on the term empty U a U b can be done in two
ways, since the AC-matching algorithm returns a complete set of matches consisting in the two
substitutions: { S 7→ empty U a, e 7→ b} and {S 7→ empty U b, e 7→ a}.

Using the strategy extractrule on this term results in the set consisting of two terms a and
b. dc one(extractrule) returns either a or b depending of the implementation of the non deter-
ministic choice. first one(extractrule) returns either a or b depending of the implementation
of the AC-matcher.

More choice operators are defined and apply in general on a list of arguments.

• The dk operator, with a variable arity, is an abbreviation of dont know choose.
dk(S1, . . . , Sn) takes all strategies given as arguments, and returns, for each of them the
set of all its results. dk(S1, . . . , Sn) fails if all strategies S1, . . . , Sn fail.

• The dc operator, with a variable arity, is an abbreviation of dont care choose.
dc(S1, . . . , Sn) selects only one strategy that does not fail among its arguments, say Si,
and returns all its results. dc(S1, . . . , Sn) fails if all strategies S1, . . . , Sn fail. How to
choose Si is not specified.

• A specific way to choose an Si is provided by the first operator that selects the first
strategy that does not fail among its arguments, and returns all its results. So if Si is
selected, this means that all strategies S1, . . . , Si−1 have failed. Again first(S1, . . . , Sn)
fails if all strategies S1, . . . , Sn fail.

• If only one result is wanted, one can use the operators first one or dc one that select a
non-failing strategy among their arguments (either the first or anyone respectively), and
return a non-deterministically chosen result of the selected strategy.

Example 3.13 Consider the following module:

ElanExamples/testStrat.eln

Then the strategy strat applied to a results in c, and the same strategy applied to b results
in {e,f}.

Note that the same rule label can be used for naming different rules. In fact this is equiv-
alent to design rules with different labels and a choice operator to link them. For instance in
Example 3.13, we could have the label r3 again instead of r4 for the fourth rule. The strategy
could then be defined as dc(dk(r1), dk(r2), dk(r3)).

Strategies concatenation

Two strategies are concatenated by applying the second strategy on all the results of the first
one.

The concatenation operator denoted “;” builds the sequential composition of two strategies
S1 and S2. The strategy S1;S2 fails if S1 fails, otherwise it returns all results (maybe none)
of S2 applied to the results of S1;
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Example 3.14 In the same context as in the previous example (Example 3.13), the strategy:

ElanExamples/testConc.eln

when applied on the term a results in the application of first r1, then r5, and finally r3 and r4
in all possible ways, yielding the results {e,f}.

Strategy iterators

In order to allow for the automatic concatenation of the same strategy, ELAN offers four powerful
iterators:

The strategy iterate* corresponds to applying zero, then one, then two, ... n times the
strategy to the starting term, until the strategy fails. Thus (iterate*(s))t returns

⋃∞
n=0(s

n)t.
Notice that iterate* returns the results one by one, even when the iteration of the strategy
never fails. This strategy cannot fail since it returns at least the initial term.

Its variant iterate+ does not return the initial term but returns
⋃∞
n=1(s

n)t. It can fail if s
fails on the initial term.

The strategy repeat iterates the strategy until it fails and returns just the terms resulting
from the last unfailing call of the strategy. The two variants are thus defined as:
(repeat*(s))t = (sn)t where (sn+1)t fails, n ≥ 0 and s0 = id,
(repeat+(s))t = (sn)t where (sn+1)t fails and n > 0.

Example 3.15 To illustrate the basic behaviour of the elementary strategies, let us consider the
following module:

ElanExamples/stratFail.eln

When applying the strategies on the terms a or b, we are obtaining the following results:

strategy a b
tryIt {b} ∅
repeatS {b} {b}
repeatP {b} ∅

In particular, the difference between the repeat* and repeat+ is due to to fact that when
dc(a2b) is applied zero time, this is by definition the identity strategy, returning the initial
term.

Example 3.16 The extraction of the elements of a list can be realized in the following way:

ElanExamples/iterRepeat.eln

We then obtain the following results for the different strategies applied on the terms 1 or
element(1.2.3) respectively:

strategy 1 element(1.2.3)
all0 ∅ {1, element(2.3)}
allRepS 1 {1, 2, 3}
allRepP ∅ {1, 2, 3}
allIter 1 {element(1.2.3), element(2.3), element(3), 1, 2, 3}
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The normalize strategy

Since labelled rules are applied only at the top of the terms, it is useful to have at hand a way
to apply a family of labelled rules everywhere in a term to get it normalized. This is provided in
ELAN by the normalize strategy. This strategy takes a strategy and use it in order to normalize
the term on which it is applied.
� There is no assumption of the way the rules are applied, e.g. neither innermost nor outermost.

Example 3.17 A typical example of the use of normalize is the normalization process of the
typed lambda calculus, whose main module is described as follows:

ElanExamples/normLambda.eln

The normalize strategy with trace

This new strategy (normin) normalizes terms with respect to a set of labelled rules in leftmost-
innermost fashion. Moreover, a complete trace is generated (see option -proofterm of the
compiler). This trace contains all informations about each rewrite step (i.e. the context, the
rule and the substitution) and allows the normalisation process to be exported to external
systems. The strategy normin is used, for example in an ELAN based tactic for (simple or AC)
rewriting in the Coq proof assistant available at [Ngu].

Identity and Failure

Two more constructions are available:

• id is the identity strategy that does nothing, and never fails.

• fail always fails and returns an empty set of results.

3.5.2 Defined strategies

The defined strategy language extends the elementary one by the possibility to define recursive
strategies. The application of a defined strategy is itself performed by an ELAN program that
defines the interpretation of the new constructions introduced by the user. All the modules
defining the appropriate syntax and semantics are provided in the ELAN library.

The syntax of the defined strategy language is described in an ELAN module called
strsig[X,Y] when strategies ranks contain sorts of the form <X->Y> (strategies are non sort-
preserving), and the module strat[X] when the strategies concern sorts of the form <X->X>
(strategies are sort-preserving). To use non sort-preserving strategies, one has to import the
module tcstrat[X,Y] where X and Y are different sorts. These modules implement the inter-
preter of the defined strategy language using a set of labelled rewrite rules and a basic strategy
eval. The syntax of defined strategies is given below:

<defined strategy rule> ::=

| [ ] <strategy body> end

| [.] <strategy body> end

| [ <rule label> ] <strategy body> end
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<strategy body> ::= <Dstrategy term> => <Dstrategy term> [ { <if-where-choose> } + ]

<if-where-choose> is defined in Section 3.4.1.
<Dstrategy term> is a term built on the signature of strategy operators. It has a strategy sort.
The different labels [], [.] and [`] for strategy rules correspond to different evaluation modes
explained in Section 3.6.2.

Example 3.18 An example of the use of these features is the following:

ElanExamples/map.eln

Example 3.19 The following module shows how to program loops with the defined strategy
language.

ElanExamples/loop.eln

3.6 Evaluation mechanism

This section does not introduce any new syntactic material, but gives informal explanations on
the operational semantics of the language.

3.6.1 Rewrite rules on terms

As we have seen, there are two kinds of rules: labelled and unlabelled. They define two classes
of rules that are applied on the term to be evaluated in the following way:

– Step 1 The current term is normalized using the unlabelled rules. This is done in order
to perform functional evaluation and thus it is recommended to the user to provide a
confluent and terminating unlabelled rewrite system to ensure termination and unicity of
the result. This normalization process is built-in in the evaluation mechanism and consists
in a leftmost innermost normalization. This yields always a single result.

– Step 2 Then one tries to apply on the normalized term a labelled rule following the strategy
described in the logic description. This leads to a (possibly empty) collection of terms.
If this set is empty, then the evaluation backtracks to the last choice point; if it is not
empty, then the evaluation goes on by setting a new choice point and evaluating one of
the returned terms by going to step 1.

In a slightly more formal way, a rule

[`] l → r s1 . . . sn

where the si are either where or if or choose try expressions, is applied on a term t by:

1. Matching l against t. This computes a multiset of substitutions (because of equational
matching). If this set contains more than two elements, one is chosen and the other ones
are stored for possible future backtracking. Let σ be the chosen substitution.

2. The evaluation goes on by evaluating the expressions s1, . . . , sn, one by one and in this
order (i.e. from 1 to n).
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3. If si is of the form where xi := (strati)ti, then one of the results (call it t′i) of the
application of the strategy strati on the term ti is chosen, and the substitution σ is
extended by xi 7→ t′i. The other results are stored for possible backtracking, and the
evaluation goes on with si+1. If the strategy strati fails on ti, then we backtrack to the
previous choice point.

4. If si is of the form where pi := (strati)ti, then one of the results (call it t′i) of the
application of the strategy strati on the term ti is chosen, and the substitution σ is
extended by the matching substitution σi from pi to t′i. The other results are stored for
possible backtracking, and the evaluation goes on with si+1. If the strategy strati fails
on ti, then we backtrack to the previous choice point. Note that when pi contains AC
symbols AC-matching is called and there is an additional backtracking mechanism to find
an adequate AC-match σi.

5. If si is of the form if ci, then the term ci is evaluated following the normalization strategy. If
the result is the bool constant true, then one evaluates the next expression si+1, otherwise
one backtracks to si−1.

6. If si is of the form
choose

try s1
1 . . . s1

m

. . .

try sj
1 . . . sj

k

. . .
try sp

1 . . . sp
l

end

then we can mimic the evaluation mechanism by replacing all occurrences of ` in strategy
expressions by p rules `1, . . . , `p (in this order) defined as follows for j = 1, . . . , p:

[`j ] l → r s1 . . . si−1 sj
1 . . . sj

k si+1 . . . sn

Since choose try is a recursive construction, this unfolding process is performed by a
leftmost-innermost mechanism, until we get rule expressions with no occurrence of choose
try.

� One should note that the term to be evaluated is first normalized by ELAN using the unlabelled
rules and the resulting term is then reduced using the given strategy. The following example
illustrates this behaviour.

Example 3.20

ElanExamples/normalizeFirst.eln

Applying the strategy s1 on the term f(a) gives no result since:

1. f(a) is normalized by the unlabelled rule into the term a,

2. then the normalization process tries to apply the labelled rule r1 on a and fails. So no
strategy applies! The set of results in empty.
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When applying the strategy s2 on f(a), for the same reason the reduction process fails to apply
the rule r1 but the strategy identity can then be applied and the result is then a since the term
is firstly normalized.

Example 3.21 Let us consider a brute force specification of the eight queens problem: How
can one put eight queens on one chess-board in such a way that they do not interfere? In this
example p1 refers to the position of the queen in the first column, p2 to the position of the
second queen which should be in the second column and so on up to p8.

ElanExamples/queens.eln

Note that the strategy above returns only one solution. If it is changed to a dk, we get all
possibilities.

Note also the way all the numbers between 1 and 8 are enumerated in ELAN using a dk
strategy (see tryrule).

3.6.2 Rewrite rules on strategies

Elementary strategies are defined by rules of the form [] c => strat where c is a constant
of sort <s -> s’> and strat a term built on elementary strategy constructors. Such rules are
always unlabelled. Application of such a strategy c on a term t, denoted (c)t is performed by
a C function generated by ELAN.

Defined strategies are like ordinary terms except that they have a functional sort of the
form <s -> s’>. To understand how rules are applied on these strategy terms, it is helpful to
distinguish two kinds of rule purposes: either the rule defines the result of the application of a
strategy to a term (and involves implicitly or explicitly the application operator [@]@), or the
rule defines a computation on strategy terms.

• Consider first the case of a rule which defines the result of the application of a strategy to
a term.

– When the rule is labelled by [.], it is used by the strategy interpreter (i.e. the ELAN
program given in the module strat[X] for sort preserving strategies or strat[X,Y]
for others). For that, the rule is automatically transformed into a rule with the label
DSTR and is applied with the default strategy eval of the strategy interpretor.

– When the rule is labelled by [`], it is used by the ELAN interpreter as any other
labelled rule governed by a strategy. So the user has to provide a strategy involving
`.

• Rules that define a computation on strategy terms are evaluated exactly like rules on
(ordinary) terms:

– If the rule is unlabelled, the leftmost innermost predefined strategy of the interpreter
is applied.

– If it is labelled by [`], the evaluation process needs a user-defined strategy involving
`.

Example 3.22 We define here a small strategy library composed of several defined strategies
that provide primitives for depth-first search in a computation tree. This strategy library is used
to build a strategy that finds out a path (or, all paths) towards an exit of a labyrinth.
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The strategy library supports four primitives for depth-first search. The current situation of
the partially discovered search tree is represented by a path from the initial state (the root of the
tree) to the current state (the left-most leaf). It also remembers all possible alternatives (or,
choice points) met along this path. Each step of the path is represented by a list of states, where
its head is the currently chosen state, and the rest represents all non-explored alternative states.
Each step of the path is a list of states, thus, the whole path could be naturally represented as
list[list[state]]. This sort also describes the current situation during the depth-first search in
this tree.

Four primitive strategies are defined over the sort list[list[state]].

• call(S) applies the strategy S on the current state, where S is of sort 〈state → state〉.
All possible results of this application, if there are any, are grouped together into a new
step (level) attached to the current path.

• next throws away the current state and continues searching with the next possibility of the
previous step (the last choice-point).

• exit leaves the current state ignoring all alternatives and it returns the control to the
previous step of the current path.

• cut eliminates all alternative states of the last step.

ElanExamples/space.eln

The variable state represents the current state, the variable level represents all alternatives
of the current state, i.e. state.level : list[state] is one step of the path, where the others steps
are recorded in the variable space.
The only non-trivial strategy among the four primitives is the strategy call(S), which uses the
function symbol set of to collect all results of an application of a strategy S.

In order to design a strategy helping to find out an exit from a labyrinth, we split the problem
into a part dependent on the labyrinth and an independent one. The dependent part contains a
specification of a state, which is a pair of coordinates, and a definition of four basic moves in
the labyrinth. They are realized as state transforming strategies left, right, up, down of sort
〈state → state〉 such that these strategies fail, if some movement in a given state is not possible
(because of a wall). All exits of the labyrinth are specified by a strategy exitable, which fails, if
the current state has ‘no exit doors’. Otherwise, it is equivalent to the identity strategy.

ElanExamples/robot.eln

The independent part of the strategy consists of a definition of the strategy search of sort
〈list[list[state]] 7→ list[list[state]]〉 and an auxiliary strategy moves of sort 〈state 7→ state〉. The
strategy search succeeds on an exitable state (a room with exit doors). Otherwise, if the current
path contains a loop, it backtracks and takes the next possible state to go on. If it does not
contain a loop, it either moves to the neighbour state and goes on searching, or, if no exit has
been found, it ignores the current choice, and backtracks to the next alternative.

3.7 Modules

The modularity constructions in the current version of ELAN are as simple as possible and the
semantics of parametrisation as well as importation is textual expansion.

The top-level information that should be provided by the super-user is the description of the
logic (s)he wants to make available. This is achieved in ELAN by using two kinds of modules. The
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first one describes the top level of the logic and are presented in files having the ‘.lgi’ extension,
the second ones contain all subsequently needed informations. They are called element modules
and they are presented in files having the extension ‘.eln’. Element modules have been described
in Section 3.2.

3.7.1 Visibility rules

The visibility rules in ELAN are the following:

• Only sorts are global. This means that they can be used in any module without any
importation command. As a consequence, their name is unique in the ELAN universe built
for a run.

• Operators, rewrite rules and strategies can on the contrary be local or global. A local
operator will be known only in its own module (i.e. the module where it is defined). If an
operator is declared to be global, then it is known in all modules importing the module
where it is declared. This can be slightly modified, when qualifying the importation
command by local or global. By default an importation without local or global specification
is assumed to be local.

• A special case is for aliases. The visibility rules for them are the same as for operators.
The only interesting case is for a module that locally imports a signature but exports the
alias definition. In this case, only the alias name of the operator will be known outside
and not its original name: this is quite useful for renaming purposes.

— Release Note: The main change concerning the visibility rules is that now only sorts are
always global. See section 3.9 for a summary of all syntax modifications.

3.7.2 Built-in modules

For convenience and efficiency several modules are provided as built-ins. See section 5.2 for a
full description of the current available ones.

3.7.3 Parameterised modules

Parameterised modules can be defined in ELAN as follows:

<formal module name> ::= <identifier>
| <identifier> [ <identifier> { , <identifier> } ∗ ]

The module instantiation by its actual parameters is currently done by the syntactical re-
placement of the formal arguments by the actual ones.

Example 3.23 The classical example is the one of parameterised lists:

ElanExamples/simpleList.eln

and we get list of integers by instantiating X by int and importing int as in:

ElanExamples/simpleList.lgi
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3.7.4 LGI modules

The top level description of the logic consists of:

1. the description of the syntax that the user is allowed to use in order to give his specifica-
tions.

2. the description of a term, called the query, that will be reduced in the rewrite logic defined
by the (super) user.

The syntax is the following:

<lpl description> ::= LPL <identifier> description
[ <specification description> ]

query
of sort <sort name>
result of sort <sort name>
import { <instantiated module name> } +

[ check with <boolean term> ]
start with <start term>

end

<specification description> ::= specification description
{ <specification part description> } +

end

<specification part description> ::= part <identifier>
of sort <sort name>
import { <instantiated module name> } +

[ check with <boolean term> ]

<start term> ::= ( [ <Estrategy name> ] ) <query term>

The syntax of of <query term> is built over the user-defined signature enriched by the
constant query. The sort of query is given by the query declaration above.

Example 3.24 If no specification is needed, the specification description part is skipped, as in
the following logic description used for running Example 3.13:

ElanExamples/testStrat.lgi

Example 3.25 Here is a simple example of the top level description of how unification can be
implemented:

ElanExamples/unification.lgi

In this unification logic, the user should provide the specification information as follows:

ElanExamples/simplesig.spc

The user should use the (super-user defined) keywords Vars and Ops to define respectively
the variables and the operators, namely a of arity 0, f of arity 2, etc...
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Semantics

When parsing a specification, ELAN generates new modules that complete the definition of the
rewrite theory to be used during the evaluation of the query. For instance, in the case of the
previous example, these new modules are:

ElanExamples/moduleVarUnif.eln

and

ElanExamples/moduleOpsUnif.eln

When a user provides a specification to an ELAN logic, this simply provides more information
about the context in which the user wants to work, like the name of function symbols or basic
axioms to use.

3.8 Pre-processing

Another original feature proposed by ELAN is the use of a pre-processing phase that allows to
describe the logic to be encoded in an easier way.

As described in Figure 1.1, the pre-processor is performing textual replacements starting
from informations given by the super-user in the modules, and by the user in the specification
file. The pre-processing phase in ELAN can just be thought of as a macro expansion mechanism
which extends the parameterization process described before.

In order to express the syntax of the pre-processor construction, we need the notion of
constant expression and of text defined as follows:

<constant expression> ::= <number>
| ( <subexpression> )

<subexpression> ::= <number>
| <subexpression> + <subexpression>
| <subexpression> - <subexpression>

| <subexpression> * <subexpression>

| <subexpression> / <subexpression>

| <subexpression> % <subexpression>

| ( <subexpression> )

<lexem> ::= <identifier>
| <number>
| <char>

<text> ::= { <lexem> } +

3.8.1 Simple duplication

A first feature is to allow simple duplications of a part of text. The syntax is:

<simple repetition> ::= <lexem> ˜ <constant expression>

| { <text> }˜ <constant expression>

Example 3.26 The text “a{, b}~3” is processed into “a, b, b, b”.
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3.8.2 Duplication with argument

It is often necessary to allow description of objects like f(t1, . . . , t5). This is possible using the
syntax:

<arg.repetition> ::= { <text> } <identifier>
=
<constant expression> ... <constant expression>

Example 3.27 The text “P { & s I=t I } I=1...3” is processed into “P & s 1=t 1 &
s 2=t 2 & s 3=t 3”.

A special form of this duplication with arguments is the explicit construction of a list of
indexed identifiers allowed using the syntax:

<arg.repetition> ::= <identifier> <number> <char> ... <char> <identifier> <number>

Example 3.28 The text “t 1,...,t 5” is processed into “t 1 , t 2 , t 3 , t 4 , t 5”.

3.8.3 Enumeration using FOR EACH

This construction allows to make the link between the specification given by the user and the
logic described by the super-user. A natural motivation for this construction is given by the
“standard” way inference rules are used. For example when describing how unification works,
the following transformation rule is given:

Decompose P ∧ f(s1, . . . , sn) =? f(t1, . . . , tn) → P ∧ s1 =? t1 ∧ . . . ∧ sn =? tn

It is generic in the sense that the operator f is unspecified. It can be a + of arity 2, or a
if@then@else@ of arity 3, or just a constant. We do not want, when specifying how the logic
works, to give only the specific cases, we need to be as generic as possible.

ELAN provides via the FOR EACH construction of the pre-processor, a way to be generic.
The syntax is the following:

<for each const.> ::= FOR EACH <vardecl> SUCH THAT <varaffect> : {
<text>

}
<vardecl> ::= <varname> { , <varname> } ∗ : <sort name>

| <vardecl> ; <vardecl>

<varaffect> ::= <varname> := ( [ <strategy name> ] ) <term>
| <varaffect> AND <varaffect>
| <varaffect> ANDIF <boolean term>

� Since the symbols {, },˜ are reserved for pre-processor use, it is not possible to use them for
any other purpose, even quoted.

� The pre-processor uses the character ‘ ’ (underline) for assembling identifiers. For example, the
text ‘a f 1 x b” is pre-processed into the sequence of three identifiers a, f 1 x and b. The
character ‘ ’ is thus part of an identifier even if there is a space between it and the rest of the string.
It is thus better for the user not to use the symbol, except for building identifiers of course.
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Example 3.29 The rule Decompose that we mentioned at the beginning of this section can
be expressed in the following way:

ElanExamples/decomposition.eln

If the specification given by the user consists in the operator symbols f and g of respec-
tive arities 2 and 1, then the pre-processor expands the previous FOR EACH construction into:

ElanExamples/decompositionExpanded.eln

3.9 Differences with previous version of the language

The language has evolved a lot between ELAN version 1.17 and ELAN version 3.0. The changes
concern the syntax of:

• modules,

• rules and

• strategies.

The main changes are emphasized in the corresponding sections of the language description,
and the main concern has been to uniformize the language constructions.

The transformations needed to change from the syntax of version 1.17 to the current one
(i.e. later than 2.00) are summarized below.

Concerning the declaration parts:

• import ... becomes import ... end

• sort ... becomes sort ... end

• op ... endop becomes operators ... end

Now, there is only one construction to define rules, you have to replace:

• rule for ... by rules for ...

• rule <name> for ... by rules for ... [name] ...

• suppress declare keyword

• body or bodies by global or local

• end of rule, end of rules by end

The rule labels accept now arguments that should be variables involved in the rule.
Definition of strategies looks like rules definitions, you have to replace:

• strategy ... by strategies for ... global|local [name] ...

• iterate ... enditerate by iterate*(...)

• while ... endwhile by repeat*(...)

• repeat ... endrepeat by repeat*(...)
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• dont know choose(...) by dk(...)

• dont care choose(...) by dc(...)

• end of strategy by end

• end of module by end

Local affectations and conditions are now evaluated from top to bottom. The order of presen-
tation has been reversed, so that the old syntax:

[] l => r
if c2
where v2:=(...) ...
where v1:=(...) ...
if c1

becomes in the new syntax:

[] l => r
if c1
where v1:=(...) ...
where v2:=(...) ...
if c2
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Chapter 4

ELAN: the system

This section is devoted to the user environment of the ELAN language, and is partly borrowed
from [BKK+98b].

4.1 Global architecture

The ELAN environment consists of several components, as depicted in Figure 4.1. The pre-
processor expands a few concise constructions allowed in the language. The parser checks the
syntax of programs and verifies that terms are syntactically well-formed. The interpreter is
an interactive tool allowing the user to check that the results he expects are indeed obtained.
Initially, the preprocessor and the parser were integrated in the interpreter and so it was not
possible to call them as stand-alone processes. The compiler transforms specifications into inde-
pendent executable C code (Section 4.5). It is a stand-alone tool without any preprocessing and
parsing facilities. The preprocessing and parsing phases are provided by the interpreter, which
communicates the result of these processes to the compiler via a data exchange format called
REF. Section 4.6 describes some tools to translate ELAN to REF and vice versa. Especially, the
translation from ELAN to REF performed by the query2ref tool relies mainly on reusing the
parser initially integrated in the interpreter.

4.2 The preprocessor

The ELAN syntax provides a few fancy constructions to perform textual replacements. So the
preprocessor may be used to automatically generate parts of specifications used to analyse the
rest of a program. It should be emphasised that there is strong interaction between the parser,
the preprocessor and the interpreter. See Section 3.8 for a description of the preprocessor
functionality.

4.3 The parser

The ELAN parser is based on Earley’s one [Ear70] and is using sort informations in order to
determine as soon as possible in the analysis the right choice. This explains why in the current
version, some construction of the language require to give the sort information together with
the term.
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PREPROCESSOR

ELAN PROGRAM

REF FORM REF FORM

EVALUATOR

EXPORT IMPORT

COMPILER

EXECUTABLE
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QUERY2REF

REF2RESULT

GCC

PARSER

Figure 4.1: Global architecture of the ELAN environment

4.4 The interpreter

The interpreter takes a well-formed program and a well-formed query (both checked by the
parser) and applies the rules and strategies defined in the program to the query. In order to find
which rules can apply, the selection is guided by the top symbol of the rules: only those rules
whose left-hand side has the same top symbol as the term to be reduced are selected. They are
then tried in the order given in the program. Another kind of choices arbitrarily made by the
interpreter is for the strategy dc(S1, ..., Sn) that should select randomly a non-failing strategy
among S1, ..., Sn. In practice, the interpreter selects the first one, so implements dc and first in
the same way. Note however that there exists a version of ELAN which concurrently executes
the n strategies and selects the first one which terminates without failure [BC98].

Once a set of rules is selected, a many-to-one matching algorithm is applied. When asso-
ciative and commutative (AC for short) operators are involved, an external one-to-one AC-
matching algorithm described in [Eke95] is called. This algorithm is not fully integrated in
the interpreter, so data structure conversions are required and lower the efficiency of the AC-
matching, already quite complex. Once a match is found, local evaluations are performed and
if all succeed, the result term is built, taking advantage of the right-hand side of the rule and of
term sharing.

4.5 The compiler

The ELAN compiler transforms a logic description into an executable binary file. The compiler
(for detailed description, see [Vit96, MK98]) produces an efficient C code, which is later compiled
by the cc or the gnu gcc compiler. The executable binary code is dependent on the particular
architecture, because a small part of the ELAN library performing the basic non-deterministic
operations is written in assembly language [Mor98]. Up to now, this is the only reason that
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makes the compiler available only on the architectures DEC-ALPHA, SUN4 and Intel-PC.

4.5.1 Non-linear rules

The ELAN compiler does not support non-left-linear rules (a rule is called non-left-linear if a
variable occurs more than once in the left-hand side). The many-to-one matching algorithm
only compiles linear rules. The ELAN parser automatically transforms non-left-linear rules into
left-linear conditional rules by renaming variables that occurs more than once and adding some
conditions to ensure their equality.

For example, the rule f(x,x) => g(x) is transformed into f(x,y) => g(x) if x==y.

4.5.2 Built-ins

To be more efficient, builtin data type such as builtinInt and identifier are compiled in a par-
ticular way.

The main drawback of this approach is that only completely defined functions can be defined
on builtin data type.

Let f(@) : (builtinInt) builtinInt be an operator. For each integer n, f(n) must be
reducible to an integer. Suppose defined the rule [] f(n) => n-1 if n > 1, the term f(0)
can not be reduced to a builtin integer. In this case, behaviour is undefined. This explains why
builtinInt are never used directly: it is recommended to use the sort int which is no longer a
builtin data type.

4.5.3 Input/Output facilities

Input/Output facilities are now fully implemented in the compiler. Their syntax is described in
the module IO.eln of the standard library.

As in the version V3.4, it is possible, in the generated program, to enter a query term in
the ELAN syntax, just like in the interpreter. In the same way, result terms computed by
the generated program are now pretty-printed in the ELAN syntax. Therefore, it is no more
necessary to give a fixed ground term in the .lgi file, and .lgi files involving the query keyword
can now be compiled. In the current version, the query is parsed dynamically in the generated
program by reusing a subpart of the parser integrated to the interpreter.

The generated program can be executed with several switches used to specify the different
possible formats of input (query) and output (result) terms:

Input switches

• -REFInput: the query term must be in the REF format (see Section 4.6).

• -noInput: the query ground term is supposed to be located in the .lgi file, where it
replaces the query keyword.

Output switches

• -REFOutput: result terms will be given in the REF format (see Section 4.6).

• -noOutput: results are computed but not written out. The interest of this switch is rather
limited, but it can be useful for people who only want the statistics of the computation,
like the number of rewrite steps per seconds.
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• -internalOutput: result terms are given by using a prefix notation. This is the original
syntax used in the first version of the compiler.

The generated program, called by default a.out, can be executed with some other switches
not necessarily related to Input/Ouput, like a.out -quiet or a.out -debug.

At this point, it is still possible to change the content of the start with instruction declared
in the .lgi file. The switch -strategy <strategy name> : <sort name> will apply the strategy
<strategy name> on a query term of sort <sort name> .

Similarly, the switch -sort <sort name> will apply the empty strategy on a query term
<sort name> . Note that -strategy and -sort are mutually exclusive.
� The list of available sorts (resp. strategy names) can be found in the .ref file.

4.6 The REF format

The Reduced ELAN Format, REF for short, is a term-like representation of ELAN programs
introduced both for the interconnection of software components involved in the ELAN system,
and for combining ELAN programs. This format is also of greatest interest for the implemen-
tation of reflection techniques in ELAN. A detailed description of its applications can be found
in [BKK+98b].

The REF format has been initially developed to reuse the powerful Earley’s parser integrated
in the interpreter. By loading with the interpreter an ELAN program possibly in mixfix notation,
we can get a REF program which can be viewed as the external representation of the interpreter
working memory. REF is easier to parse than ELAN since the REF grammar is simply LALR.
The ELAN interpreter generates a REF file prog.ref thanks to the option --export:

elan --export prog.ref prog.lgi [prog.spc]

The REF program contained in prog.ref can be directly executed by the interpreter as follows:

elan --import prog.ref

Then, the behavior of the interpreter is exactly the one expected with the command:

elan prog.lgi [prog.spc]

but without the time-consuming preprocessing and parsing phases.
The core of the ELAN compiler, called REM for “Reduced ELAN Machine” and implemented

in Java, only knows the REF syntax. This explains why we need a script elanc to first call the
interpreter in order to obtain a REF file, and second to execute REM with this REF file as input.

Then, a compiled C program, say a.out, is generated by REM. This program can be ex-
ecuted with different options like a.out -REFInput, a.out -REFOutput or even better a.out
-REFInput -REFOutput:

• The option -REFInput reads a new query in REF syntax to replace the ground query
occurring initially in prog.lgi.

• The option -REFOutput writes all result terms computed by a.out in REF syntax, instead
of the ELAN syntax used by default.

So, we still have to convert an ELAN query to a REF query, and conversely to retrieve the
ELAN syntax of result terms written in REF syntax.

For this purpose, one can use another tool to read a query and to pretty-print result terms
of the a.out program, both in ELAN syntax, similarly to the interpreter. This tool is called
prettyIO and may be used as follows:
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prettyIO a.out prog.ref

Note that prog.ref is needed to find the ELAN syntax of functions implemented by a.out, and
so to encode a query term provided by the user in ELAN syntax, and to decode terms written
in REF syntax by a.out -REFInput -REFOutput. The executable prettyIO is implemented as
a script calling some basic tools:

• query2ref prog.ref reads repeatedly (from stdin) a sort, and parses a term of this sort
written in ELAN syntax. The result (written to stdout) is the corresponding term in REF
syntax. By using the option --query as follows:

query2ref prog.ref --query

we only parse terms of the sort of the query, as indicated in prog.lgi (this information also
occurs in prog.ref ).

• ref2result prog.ref reads repeatedly (from stdin) terms encoded in REF syntax and
writes (to stdout) the related terms in ELAN syntax, by using the signature occurring in
prog.ref.

The script prettyIO is located in the directory bin/ like elanc, and the compiled C/C++
programs query2ref and ref2result are located in the subdirectory of bin/ related to the
current system architecture, like the interpreter elan.
� The user should be aware that prettyIO is much less interesting in the current version, since it
is now possible to parse a query term and to pretty-print all results by simply using the generated
program a.out itself.
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Chapter 5

The standard library and the
built-ins

This chapter presents the main features of the ELAN standard library. Remember that the
path to this library is specified in the system variable ELANLIB whose default value is set to
the subdirectory elan library/elanlib of the source directory. ELAN can be used without
any reference to this library, except for what concerns the use of the built-in objects which are
documented in the second part of this chapter.

This library has been designed to be small and as efficient as possible. In particular no
AC operators is used. The resulting code is more efficient, at the price of sometimes heavier
descriptions.

5.1 The ELAN standard library

The standard library is fully documented in [BCD+98] to which we refer for details. We give
below the list of files defined in the standard library. Some of them define built-in sorts and
operators and in this case, they also appear in the next section (section 5.2).

5.1.1 common

In this category, the most common abstract data types are defined.
anyIdentifier.eln identity.eln
anyInteger.eln int.eln
array.eln integerConstants.eln
arrayLIN.eln IO.eln
arrayLOG.eln list.eln
bool.eln occur.eln
builtinArray.eln pair.eln
builtinHashTree.eln prompt.eln
builtinInt.eln Query.eln
builtinIO.eln replace.eln
builtinStdio.eln stdio.eln
builtinString.eln string.eln
builtinSyntacticMatchin.eln strlist.eln
cmp.eln tuple.eln
eq.eln

November 29, 2006 ELAN user manual



60 The standard library and the built-ins

5.1.2 ref

All the modules needed to deal with the Reduced ELAN Format.
Meta Apply.eln ref modules.eln ref terms.eln
REF.eln ref read.eln ref unify.eln
ref rules.eln ref unify builtin.eln
ref2string.eln ref sorts.eln ref write.eln
ref2term.eln ref strategies.eln refstring2string.eln
ref idents.eln ref tables.eln string2refterm.eln

5.1.3 noquote

These modules describe a possible syntax for the user specifications. More complicated syntax
(e.g. mixfix) can also be defined.

applySubstOn.eln hornClauseSyntax.eln syntacticUnification.eln
atom.eln ident.eln termCommons.eln
atomP.eln identifier.eln sigSyntax.eln
eqSystem.eln substitution.eln

5.1.4 strategy

These modules are used for the definition and evaluation of defined strategies.
Any.eln booleg.eln meta.eln strsig.eln
any.eln Meta apply.eln strapply.eln symbol.eln
Meta capply.eln commit.eln strat.eln tcstrat.eln
Meta strat.eln strcapply.eln loops.eln strconc.eln

5.2 The built-ins

There are two types of built-in symbols:

• The built-in constructors, which are non-reducible symbols, built into the ELAN
system. Terms built over them are either constructed, or interpreted by the ELAN system,
e.g. the symbol Error defined in the module . . . /common/builtinIO.eln as follows:

Error(@) : (builtinInt) X code 122;

which is used to report various errors of the I/O sub-system written in C++.

• The built-in functions, which represent symbols with pre-defined semantics, in
general, not [easily] specifiable in ELAN itself. The symbol open in the module
. . . /common/builtinStdio.eln defined as follows:

open_builtinStdio(@,@) : (builtinString builtinString) builtinInt code 116;

can be taken as an example. In this case, the declaration (profile) of the symbol open
represents an interface between the ELAN specification and its built-in semantics. In this
case, the code “116” identifies its semantics.

November 29, 2006 ELAN user manual



5.2 The built-ins 61

If there is an overloaded built-in symbol whose exact semantics depends on its profile, a
procedure implementing the built-in symbol should know, which instance of the built-in
symbol is executed. The overloaded symbol read builtinIO is an example of this problem:

read_builtinIO(@,@) : (builtinInt X) X pri 200 code 120;

When the built-in symbol read builtinIO is used for several sorts X, there exist several
built-in symbols read builtinIO in the user’s specification. All of them are linked with
the same semantic function (with the code 120) parameterized by the concrete profile of
read builtinIO. Thus, the sort of a read term is known in the semantic procedure due to
the profile of actually applied symbol read builtinIO. The difference between two kinds
of built-in function symbols is expressed by the sign of code numbers.

5.2.1 Booleans

At the beginning there is nothing, so ELAN provides the true and false values and introduces
the bool module. These two values are built-in and are deeply connected to the implementation
of conditions in rewrite rules.

/elanlib/common/bool.eln

Builtins Code Signature Comments
false 0 () bool The logical false.
true 1 () bool The logical true.

@ and @ 21 (bool bool) bool The logical conjonction.
@ or @ 22 (bool bool) bool The logical disjonction.
@ xor @ 23 (bool bool) bool The logical exclusive disjonction.
not(@) 24 (bool) bool The logical negation.

/elanlib/common/cmp.eln

To enrich the booleans, polymorphic equality, disequality and inequalities are defined and are
also built-in:

Builtins Code Signature Comments
@ == @ 18 (X X) bool Tests the equality between two elements of the same

sort X.
@ != @ 19 (X X) bool Tests the inequality between two elements of the same

sort X.
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5.2.2 Numbers

Numbers can of course be created “by hand”, but we choose in ELAN to provide built-in integers.

/elanlib/common/builtinInt.eln

Builtins Code Signature Comments

@ + @ 310 (builtinInt builtinInt)
builtinInt

The addition on inte-
gers, failing in case of a
signed overflow.

@ - @ 311 (builtinInt builtinInt)
builtinInt

The substraction on in-
tegers, failing in case of
a signed overflow.

@ * @ 312 (builtinInt builtinInt)
builtinInt

The multiplication on
integers, failing in case
of a signed overflow.

@ / @ 327 (builtinInt builtinInt)
builtinInt

The division on inte-
gers, of course failing in
case of a division by 0,
but also in case of a
signed overflow.

@ % @ 27 (builtinInt builtinInt)
builtinInt

The modulo operation,
of course failing in case
of a division by 0.

- @ 313 (builtinInt) builtinInt The opposite of an inte-
ger, failing in case of a
signed overflow.

uplus(@,@) 323 (builtinInt builtinInt)
builtinInt

The addition on un-
signed integers having
the same binary repre-
sentation, failing in case
of an unsigned overflow.

uminus(@,@) 324 (builtinInt builtinInt)
builtinInt

The substraction on un-
signed integers having
the same binary repre-
sentation, failing in case
of an unsigned overflow.

utime(@,@) 314 (builtinInt builtinInt)
builtinInt

The multiplication on
unsigned integers hav-
ing the same binary rep-
resentation, failing in
case of an unsigned
overflow.
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Builtins Code Signature Comments

udiv(@,@) 321 (builtinInt builtinInt)
builtinInt

The division on un-
signed integers having
the same binary repre-
sentation, of course fail-
ing in case of a division
by 0.

umod(@,@) 322 (builtinInt builtinInt)
builtinInt

The modulo operation
on unsigned integers
having the same bi-
nary representation, of
course failing in case of
a division by 0.

unfailing(@ + @) 3 (builtinInt builtinInt)
builtinInt

The addition on inte-
gers, not failing in case
of an overflow.

unfailing(@ - @) 4 (builtinInt builtinInt)
builtinInt

The substraction on in-
tegers, not failing in
case of an overflow.

unfailing(@ * @) 5 (builtinInt builtinInt)
builtinInt

The multiplication on
integers, not failing in
case of a signed over-
flow.

unfailing(@ / @) 6 (builtinInt builtinInt)
builtinInt

The division on inte-
gers, of course failing in
case of a division by 0,
but not in case of an
overflow.

unfailing(- @) 20 (builtinInt) builtinInt The opposite of an inte-
ger, not failing in case of
an overflow.

unfailing(utime(@,@)) 325 (builtinInt builtinInt)
builtinInt

The multiplication on
unsigned integers hav-
ing the same binary rep-
resentation.

overflow(@ + @) 315 (builtinInt builtinInt)
builtinInt

The unsigned ”carry-
out” overflow of addi-
tion on integers.

overflow(@ + @) 316 (builtinInt builtinInt)
bool

Indicates if there is a
signed overflow for addi-
tion on integers.

overflow(@ - @) 317 (builtinInt builtinInt)
builtinInt

The unsigned ”carry-
out” overflow of sub-
straction on integers.

overflow(@ - @) 318 (builtinInt builtinInt)
bool

Indicates if there is a
signed overflow for sub-
straction on integers.
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Builtins Code Signature Comments

overflow(@ * @) 319 (builtinInt builtinInt)
builtinInt

The overflow value
(most significant part)
of multiplication on
integers.

overflow(@ * @) 329 (builtinInt builtinInt)
bool

Indicates if there is a
signed overflow for mul-
tiplication on integers.

overflow(@ / @) 328 (builtinInt builtinInt)
bool

Indicates if there is an
overflow of division on
integers.

overflow(- @) 320 (builtinInt) builtinInt Carry-out overflow of
the opposite of an inte-
ger.

overflow(- @) 335 (builtinInt) bool Indicates if there is a
signed overflow for the
opposite of an integer.

overflow(utime(@,@)) 326 (builtinInt builtinInt)
builtinInt

The overflow value
(most significant part)
of multiplication on
unsigned integers hav-
ing the same binary
representation.

@ & @ 28 (builtinInt builtinInt)
builtinInt

bitwise conjunction.

@ | @ 29 (builtinInt builtinInt)
builtinInt

bitwise disjunction.

@ ∧ @ 330 (builtinInt builtinInt)
builtinInt

bitwise exclusive dis-
junction.

neg(@) 331 (builtinInt) builtinInt bitwise negation.
shiftl(@) 332 (builtinInt) builtinInt bit shift to the left.
shiftr(@) 333 (builtinInt) builtinInt bit shift to the right, fill-

ing with sign bit.
ushiftr(@) 334 (builtinInt) builtinInt bit shift to the right, fill-

ing with 0.
@ == @ 8 (builtinInt builtinInt)

bool
The equality test.

@ != @ 9 (builtinInt builtinInt)
bool

The inequality test.

@ < @ 10 (builtinInt builtinInt)
bool

The strict ordering test
between integers.

@ <= @ 11 (builtinInt builtinInt)
bool

The ordering test be-
tween integers.

@ > @ 12 (builtinInt builtinInt)
bool

The strict ordering test
between integers.

@ >= @ 13 (builtinInt builtinInt)
bool

The ordering test be-
tween integers.

eq builtinInt(@,@) 8 (builtinInt builtinInt)
bool

The equality test.
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Builtins Code Signature Comments

neq builtinInt(@,@) 9 (builtinInt builtinInt)
bool

The inequality test.

less builtinInt(@,@) 10 (builtinInt builtinInt)
bool

The strict ordering test
between integers.

lesseq builtinInt(@,@) 11 (builtinInt builtinInt)
bool

The ordering test be-
tween integers.

greater builtinInt(@,@) 12 (builtinInt builtinInt)
bool

The ordering test be-
tween integers.

greatereq builtinInt(@,@) 13 (builtinInt builtinInt)
bool

The ordering test be-
tween integers.

btoi(@) 25 (bool) builtinInt The conversion from a
boolean to an integer
(false becomes 0 and
true becomes 1).

itob(@) 26 (builtinInt) bool The conversion from
any integer to a boolean
(0 becomes false and
any other true).

5.2.3 Identifiers

/elanlib/noquote/ident.eln

Builtins Code Signature Comments
@ == @ 14 (ident ident) bool Tests the equality between two identifiers.
@ != @ 15 (ident ident) bool Tests the inequality between two identifiers.

/elanlib/common/builtinString.eln

Builtins Code Signature Comments

strlen(@) 150 (string) builtinInt Computes the length of
a string.

strcat(@,@) 151 (string string) string Concatenates two
strings.

@[@] 152 (string builtinInt) s[i] selects the ith
character of the string
s.

@[@<-@] 153 (string builtinInt
builtinInt) string

s[i<-c] replaces the
ith character of the
string s by the charac-
ter c.

substr(@,@,@) 154 (string builtinInt
builtinInt) string

substr(s,i,n) ex-
tracts from the string s
a substring of length n
from the ith position.
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Builtins Code Signature Comments

strspn(@,@) 156 (string string)
builtinInt

strspn(s1,s2) returns
the length of the first
part of s1 entirely con-
situted by characters of
s2.

strcmp(@,@) 157 (string string)
builtinInt

strcmp(s1,s2) com-
pares two strings
character by character
and returns an integer
(a negative one if s1 is
less than s2, 0 if they
are equal and otherwise
a positive integer).

string(@) 158 (builtinInt) string Conversion from an in-
teger (that is, the as-
sociated character) to a
string.

ident2string(@) 177 (ident) string Conversion from an
identifier to a string.

5.2.4 Elementary term computations

Since it is of primarily use in symbolic computation on terms (and remember that everything
in ELAN is a term except the built-ins), the occurrence relation and the replacement operation
are provided as built-ins.

/elanlib/common/occur.eln

The module occur[X,Y] is parameterized by two sorts X,Y that must be non built-in.

Builtins Code Signature Comments
occurs @ in @ 17 (X Y) bool occurs s in t checks if s occurs in t.

/elanlib/common/replace.eln

The module replace[X,Y] is parameterized by two sorts X,Y that must be non built-in.

Builtins Code Signature Comments
replace @ by @ in @ 16 (X X Y) Y replace s by u in t replaces all occurrences

of s by the u in t.

/elanlib/common/builtinSyntacticMatching.eln

Matching and unification operations are provided as built-ins.
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Builtins Code Signature Comments

builtinSyntactic
Matching(@,@,@,@)

191 (X X Y Y) Y builtinSyntacticMatching
(t1,t2,vars,failure) tries to match
terms t1 to t2 (i.e. t1 << t2), where
vars:Y represents list of variables occurred
in t1:X and t2:X and failure:Y is a value
returned in a non-successful case. Otherwise,
a matching substitution is returned in the
form of a list of terms associated to the list of
variables vars. The sort Y is supposed to be
list[X]. It works only for empty theories.

builtinSyntactic
Unification(@,@,@,@)

175 (X X Y Y) Y the same as the previous built-in function,
except that a most general unifier is searched.

5.2.5 Input/Output

/elanlib/common/Query.eln

The module Query[I,O,P] defines the parameterized sort Query[I,O,P] and the sort ide
(embedding the sort ident of identifiers). All symbols defined in this module are built-in
constructors w.r.t. the classification mentioned before.

Builtins Code Signature Comments

quit 90 () Query[I,O,P] quit just quit the com-
mand interpreter

help 112 () Query[I,O,P] help prints the help
menu (in the file
elanlib/help.txt)

load @ 91 (ide) Query[I,O,P] load f loads the file
f.eln and extends the
current specification

batch @ 107 (ide) Query[I,O,P] batch f runs com-
mands of the batch file
f.eln

run @ 94 (I) Query[I,O,P] run q runs the current
specification with the
query q

sorts @ @ @ 92 (ide ide ide) [I,O,P] sorts q r s redefines
sorts of query, results
and print-outs

startwith (@)@ 93 (ident O) Query[I,O,P] startwith (s)t rede-
fines the starting term
(s)t of the .lgi file,
where s is a strategy
and t is a pattern of the
input query
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Builtins Code Signature Comments

checkwith @ 102 (bool) Query[I,O,P] checkwith b redefines
the checking term of the
.lgi file, where b is
a pattern of a boolean
condition tested before
any input query

printwith @ 98 (P) Query[I,O,P] printwith t redefines
the printing term used
to pretty-print any re-
sult

qs 100 Query[I,O,P] dump the stack of
queries

rs 101 Query[I,O,P] dump the stack of re-
sults

stat 96 Query[I,O,P] print statistics
dump 95 Query[I,O,P] dump all rules
dump @ 108 (ident) Query[I,O,P] dump(l) dumps rules or

strategies with the la-
bel/name l

dump @ 109 (builtinInt)
Query[I,O,P]

dump(s) gives all infor-
mation about the sym-
bol s given by its code

display @ 103 (builtinInt)
Query[I,O,P]

display m changes the
printing mode of sym-
bols: display 1 shows
terms in internal form,
while display 0 uses
the traditional repre-
sentation

trace @ 97 (builtinInt)
Query[I,O,P]

trace n changes the
level of debugging to
level n

break @ 104 (ident) Query[I,O,P] break f sets a break-
point on rules or
strategies with the
label/name f

break @ 110 (builtinInt)
Query[I,O,P]

break s sets a break-
point on the symbol s
given by its code

unbreak @ 105 (ident) Query[I,O,P] unbreak f deletes the
break-point on rules or
strategies with the la-
bel/name f

unbreak @ 111 (builtinInt)
Query[I,O,P]

unbreak s deletes the
break-point on the sym-
bol s

breaks 106 () Query[I,O,P] lists all set break points
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/elanlib/common/IO.eln

The module IO[X] defines the Input/Output primitives which can only be used with the com-
piler. This module is parameterized by the sort X of the terms used in input/output opera-
tions. Currently, only the following sorts are available in the input/output operations: string,
int, bool, term. For example, to write out or read in strings, the user only need to import
IO[string] in his or her program.

Builtins Code Signature Comments
write(@,@) -119 (File X) X Writes on output File the argument of sort X.
writeln(@,@) -119 (File X) X Writes on output File the argument of sort X and

goes to the next line.
read(@) -120 (File) X Reads from input File and return an element of

sort X.
Error(@) 123 (builtinInt) X Reports various errors of the I/O sub-system writ-

ten in C++.

/elanlib/common/builtinStdio.eln

The module builtinStdio.eln provides several input/output primitives. But except for open
and close, the others can and should be replaced by the primitives in IO. Notice that the
module builtinStdio.eln is already imported by IO and do not need to be explicitly imported
in ELAN programs. Three constants of sort File stdin, stdout and stderr provide respectively
the standard input, the standard output and the standard error output.

Builtins Code Signature Comments
getc(@) 113 (builtinInt) builtinInt Gets the next character

from an input file or pipe.
putc(@) 114 (builtinInt builtinInt) builtinInt Puts a character to an out-

put file or pipe.
create(@) 115 (builtinString) builtinInt Creates a process with a

given name. The cre-
ated process is linked with
the parent process via two
blocking pipes.

create noblock(@) 117 (builtinString) builtinInt Creates a process with a
given name such that two
communication pipes are
in a non blocking mode.

open(@,@) 116 (builtinString builtinString) File Opens a file for reading or
writing. The first argu-
ment is the name of the file,
and the second argument is
either "w" (write or create
mode), "r" (read mode) or
"a" (append mode).

close(@) 118 (File) builtinInt Closes a file or kill a pro-
cess denoted by the pipe
number of sort File.
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5.2.6 Strategies

/elanlib/strategy/Meta strat.eln

The module Meta strat[X] parameterized by a sort X can only by used in interpreted mode.
This module exports the sort Strategy[X], which specifies an external form of basic strategies
of sort X. The signature of basic strategies is defined by several built-in constructors used to
convert strategy terms of sort Strategy[X] into basic strategies over the sort X. This conversion
is used for the implementation of meta apply symbols of the previous module.

Builtins Code Signature Comments
@ 131 (Strategy[X])

Strategies[X]
Embeds a basic strategy in a list of ba-
sic strategies.

@ , @ 132 (Strategy[X]
Strategies[X])
Strategies[X]

Concatenates a basic strategy to a list
of basic strategies.

@ 133 (string) Labels[X] Embeds a string in a list of rule labels.
@ , @ 134 (string Labels[X])

Labels[X]
Concatenates a string to a list of rule
labels.

dc(@) 135 (Labels[X]) Strateg[X] dc(l) is a basic strategy that chooses
one label in the list of labels l and re-
turns all results of the corresponding
rule.

dk(@) 136 (Labels[X]) Strateg[X] dk(l) is a basic strategy that chooses
successively all labels in the list of la-
bels l and returns all results of the cor-
responding rules.

dc(@) 137 (Strategies[X])
Strateg[X]

dc(ls) is a basic strategy that chooses
one basic strategy in the list ls and
returns all its results.

dk(@) 138 (Strategies[X])
Strateg[X]

dk(ls) is a basic strategy that chooses
successively all basic strategies in the
list ls and returns all their results.

repeat*(@) 139 (Strategy[X]) Strateg[X] repeat*(s) is a basic strategy that re-
peats the application of the basic strat-
egy s until it fails.

iterate*(@) 140 (Strategy[X]) Strateg[X] iterate*(s) is a basic strategy that
repeats the application of the basic
strategy s until it fails and returns in-
termediate results.

@ 141 (Strateg[X]) Strategy[X] Embeds the previous constructions into
the sort Strategy[X].

@ ; @ 142 (Strateg[X] Strategy[X])
Strategy[X]

Concatenates any previous construc-
tion to a strategy.

id 143 () Strateg[X] id is a basic strategy.
call @ : X 144 (string) Strateg[X] call s:X represents an application of

a basic strategy named s of sort X.
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/elanlib/strategy/Meta apply.eln

The module Meta apply[X] parameterized by a sort X can only by used in interpreted mode
(cf. the module Meta capply[X] for the compiled mode).

The construction where y:=(META)meta apply(s,t) exported from this module is se-
mantically equivalent to where y:=(s)t where s is a basic strategy, i.e. it gives all re-
sults of application s on t. There exists also a sightly modified construction where
y:=(META)meta apply(s,t,n) giving only the n-th solution of the application of (s)t, if it
exists.

The ELAN built-in strategy META used here just indicates that (META)meta apply(s,t) re-
turns in general several results, which would not be the case with ()meta apply(s,t). The built-
in strategy META is applicable only to terms of the form meta apply(s,t) or meta apply(s,t,n).

The module Meta apply.eln exports several variants of the symbol set of(s,t,m,n) re-
turning a list of m results of the application (s)t from the n-th result. The symbols set of(s,t),
set of(s,t,m) and set of(s,t,m,n) are implemented using a result-collecting built-in sym-
bol meta apply(s,ts,m,n):(Strategy[X] list[X] builtinInt builtinInt) list[X] de-
fined in this module.

Builtins Code Signature Comments
meta apply(@,@) -129 (Strategy[X] X) X meta apply(s,t) returns all

results of application of the
basic strategy s on theterm t.

meta apply(@,@,@) -130 (Strategy[X] X
builtinInt) X

meta apply(s,t,n) returns
the n-th result of application
of the basic strategy s on the
term t, if it exists.

meta apply(@,@,@,@) -128 (Strategy[X] list[X]
builtinInt builtinInt)
list[X]

The local built-in symbol
meta apply(s,t.nil,m,n)
returns n results starting from
the m-th of application of the
basic strategy s on the term
t, if they exist.

/elanlib/strategy/Meta capply.eln

The module Meta capply[X] parameterized by a sort X can only by used in compiled mode. It
represents a simplified form of the module Meta apply[X], where a construction of a strategy
of sort Strategy[X] is restricted to a reference of an existing strategy (i.e. a strategy already
occurring in the compiled program). Thus, in a meta apply call, only a name (i.e. a string) of
a referenced strategy is used instead of a strategy term of sort Strategy[X].

Builtins Code Signature Comments
meta apply(@,@) -129 (string X) X meta apply(s,t) returns all results of

application of the strategy named s on
the term t.

meta apply(@,@,@) -130 (string X
builtinInt) X

meta apply(s,t,n) returns the n-th
result of application of the strategy
named s on the term t, if it exists.
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/elanlib/strategy/strsig.eln

The module strsig[X,Y] parameterized by the two sorts X,Y defines the signature of the defined
strategies. It introduces several built-in constructors used to construct strategy terms of the
strategy language. The module strsig.eln contains strategy constructors used both for type-
preserving and type-changing strategies.

Builtins Code Signature Comments
[@]@ -180 (<X->Y> X) Y [S]t applies the strategy S to the

term t.
dk(@) -182 (Strlist[X,Y]) <X->Y> dk(l) is the defined strategy that

chooses successively all strategies in
the list l and returns all their re-
sults.

dc(@) -181 (Strlist[X,Y]) <X->Y> dc(l) is the defined strategy that
chooses one strategy in the list l and
returns all its results.

dc one(@) -190 (Strlist[X,Y]) <X->Y> dc one (l) is the defined strategy
that chooses one strategy in the list
l and returns one result.

fail -183 () <X->Y> The defined strategy that always
gives an empty set of results.

@,@ -185 (<X->Y> Strlist[X,Y])
Strlist[X,Y]

Concatenates a defined strategy to
a list of strategies.

Epsilon -189 () Strlist[X,Y] The empty list of strategies.
if @ then
@ else @
fi

-184 (bool <X->Y> <X->Y>)
<X->Y>

if b then s1 else s2 fi is the
defined strategy that chooses either
s1 if b is true otherwise s2.

@ 146 (Assignment)
AssignmentList

Embeds an assignment in a list of
assignments.

@ , @ 147 (AssignmentList
Assignment)
AssignmentList

Add an assignment to the end of a
list of assignments.

if @ 145 (bool) IfApplication A condition if an IfApplication.
@ 146 (IfApplication)

AssignmentList
Embeds an IfApplication in a list of
assignments.

@ , @ 147 (AssignmentList
IfApplication)
AssignmentList

Add an IfApplication to the end of
a list of assignments.

/elanlib/strategy/strconc.eln

The module strconc[X,Y,Z] parameterized by three sorts X,Y,Z introduces a concatenation
symbol ; of two strategies of sorts <X->Y> and <Y->Z>.

Builtins Code Signature Comments
@ ; @ -188 (<X->Y> <Y->Z>) <X->Z> s1 ; s2 concatenates the strate-

gies s1:<X->Y> and s2:<Y->Z>
to get a strategy of sort <X->Z>.
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/elanlib/strategy/strat.eln

The module strat[X] parameterized by a sort X has to be imported for working with type-
preserving strategies of sort <X->X>. It defines the eval strategy of the interpreter of the
language of defined strategies, and several specific strategy constructors, which are not present
in the case of type-changing strategies. The rest of strategy constructors is defined in the module
strategy/strsig.eln.

Builtins Code Signature Comments
id -186 () <X->X> Identity strategy.
if @ then @
orelse @ fi

-187 (<X->X> <X->X> <X->X>) <X->X> Orelse strategy.

5.2.7 REF Format

/elanlib/ref/Meta Apply.eln

The module ref/Meta Apply.eln provides several variants of the function meta apply, which
apply a strategy on a term in an environment defined by a program. These three components
are either encoded in the REF-format or passed as strings. Results are produced equally in the
REF-format, or as strings representing terms.

Builtins Code Signature Comments
meta apply(@,@,@,@,@) 170 (string string string

string builtinInt)
string

meta apply(s,t,file,spec,n)
gives the n-th result of the applica-
tion of the strategy s on the term
t w.r.t. the program stored in files
named file.lgi and spec.spc.

meta apply(@,@,@,@,@) 171 (string list[string]
string string
builtinInt) string

meta apply(s,t.nil,file,spec,n)
gives the n-th result of the applica-
tion of the strategy s on the term t
w.r.t. the program in files named
file.lgi and spec.spc.

meta apply(@,@,@,@) 172 (string string string
builtinInt) string

meta apply(s,t,file,n) gives the
n-th result of the application of the
strategy s on the term t w.r.t. the
program in the REF-format stored
in file named file.ref.

meta apply(@,@,@,@,@) 173 (string list[string]
string string
builtinInt) string

meta apply(s,t.nil,file,n)
gives the n-th result of the ap-
plication of the strategy s on the
term t w.r.t. the program in the
REF-format stored in file named
file.ref.

/elanlib/ref/ref2string.eln

The module ref/ref2string.eln provides two conversion functions between strings of REF-
terms and terms of the user’s defined signature. It also exports a pretty-printing and a parsing
function parameterized by a signature in the REF-format.
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Builtins Code Signature Comments
refstring2term(@) -168 (string) X refstring2term(s) builds a term of sort X from

the string s.
term2refstring(@) -167 (X) string term2refstring(t) transforms the term t of

sort X into a string.
term2string(@) -169 (X) string term2string(t) pretty-prints the term t of sort

X.

/elanlib/ref/refstring2string.eln

The module ref/refstring2string.eln provides built-in pretty-printing and parsing functions
converting strings of terms into strings of REF-terms, and vice-versa. This module defines also
two symbols spec2ref and ThisProgram constructing a REF-representation of a program.

Builtins Code Signature Comments
spec2ref(@,@) 162 (string

string) string
spec2ref(file1,file2) builds a
REF-file from the specification de-
scribed by two file file1.spc and
file2.lgi, and it returns its name
file.ref.

ThisProgram 165 () Program Produces the REF-format of the run-
ning program.

refstring2string(@,@) 160 (string
string) string

refstring2string(s,file.ref)
pretty-prints s according to
the grammar defined in the file
file.ref.

string2refstring(@,@,@) 161 (string string
string) string

string2refstring(st:so,file.ref)
parses the string st of a term of sort
so according to the grammar defined
in the file file.ref.
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Chapter 6

Contributed works

6.1 Description of the ELAN contributions

Many computational processes in Automated Deduction and Constraint Programming can be
expressed as instances of a general approach that consists of applying transformation rules on
formulas with some strategy, until reaching specific normal forms. Such processes are naturally
modelled in ELAN, and can be classified according to the area of interest, namely programming,
proving and solving.

Programming: One of the first application was to prototype the fundamental mechanisms of
logic and functional programming languages like first-order resolution and λ-calculus. The
general framework of Constraint Logic Programming can be easily designed in the ELAN frame-
work [KR98], since its operational semantics is clearly formalised as rewrite rules, although the
application strategy is often defined in an informal way. Some implementations [Bor95] related
to a calculus of explicit substitutions (the first-order rewrite system λσ that mimics λ-calculus)
open the way of implementing higher-order logic programming languages via a first-order setting.
Another calculus of explicit substitutions based on the π-calculus is used to provide a formal
specification of Input/Output for ELAN [Vir96]. An extension of ELAN to deal with object ori-
ented features has been designed in [DK00, Dub01]. Modeling chemical reactions is a challenging
application of associative-commutative rewrite systems and should be controled by strategies.
This is done in ELAN in a system called Gazel [BCC+03a, BCC+03b]. XML is now a well es-
tablished meta-notation which indeed allows to make use of a symbolic term representation. A
semantics for this notation can be conveniently defined by rewriting as done (in a quite pecular
way) in XSLT. ELAN has been used to describe such elaborated XML transformations [SvdB03].

Proving: ELAN was used in order to implement a predicate prover based on the rules proposed by
J.-R. Abrial, and implemented in the B-tools [CK97]. We developed also a propositional sequent
calculus, completion procedures for rewrite systems [KM95], sufficient conditions for the termina-
tion problem [GG97]. A library for automata construction and manipulation has been designed.
Approximation automata are used to check conditions for reachability, sufficient completeness,
absence of conflicts in systems described by non-conditional rewrite rules [Gen98b, Gen98a].
Proving termination of rewriting under strategies, and therefore of ELAN program themself is
described in [FGK03c, FGK01, FGK02, FGK03d, FGK03b, Fis03]. An implementation called
Cariboo is itself done in ELAN, see[FGK03a]. The generation of proof terms for normalization
derivation and the connection of ELAN to Coq to check equational as well as some inductive
proof terms has been done in [AN00, NKK02, Ngu02, DKKN03].

Checking: A very special case of proof is just exhaustive check of all the possibilities. Using in
particular “dont know” strategies, it was efficiently rediscovered by exhaustive search that the
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well known Needam and Schroeder authentification protocol is unsafe [Cir99]. In a similar way,
exhaustive search can be used to model-check timed automaton like in [BBKK01].

Solving: The notion of rewriting controlled by strategies is used in [Cas98a, KR98] to describe
in a unified way the constraint solving mechanism as well as the meta-language needed to
manipulate the constraints [Cas97a, CK98a]. This provides programs that are very close to
the proof theoretical setting used now to describe constraint manipulations like unification or
numerical constraint solving. ELAN offers a constraint programming environment where the
formal description of a constraint solver is directly executable. ELAN has been tested on sev-
eral examples of constraint solvers for various computation domains and combinations like ab-
stract domains [KR98, Rin97] (term algebras) and more concrete ones (finite domains, integers).
In [Cas96a, Cas96b, Cas97b, Cas98c], it is shown how to use computational systems as a gen-
eral framework for handling Constraint Satisfaction Problems (CSP for short). The approach
leads to the design in ELAN of COLETTE, a solver for constraints over integers and finite do-
mains [Cas98b]. We also combine rules, constraints and strategies in order to deal with problems
like planning and scheduling [DK99].

6.2 A short annotated bibliography about ELAN

[BKK+96b, BKK97, BKK+98b] General presentations of the different ELAN system re-
leases.

[BKK96a, BK97, Bor98b] A description of the operational as well as denotational seman-
tics of the new ELAN strategies, available since version 2.0. This allows the user to define
its own strategies as a computational system.

[BKK98a, BKKR01] Towards a functional operational semantics of ELAN.

[BJMR98] Some useful applications related to the REF format.

[BC98] The facilities provided in ELAN for the cooperation of constraint solvers.

[Bor98a] A full description of the ELAN strategy language. In french.

[Bor95] An ELAN implementation of higher-order unification by using a calculus of explicit
substitutions.

[Cas96b, Cas96a, Cas97b] The use of ELAN to specify various constraint manipulation
algorithms for CSP’s.

[Cas98a, KR98, Cas97b, Cas98b, Cas98c] The rule-based approach to implement Con-
straint Programming and Constraint Solving Techniques.

[CK98b, CK99a, CK99b, CK01b, CK01a, Cir00] The introduction and presen-
tation of the rewriting calculus that provides a full semantics to ELAN. See
also http://www.loria.fr/~faure/TheRhoCalculusHomePage.

[CK97] The specification of Abrial’s B predicate prover.

[DK98] The strategy language is used to build plans.

[DK99] A combination of rewriting rules, constraints and strategy language for planning
problems.
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[KKV95] The first presentation of the general ideas developed in ELAN, with the definition
of computational systems (including the definition of strategies) and the application of
ELAN to design and to prototype constraint programming languages.

[KM96] An illustration of the reflective power of ELAN and rewriting logic.

[KM95] The ELAN implementation of some rule-based completion procedures.

[Kir97] An ELAN tutorial.

[MK97, MK98, Mor99] A description of the new compilation techniques developed for
ELAN, in particular for associativity and commutativity

[Rin97] The use of ELAN to interface various unification algorithms and to build combination
algorithms for unification.

[Vir96] An implementation of input/output in ELAN via an explicit substitution calculus for
the π-calculus.

[Vit96] A description of the first ELAN compiler.

[Vit94] The first main version of the ELAN system in full details, from design to implemen-
tation. In French.

6.3 Going further

The work on the design and implementation of the ELAN language and system leaded to new
concepts and languages. The main two directions are:

• The rewriting calculus (http://www.loria.fr/~faure/TheRhoCalculusHomePage),

• The TOM pattern matching programming language (http://tom.loria.fr).
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[CK97] H. Cirstea and C. Kirchner. Theorem proving Using Computational Systems:
The case of the B Predicate Prover. Available at http://www.loria.fr/
∼cirstea/Papers/TheoremProver.ps, 1997. 75, 76

[CK98a] C. Castro and C. Kirchner. Constraint Rewriting. In Proceedings of The Workshop
on Applications of Rewriting, 9th International Conference on Rewriting Techniques
and Applications, RTA’98, Tsukuba, Japan, March 1998. 76

[CK98b] H. Cirstea and C. Kirchner. The Rwriting Calculus as a Semantics of ELAN. In
J. Hsiang and A. Ohori, editors, 4th Asian Computing Science Conference, volume
1538 of Lecture Notes in Computer Science, Manila, The Philippines, December
1998. Springer-Verlag. 76

[CK99a] H. Cirstea and C. Kirchner. Combining higher-order and first-order computation
using ρ-calculus: Towards a semantics of ELAN. In D. Gabbay and M. de Rijke,
editors, Frontiers of Combining Systems 2, Research Studies, ISBN 0863802524,
pages 95–120. Wiley, 1999. 76

[CK99b] H. Cirstea and C. Kirchner. An introduction to the rewriting calculus. Research
Report RR-3818, INRIA, December 1999. 76

November 29, 2006 ELAN user manual



82 BIBLIOGRAPHY

[CK01a] H. Cirstea and C. Kirchner. Rewriting and Multisets in Rho-calculus and ELAN.
Romanian Journal of Information, Science and Technology, 4(1-2):33–48, 2001.
ISSN: 1453-8245. 76

[CK01b] H. Cirstea and C. Kirchner. The rewriting calculus — Part I and II. Logic Journal
of the Interest Group in Pure and Applied Logics, 9(3):427–498, May 2001. 76

[DK98] H. Dubois and H. Kirchner. Actions and plans in ELAN. In Proceedings of the
Workshop on Strategies in Automated Deduction - CADE-15, Lindau, Germany,
pages 35–45, 1998. 76

[DK99] H. Dubois and H. Kirchner. Rule based programming with constraints and strate-
gies. Technical Report 99-R-084, LORIA, Nancy, France, November 1999. ERCIM
workshop on Constraints, Paphos (Cyprus). 76

[DK00] H. Dubois and H. Kirchner. Rule Based Programming with Constraints and Strate-
gies. In K. Apt, A. A. C. Kakas, E. Monfroy, and F. Rossi, editors, New Trends
in Constraints, Papers from the Joint ERCIM/Compulog-Net Workshop, Cyprus,
October 25-27, 1999, volume 1865 of Lecture Notes in Artificial Intelligence, pages
274–297. Springer-Verlag, 2000. 75

[DKKN03] E. Deplagne, C. Kirchner, H. Kirchner, and Q.-H. Nguyen. Proof search and proof
check for equational and inductive theorems. In Proc. of 19th CADE, Lecture Notes
in Artificial Intelligence, pages 297–316. Springer-Verlag, 2003. 75
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1, Octobre 2002. 75

[NKK02] Q.-H. Nguyen, C. Kirchner, and H. Kirchner. External rewriting for skeptical proof
assistants. Journal of Automated Reasoning, 29(3-4):309–336, 2002. 75

[Rin97] C. Ringeissen. Prototyping Combination of Unification Algorithms with the ELAN
Rule-Based Programming Language. In Proceedings 8th Conference on Rewriting
Techniques and Applications, Sitges (Spain), volume 1232 of Lecture Notes in Com-
puter Science, pages 323–326. Springer-Verlag, 1997. 76, 77

[SvdB03] J. Stuber and M. van den Brand. Extracting mathematical semantics from latex
documents. In Workshop on Principles and Practice of Semantic Web Reasoning -
PPSWR’2003, Mumbai, India, Dec 2003. 75

[Vir96] P. Viry. Input/Output for ELAN. In J. Meseguer, editor, Proc. First Intl. Workshop
on Rewriting Logic and its Applications, volume 4 of Electronic Notes in Theoretical
Computer Science, Asilomar (California), September 1996. Elsevier. 75, 77

[Vit94] M. Vittek. ELAN: Un cadre logique pour le prototypage de langages de programma-
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