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Preface (2005)

Fifteen Years in Industry

The GENTLE Compiler Construction System, originally designed in 1989 at the Ger-
man National Research Center for Information Technolgy, is now in industrial use for
fifteen years: The very first system was sold to Nixdorf Computers, who used it to im-
plement their Combined Object-Oriented Language, a C++ alternative for large mission-
critical projects, e.g. in the chemical industry. The first Gentle system in 2005 was sold
to Ritlabs, creators of The Bat, a leading email client.

Here are some more examples: Robot control software generated with Gentle is in use
at the automotive industry (e.g. at Volkswagen); in a project conducted by Secunet,
Gentle was used to create a compiler for the Security Policy Specification Language of
the IETF; Siemens licensed Gentle for telecommunication applications, and Fraunhofer
writes their compiler for the ETSI Testing and Test Control Notation in Gentle; the
International Institute for Software Technology of the United Nations University is
using Gentle in education and various projects to support RAISE, a Rigorous Approach
to Industrial Software Engineering.

Distributions

The GENTLE Compiler Construction System is available in two editions:

• GENTLE 97 was published in 1997 together with the first edition of this manual
(Oldenbourg Verlag, Munich and Vienna, 1997)

• GENTLE 21 is distributed since 2001 by Metarga and is continuously maintained
according to the requirements of its users

This manual covers the common functionality of both editions.

However, GENTLE 21 provides additional features such as a powerful parsing strategy
that overcomes the limitations of Yacc, iteration statements that simplify the traversal
of data structures, a compact notation to embed target text into code generation rules,
and more. These extensions are described in a companion manual.

Friedrich Wilhelm Schröer, January 2005
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Preface (1997)

This book presents Gentle, an integrated system for compiler writers.

Gentle supports the description of compilers at a very high level and relieves users
from the need to deal with implementation details. It has been used in large industrial
projects and for constructing various commercial products. Users report that Gentle
significantly increases productivity.

Uniform Framework and Strong Methodology

Gentle provides a uniform framework for specifying the components of a compiler.

The Gentle language was designed around a specific paradigm: recursive definition and
structural induction. Input and internal data structures are defined by listing alternative
ways to construct items from given constituents. Then the properties of these items are
described by giving rules for the possible alternatives. These rules recursively follow
the structure of items by processing their constituents. Experience has shown that this
is the underlying paradigm of virtually all translation tasks.

The same concepts apply to analysis, transformation, and synthesis. They can be used
to describe the backend of a compiler as a simple unparsing scheme such as sufficies for
most source-to-source translations. They can also be used to specify a cost-augmented
mapping to a low-level language which is used for optimal rule selection.

The rule-based approach follows the principle of locality: complex interactions are
avoided and a system can be understood by understanding small pieces in isolation.
Individual constructs are described independently.

The paradigm leads to a data-oriented methodology: the structure of data is mirrored
by the structure of algorithms. This methodology proves to be a useful guideline in
compiler projects.

Safety, Portability, Efficiency, and Openness

Gentle has been designed to enabale errors to be detected as early as possible. Although
variables need not be declared, Gentle is a strongly typed language that allows the
compiler to check their consistent use. Moreover, it can be ensured statically that each
variable has a value when it is accessed. In cases where static rule analysis cannot prove
that a program is well-behaved, this is done at run time. The violation of a language
constraint is reported when it occurs, not when it has disastrous consequences. This
drastically reduces debugging effort.

A specification written in Gentle can be translated automatically into highly portable
C code. In many cases, the generated code is faster than hand written code.

Moreover, Gentle is an open language: compilers can be written partly in Gentle and
partly in C.



5

Organisation of this Book

This book provides a tutorial, reference manuals, and a case study:

The Gentle Primer gives an introduction to the Gentle compiler description language.
After presenting the basic concepts using simple examples (1.1), , these concepts are
discussed in more detail in the following sections (1.2-1.5). Then more advanced
features of Gentle are introduced (1.6-1.14).

Getting Started explains how to install and use Gentle. It describes the steps required to
generate a compiler from a given specification. The Language Reference Manual gives a
concise specification of the Gentle compiler description language. The Reflex Reference
Manual describes a simple tool that facilitates the construction of lexer specifications.
The Library Reference Manual describes some utility modules that come with the Gentle
system.

The Case Study discusses a compiler for a small programming language.

To get an initial impression, read Section 1.1 and take a look at the Case Study. To
start with your own first compiler, read Sections 1.2-1.5 and refer to Getting Started.

Acknowledgments
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1 GENTLE PRIMER

The Gentle Compiler Construction System generates efficient compilers from high-level
specifications. The Gentle Compiler Description Language provides a simple and uni-
form notation for such specifications.

1.1 At a Glance

This section gives some simple but complete examples of Gentle specifications. The
intend is not to discuss details, but to provide the reader with a feeling for the general
framework. Subsequent sections will describe the specific concepts and conventions.

We start with a simple parser for arithmetic expressions, which we will then extend to
a calculator. While the calculator is written along the concrete syntax of expressions,
a compiler is often based on abstract syntax. We show how abstract syntax can be
defined in Gentle, and how a concrete source text can be mapped onto a corresponding
abstract representation. Two examples then show how to process abstract syntax: a
refined version of the calculator, and a program that computes the derivative of an
expression. We conclude with a simple code generator.

1.1.1 A Parser for Expressions

This section presents a parser for expressions such as 10+20*30.

’root’ expression

’nonterm’ expression

’rule’ expression: expr2

’rule’ expression: expression "+" expr2

’rule’ expression: expression "-" expr2

’nonterm’ expr2

’rule’ expr2: expr3

’rule’ expr2: expr2 "*" expr3

’rule’ expr2: expr2 "/" expr3

’nonterm’ expr3

’rule’ expr3: Number(-> N)

’rule’ expr3: "-" expr3

’rule’ expr3: "+" expr3

’rule’ expr3: "(" expression ")"
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’token’ Number(-> INT)

In Gentle a parser is written as a grammar for the language to be processed. Such a
grammar consists of a set of nonterminal symbols that represent phrases, and terminal
symbols (tokens) that stand for themselves.

The nonterminal symbols that represent phrases are defined by rules listing the con-
stituents of the phrase.

’nonterm’ expression

introduces the nonterminal expression. The rule

’rule’ expression: expression "+" expr2

specifies that a phrase of the class expression may be given by a (simpler) phrase
of the class expression, followed by a plus symbol, followed by a phrase of the class
expr2 (expressions involving operators with a higher priority than plus and minus).
For example, if 10 is an expression and if 20*30 is an expr2, then 10+20*30 is an
expression.

Terminal symbols appear in quotes (e.g "+") or are introduced by token declarations.

’token’ Number(-> INT)

introduces a token Number, the representation of which is not given in this specification.
It is defined elsewhere as a nonempty sequence of decimal digits. The actual value of
the symbol is of type INT (we ignore parameters in this section).

The line

’root’ expression

states that this specification is elaborated by invoking the expression parser.

As it stands, this program is not of much use: it reads and analyzes its input, and if the
input is a valid expression, it does nothing. If the input is not an expression according
to the given grammar, the program will flag the first token that does not allow us to
complete the text read so far as a valid expression.

Note that the phrase structure imposed on the input reflects the binding strengths of
the operators. E.g. 10+20*30 is parsed as the sum of 10 and the product of 20 and 30.
This is not necessary if the task is just to reject invalid expressions, but it is helpful in
the next example.
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1.1.2 A Calculator

In this section, we turn the parser into a simple calculator. It will read its input (which
must be an expression as defined by the above grammar) and print the value of the
expression.

Our starting point is the parser given above. Each nonterminal gets an output param-
eter that specifies its value.

’root’ expression(-> X) print(X)

’nonterm’ expression(-> INT)

’rule’ expression(-> X): expr2(-> X)

’rule’ expression(-> X+Y): expression(-> X) "+" expr2(-> Y)

’rule’ expression(-> X-Y): expression(-> X) "-" expr2(-> Y)

’nonterm’ expr2(-> INT)

’rule’ expr2(-> X): expr3(-> X)

’rule’ expr2(-> X*Y): expr2(-> X) "*" expr3(-> Y)

’rule’ expr2(-> X/Y): expr2(-> X) "/" expr3(-> Y)

’nonterm’ expr3(-> INT)

’rule’ expr3(-> X): Number(-> X)

’rule’ expr3(-> - X): "-" expr3(-> X)

’rule’ expr3(-> + X): "+" expr3(-> X)

’rule’ expr3(-> X): "(" expression(-> X) ")"

’token’ Number(-> INT)

Nonterminals and tokens can have output parameters.

’nonterm’ expression(-> INT)

introduces the nonterminal expression with one output parameter of type INT.

The rule

’rule’ expression(-> X+Y): expression(-> X) "+" expr2(-> Y)

specifies how the value of an expression is computed from the values of its constituents.

expression(-> X) and expr2(-> Y) on the right hand side define the variables X and
Y as the values of the expression and the expr2 constituents of the parsed phrase. For
example, if the phrase is 10+20*30, then X is defined as 10 and Y is defined as 600.

expression(-> X + Y) on the left hand side defines the value of the phrase parsed
according to this rule as the sum of X and Y, i.e. as 610 in the example given.



12 1 GENTLE PRIMER

’root’ expression(-> X) print(X)

defines the following elaboration: Parse the input as an expression. This yields a
value X. Print X.

1.1.3 Abstract Syntax

We presented above a concrete syntax for expressions. In this section, we discuss a
so-called abstract syntax.

Abstract syntax is often much better suited as the basis for the specification of program
transformations, and is used as an intermediate program representation in compilers.

Similar to concrete syntax, a class of phrases (here called terms) are defined by listing
the alternatives (corresponding to the rules) and specifying the constituents of each
alternative. Each alternative has a name (called a functor).

’type’ Expr

plus(Expr, Expr)

minus(Expr, Expr)

mult(Expr, Expr)

div(Expr, Expr)

neg(Expr)

num(INT)

This introduces the type Expr. Values of this type are constructed as specified by the
given alternatives.

For example, the alternative

num(INT)

specifies that the functor num used with an argument of type INT represents a value of
type Expr. For example, num(20) and num(30) are values of type Expr.

The alternative

mult(Expr, Expr)

specifies that the functor mult may be used with two arguments of type Expr. E.g.
since num(20) and num(30) are values of type Expr the term mult(num(20), num(30))

is also a value of type Expr.

Similarly the alternative

plus(Expr, Expr)
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can be used to construct the value plus(num(10), mult(num(20), num(30))). This
abstract syntax term can be used as a representation of the expression 10+20*30.

Note that in abstract syntax the structure of terms is uniquely determined. Thus, we
do not need to introduce several types to reflect the binding strength of operators.
plus(num(10), mult(num(20), num(30))) is used as a representation of 10+(20*30)
and also as a representation of the expression 10+20*30.

1.1.4 Translating Concrete Syntax into Abstract Syntax

We now show how concrete syntax can be translated into abstract syntax. This can
be done in exactly the same way as with the calculator. We use the expression gram-
mar where each nonterminal gets an output parameter that specifies the corresponding
abstract syntax.

’root’ expression(-> X) print(X)

’nonterm’ expression(-> Expr)

’rule’ expression(-> X): expr2(-> X)

’rule’ expression(-> plus(X,Y)): expression(-> X) "+" expr2(-> Y)

’rule’ expression(-> minus(X,Y)): expression(-> X) "-" expr2(-> Y)

’nonterm’ expr2(-> Expr)

’rule’ expr2(-> X): expr3(-> X)

’rule’ expr2(-> mult(X,Y)): expr2(-> X) "*" expr3(-> Y)

’rule’ expr2(-> div(X,Y)): expr2(-> X) "/" expr3(-> Y)

’nonterm’ expr3(-> Expr)

’rule’ expr3(-> num(X)): Number(-> X)

’rule’ expr3(-> neg(X)): "-" expr3(-> X)

’rule’ expr3(-> X): "+" expr3(-> X)

’rule’ expr3(-> X): "(" expression(-> X) ")"

’token’ Number(-> INT)

Consider the rule

’rule’ expression(-> plus(X, Y)): expression(-> X) "+" expr(-> Y)

that corresponds to the rule

’rule’ expression(-> X + Y): expression(-> X) "+" expr(-> Y)
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of the calculator.

If X is the abstract syntax of the expression appearing on the right hand side and Y is
the abstract syntax of the expr2 phrase then plus(X,Y) is the abstract syntax of the
whole phrase.

For example, if X has the value num(10) and Y has the value mult(num(20),num(20)),
then plus(num(10)), mult(num(20), num(30)) is defined as the abstract syntax of
the whole phrase parsed by the rule.

’root’ expression(-> X) print(X)

causes the abstract syntax to be printed.

1.1.5 Traversal

In this section we show how to process abstract syntax. For this purpose we discuss a
calculator which is based on abstract syntax.

The root clause of this specification has the form

’root’ expression(-> X) eval(X -> N) print(N)

where expression is defined as in the preceding example. It yields a term X of type
Expr, as defined above.

eval is a procedure with one input parameter of type Expr and one output parameter
of type INT. It maps its input value (the abstract syntax of a particular expression)
onto the numeric value of this expression.

This mapping is defined by the following rules.

’action’ eval (Expr -> INT)

’rule’ eval(plus(X1, X2) -> N1+N2): eval(X1 -> N1) eval(X2 -> N2)

’rule’ eval(minus(X1, X2) -> N1-N2): eval(X1 -> N1) eval(X2 -> N2)

’rule’ eval(mult(X1, X2) -> N1*N2): eval(X1 -> N1) eval(X2 -> N2)

’rule’ eval(div(X1, X2) -> N1 / N2): eval(X1 -> N1) eval(X2 -> N2)

’rule’ eval(neg(X) -> -N): eval(X -> N)

’rule’ eval(num(N) -> N)

Whereas in concrete syntax rules are selected according to the structure of the concrete
input, here rules are selected according to the structure of the terms of the abstract
syntax. In this example, there is a rule for each alternative of the type Expr that specifies
how to compute the numerical value from the numerical value of the constituents of the
term.

Consider the rule
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’rule’ eval(plus(X1, X2) -> N1+N2): eval(X1 -> N1) eval(X2 -> N2)

which is selected if the input term of eval has the structure plus(S1,S2) with subterms
S1 and S2. The variables X1 and X2 are defined as these subterms. The invocations
eval(X1 -> N1) and eval(X2 -> N2) define N1 and N2 as the numeric values of the
corresponding subterms. These values are then used to compute the output parameter
N1 + N2.

For example, if the input term is plus(num(10), mult(num(20), num(30)), then X1

is defined as num(10) and X2 is defined as mult(num(20), num(30)). The recursive
invocations of eval then define N1 as 10 (the numeric value of X1) and N2 as 600 (the
numeric value of X2). With these values the output parameter of the left-hand side is
computed, N1+N2 yields 610.

1.1.6 Transformation

We now look at a more interesting algorithm that works on the abstract syntax. We
introduce the placeholder x and interpret an expression as a function in x. Given such
an expression E, we will compute an expression E ′ that represents the derivative of the
function.

We extend the abstract syntax by the alternative

x

and add to the concrete syntax the rule

’rule’ expr3(-> x): "x"

The root clause now takes the form

’root’ expression(-> X) deriv(X -> D) print(D)

The procedure deriv is then defined as follows

’action’ deriv (Expr -> Expr)

’rule’ deriv(mult (U,V) -> plus(mult(Ud,V), mult(U,Vd))):

deriv(U -> Ud)

deriv(V -> Vd)

’rule’ deriv(div(U,V) -> div(minus(mult(Ud,V),mult(U,Vd)),mult(V,V))):

deriv(U -> Ud)

deriv(V -> Vd)
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’rule’ deriv(plus(U,V) -> plus(Ud, Vd)):

deriv(U -> Ud)

deriv(V -> Vd)

’rule’ deriv(minus(U,V) -> minus(Ud, Vd)):

deriv(U -> Ud)

deriv(V -> Vd)

’rule’ deriv(num(N) -> num(0))

’rule’ deriv(x -> num(1))

1.1.7 Code Generation

While the parser of a compiler translates a concrete program (of the source language)
into a (high-level) abstract syntax (which may then be transformed into a lower-level
intermediate representation), the code generator of a compiler translates the abstract
syntax into a concrete program (of the target language). This mapping can be specified
in exactly the same way as within the parser with the exception that abstract syntax
now becomes an input parameter that controls rule selection.

As an example, we translate expressions into code for a stack computer: here, the code
for operands is followed by an operator that works on these operands.

The root clause of this compiler is

’root’ expression(-> X) code(X)

The procedure code is defined as follows

’action’ code (Expr)

’rule’ code(plus(X1, X2)): code(X1) code(X2) print("plus")

’rule’ code(minus(X1, X2)): code(X1) code(X2) print("minus")

’rule’ code(mult(X1, X2)): code(X1) code(X2) print("mult")

’rule’ code(div(X1, X2)): code(X1) code(X2) print("div")

’rule’ code(neg(X)): code(X) print("neg")

’rule’ code(num(N)): print(N)

1.2 Elements of Specifications

A Gentle specification is a list of declarations.

A declaration may introduce a data type as in

’type’ Expr

plus(Expr, Expr)
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minus(Expr, Expr)

mult(Expr, Expr)

div(Expr, Expr)

neg(Expr)

num(INT)

a predicate as in

’action’ eval (Expr -> INT)

’rule’ eval(plus(X1, X2) -> N1+N2): eval(X1 -> N1) eval(X2 -> N2)

’rule’ eval(minus(X1, X2) -> N1-N2): eval(X1 -> N1) eval(X2 -> N2)

’rule’ eval(mult(X1, X2) -> N1*N2): eval(X1 -> N1) eval(X2 -> N2)

’rule’ eval(div(X1, X2) -> N1 / N2): eval(X1 -> N1) eval(X2 -> N2)

’rule’ eval(neg(X) -> -N): eval(X -> N)

’rule’ eval(num(N) -> N)

a global variable as in

’var’ CurLoopContext: LoopContext

or a global table as in

’table’ Label (Address: INT)

Declarations may be given in any order.

The Root Definition

One of the declarations must be a root definition. It consists of the the keyword ’root’

followed by one or more statements. The program generated from the specification
elaborates these statements.

Consider

’root’ expression(-> X) code(X)

Here, expression is elaborated first yielding a value X, then code is elaborated with X

as an argument. expression and code must be declared as predicates.

Here is a complete Gentle specification

’root’ print("Hello World!")

using the predefined predicate print.
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Comments

Comments may be interspersed into the specification. They allow documentation to be
included for a human reader and are ignored by the compiler. There are two forms of
comments in Gentle.

Comments of the first form start with “--” and finish at the end of the line. For
example,

-- this comment extends to the end of the line

The second form is text enclosed in “/*” and “*/”, these comments can range over
several lines. E.g.

/* this comment

ranges over two lines */

Comments of the second form may be nested. This is of particular value because
it allows us to “comment out” a text without bothering whether the text contains
comments.

1.3 Describing Data

1.3.1 Terms

The most important kind of data a Gentle program operates on are so-called terms.
A term may be a simple constant, as e.g. red or yellow, or it may be a compound
structure, as e.g. signal(red, yellow). Here, the term is obtained by prefixing a so-
called functor, signal, to two arguments: red and yellow. The simple constants are
merely functors with no arguments. Hence, terms are constructed by applying functors
to simpler terms. This can be done to an arbitrary depth of nesting.

A term may be viewed as a linear notation of a tree. For example, the term

f( g(a,b), h(c,d) )

may be represented graphically as a tree

��
��
f

��
��
g

��
��
a

��
��
b

��
��
h

��
��
c

��
��
d
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1.3.2 Type Definitions

A set of term values is introduced by a type definition. For example, the set of terms
red, yellow, and blue can be defined as a type Color by the type definition

’type’ Color

red

yellow

blue

A type definition gives the name of the type and lists the possible alternatives.

If an alternative is given by a functor with arguments, then the types of the arguments
are listed. For example, a type Signal is defined by

’type’ Signal

signal(Color, Color)

A possible value of this type is signal(red, yellow).

Type definitions may be recursive. E. g. a type ColorList can be defined by

’type’ ColorList

list(Color, ColorList)

nil

Type definitions specify how to construct valid terms of a type: a value of a type may
be obtained by replacing the type names in an alternative for that type by valid terms
of the corresponding types. For example, since red is a Color and nil is a ColorList,
one can choose the alternative list(Color, ColorList) and replace Color by red

and ColorList by nil to obtain list(red, nil) as valid term of type ColorList.
Using yellow as Color and the ColorList just constructed, one can build the more
complex term list(yellow, list(red, nil)) of type ColorList.

In a type definition the fields may be given names to document their meaning, e. g.

list(Head: Color, Tail: ColorList)

The terms considered so far are so-called ground terms: they do not contain variables
as placeholders. A ground term is built from a simple functor without arguments or by
taking already available ground terms and applying a functor to them, thus yielding a
more complex term.
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1.3.3 Using Terms in Expressions and Patterns

When a Gentle program is executed, the actual values of term types are always ground
terms. But in the text of a program we also use terms that contain variables as subterms
(i.e. as arguments of a functor). In the extreme case the whole term may be just one
variable name. A variable serves as a placeholder.

To avoid confusion, variables start with an upper-case letter, and functors start with a
lower case letter.

Variables need not be declared. Nevertheless, they are strongly typed. The type is
derived by the Gentle compiler, and the use of the variables is checked for consistency.

Depending on the context in which they are used, terms appear in two roles: as expres-
sions and as patterns.

An expression is used to construct a term from given components.

If the variable Hd is of type Color and holds the value red, and if the variable Tl is of
type ColorList and holds the value nil, the expression list(Hd, Tl) yields the value
list(red, nil).

A value may be decomposed into constituents by matching the value against a pattern.

If the value list(red, nil) is matched against the pattern list(Hd, Tl) the variable
Hd is defined as red, and the variable Tl as nil. The matching succeeds.

If the value nil is matched against the pattern list(Hd, Tl), the matching is said to
fail.

Matching a pattern against a term means trying to find values for the variables inside
the pattern: replacing the variables by these values makes the pattern equal to the
term. For example, replacing Hd by red and Tl by nil turns the pattern list(Hd,

Tl) into the term list(red, nil).

1.3.4 Numbers and Strings

In compilers written in Gentle most computations are carried out on terms. In addition
there are built-in types for numbers and strings.

The type INT comprises integer numbers.

They are denoted by sequences of decimal digits. Expressions of type INT may be
constructed from integer constants, variables of type INT, or by applying an operator
to subexpressions. These operators are monadic plus (+), monadic minus (-), addition
(+), subtraction (-), multiplication (-), and division (/). The operators have the usual
binding strength (multiplication and division have a higher priority than addition and
subtraction, the monadic operators having highest priority). Parenthesis may be used
to explicitly indicate grouping.

Here are some examples of INT expressions:

1024
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N+1

A-(B-C)

-K

The type STRING comprises sequences of characters.

Expressions of type STRING are string constants or variables of type STRING. A string
constant is a character sequence enclosed in apostrophes “"”. Inside string constants
certain characters must be represented by an escape sequence: “\"” represents “"”, “\\”
represents “\”, “\n” represents a newline character, and “\t” represents a tabulator.

Here are some examples of STRING expressions:

"Hello World!"

"The magic word is \"needed\"."

1.4 Describing Computations

1.4.1 Invocations and Rules

A predicate is used to specify a computation. Such a computation is triggered by
a predicate invocation. For example, if we have defined a predicate favorite that
determines for a given Person the favorite Color, then we can write

favorite(P -> C)

to ask for the favorite color C of P.

A predicate is described by rules. For example, the predicate favorite could have been
defined by the following rules:

’rule’ favorite (jim -> red)

’rule’ favorite (julia -> blue)

’rule’ favorite (jane -> red)

’rule’ favorite (john -> yellow)

An item like favorite (jim -> red) here is called a rule heading (rule bodies, here
empty, are discussed later).

An invocation

favorite (julia -> C)

would define the variable C as blue because the second rule defines the output blue for
the input julia.

A predicate may have input and output parameters. The input parameters come first,
the output parameters being separated by an arrow. Here is a predicate with no output
parameters:
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IsJimsColor(Val)

with rule

’rule’ IsJimsColor(red)

and one with no input parameters:

JimsColor(-> Val)

with rule

’rule’ JimsColor(-> red)

If a list of input or output parameters is supplied, a comma is used to separate the
members.

1.4.2 Failure

The invocation of a predicate can fail for two reasons: the predicate is not applicable for
the given input values, or the returned output values do not match the corresponding
values in the invocation.

Consider

IsJimsColor(yellow)

This invocation will fail because IsJimsColor is only applicable for red. An invocation
fails if there is no applicable rule.

Consider also

JimsColor(-> yellow)

This invocation will fail since JimsColor returns red which does not match yellow.

Failure does not mean error. As we shall see, it can be used to control predicate
evaluation.

1.4.3 Expressions and Patterns

We have made a distinction between expressions and patterns, and have said that the
role of a term depends on its context.

The input parameters of a predicate invocation and the output parameters of rule head-
ings are expressions. Here, terms are constructed from given components. Variables
inside the expressions must hold these components.
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The output parameters of a predicate invocation and the input parameters of rule
headings are patterns. Here, a given value is matched against the pattern. Variables
inside the pattern are defined.

To illustrate this, we discuss a predicate swap that, given a term signal(X, Y), delivers
the term signal(Y, X). It is defined by the rule

’rule’ swap (signal(X, Y) -> signal(Y, X))

Assume that the variable A holds the value red and consider the invocation

swap (signal(A, yellow) -> signal(B, red))

First, the expression signal(A, yellow) (the input parameter of the invocation) is
evaluated. Since A holds red, substitution yields the value signal(red, yellow).

Then, rules defining the predicate are inspected; here there is only one. The input
value signal(red, yellow) is matched against the pattern signal(X, Y) (the input
parameter of the rule head). The matching succeeds, thereby defining the variable X as
red and Y as yellow.

Now the expression signal(Y, X) (the output parameter of the rule head) is evaluated.
Since Y is yellow and X is red, this yields signal(yellow, red), which is returned by
the predicate.

Finally, the returned value signal(yellow, red) is matched against the pattern signal(B,

red) (the output parameter of the invocation). This succeeds and defines the variable
B as yellow (see Fig. 1.1).

Invocation: swap(signal(A , yellow) -> signal(B , red))








y

(1 )

x









(4 )

signal(red, yellow) signal(yellow, red)








y

(2 )

x









(3 )

Rule Heading: swap(signal(X , Y ) -> signal(Y , X ))

(1) Construction of term from input expression
(2) Matching against input pattern
(3) Construction of term from output expression
(4) Matching against output pattern

Fig. 1.1 Construction of Terms and Pattern Matching
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1.4.4 Rule Bodies

So far we have discussed rules without bodies. A rule body is a sequence of statements,
in most cases predicate invocations, that can be used to break down the computation of
the particular rule into subtasks or to reduce a problem to another problem for which
there is a solution.

For example, we could add a rule to the definition of predicate favorite stating that
jack prefers the same color as jane:

’rule’ favorite(jack -> X): favorite(jane -> X)

Consider the invocation

favorite(jack -> C)

The new rule is selected (because the expression jack matches the pattern jack), and
its body is evaluated. This means that the invocation favorite(jane -> X) is elabo-
rated. This succeeds and defines X as red. After processing the body the expressions
constituting the output parameters of the rule head are evaluated. Here the expression
is simply a variable, X, which has just been defined as red. Hence, red is the output
value of the original invocation. So C is defined as red.

It is very common for the rules of a predicate to directly follow the type definition of
its argument. There is a rule for each alternative of the type, and inside this rule the
members of the body process the constituents of that alternative. The result is given
by combining the results of the members.

Assume that, besides lists of colors, we have also defined lists of persons:

’type’ PersonList

list(Person, PersonList)

nil

(We can use the same functors in both list type definitions because it is clear from the
context which type is meant.)

We now want to define a predicate favorites that takes a list of persons and returns
a list of colors of the same length. An element of the color list is the favorite color of
the person at the corresponding position in the person list. For example,

list(julia, list(jane, nil))

is mapped to

list(blue, list(red, nil))

We introduce two rules, each one handling an alternative of the above type definition:
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’rule’ favorites(list(Head, Tail) -> list(ColorHead, ColorTail)):

favorite(Head -> ColorHead)

favorites(Tail -> ColorTail)

’rule’ favorites(nil -> nil)

The first rule decomposes its argument into Head and Tail and uses the suitable pred-
icates to compute the favorite color of the Head and the favorite color list of the Tail.
Given these values the resulting color list can be constructed.

The second rule simply has an empty body. For an empty person list we return an
empty color list.

A rule body is evaluated by evaluating its members in the given order. If a member
fails then the rule fails. If all members succeed, then the rule succeeds.

A rule

’rule’ A : B1 B2 ... Bn

can be understood as a logical statement

A if B1 and B2 and ... and Bn

For example, the rule

’rule’ grandfather(X -> Z): father(X -> Y) father(Y -> Z)

can be read as

the grandfather of X is Z if
(there is a Y such that)
the father of X is Y and
the father of Y is Z.

1.4.5 Variables

Variables defined in a rule are local to that rule. Here are the constraints that must
hold for the data flow inside a rule:

Each variable appearing inside a rule must be defined exactly once (i.e. occur in a
pattern). A variable that appears in an expression of a member of the rule body (i.e.
that is used as part of an input parameter of that member) must be defined in the rule
heading (i.e. inside an input parameter) or in a preceding member of the rule body (i.e.
inside an output parameter of a preceding member).

These laws make it possible for the disastrous error of uninitialized variables to be
totally excluded by compile-time analysis.

Assume that we want to express that two persons like each other if they prefer the same
color. Then we can write
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’rule’ likes(A, B):

favorite(A -> AsFavorite)

favorite(B -> BsFavorite)

eq(AsFavorite, BsFavorite)

using a predefined predicate eq that succeeds if invoked with equal arguments and fails
if invoked with unequal arguments.

The first and second members compute the favorite color for A and B. Now as the values
of AsFavorite and BsFavorite are known, they can be used as input to eq.

The first two members always succeed. The third member succeeds if AsFavorite and
BsFavorite are equal, and fails otherwise. If the third member succeeds, then the rule
succeeds, otherwise the rule fails. Since this is the only rule, an invocation likes(X,

Y) succeeds if X and Y prefer the same color.

The example also shows that a variable cannot be defined twice. Using a common
variable (say X) instead of AsFavorite and BsFavorite to express that these values
must be equal, would violate the constraint because X would occur in two patterns.
Instead, the equality must be expressed explicitly using eq. (This is to catch typing
errors and to rule out the misunderstanding that the second definition overwrites the
old value.)

1.4.6 Evaluation Strategy

In the examples we have discussed in this chapter one rule at most was applicable for
a given input. This is typical for many predicates because they are often written in a
way that follows the type definition of their arguments.

There may also be definitions where more than one rule is applicable for a given input.
For example, the definition of favorite could contain

’rule’ favorite (julia -> blue)

’rule’ favorite (julia -> red)

Several interpretations would be possible:

Shallow Backtracking. The first applicable rule is selected and it determines the result.
For example, in

favorite(julia -> X)

X is defined as blue. This approach treats predicates as functions.

Deep Backtracking. All results are delivered, one after the other. For example, in

favorite(julia -> X) IsJimsColor(X)
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X is first defined as blue, but IsJimsColor fails for this value, so favorite is resumed
and then defines X as red. This approach treats predicates as relations.

Most of the concepts a compiler has to deal with are functions of other items: e.g. “the
type of an expression”, “the offset of a variable” (an expression has unique type, a vari-
able has a unique offset). Hence, the usual strategy in Gentle is shallow backtracking.

However, there is one important concept that is not functional by nature: a given
source construct may have various possible representations in the target language. Here,
one wishes to list possible translations of pieces which are automatically selected and
combined into a globally optimal translation. This is also supported by Gentle. Since
the number of possibilities in general is exponential, Gentle code does not enumerate
them, but computes the best rule selection using a linear time algorithm. This will be
discussed later.

1.4.7 Shallow Backtracking

Using shallow backtracking, a predicate invocation is elaborated as follows. The rules
are tested in the given order. If a rule fails, the next rule is considered. If a rule succeeds,
the predicate succeeds and the result is determined. If all rules fail, the predicate fails.

This implies that, when one considers a certain rule, one can be sure that preceding
rules were not applicable.

For example, a predicate max computing the maximum of two integers (using the built-
in predicates ge and lt for the relations greater-or-equal and less-than) that is defined
by

’rule’ max(X, Y -> X): ge(X, Y)

’rule’ max(X, Y -> Y): lt(X, Y)

could also have been written as

’rule’ max(X, Y -> X): ge(X, Y)

’rule’ max(X, Y -> Y)

because the second rule is only used when X is less than Y. The disadvantage is that
now the rule cannot be understood in isolation.

This style is often used for abbreviation. For example, a predicate kind that maps the
set of letters a, b, c, ... , z onto the constants vowl or consonant can be written is this
way:

’rule’ kind(a -> vowl)

’rule’ kind(e -> vowl)

’rule’ kind(i -> vowl)

’rule’ kind(o -> vowl)

’rule’ kind(u -> vowl)

’rule’ kind(Other -> consonant)
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where the last rule replaces 21 rules dealing with consonants. Since none of the first
five rules was applicable, we know that Other is a consonant.

1.4.8 Predicate Declarations

A predicate is declared by giving its signature and its rules. For example,

’action’ length (ColorList -> INT)

’rule’ length (list(Head, Tail) -> N+1) : length(Tail -> N)

’rule’ length (nil -> 0)

The signature of a predicate specifies its interface to the caller. It gives the name of
the predicate and lists its parameter types. For example,

’action’ length (ColorList -> INT)

introduces a predicate length that has one input parameter of type ColorList and
one output parameter of type INT.

Expressions and patterns in rule headings and invocations must be valid for the corre-
sponding type.

In addition, a signature specifies the category of the predicate, which is action in the
above example. The category of a predicate indicates how it is used and what its
evaluation strategy is.

The general form is

Category Name ( InputTypes -> OutputTypes )

Type names are separated by commas. If there are no output parameters, the arrow is
omitted.

Parameter specifications may include identifiers for documentation:

’action’ length (L: ColorList -> N: INT)

-- on exit N is the number of elements of L

1.4.9 Conditions and Actions

Predicates of the category ’condition’ and ’action’ are evaluated by shallow back-
tracking, i.e. the rules are evaluated until one succeeds, in which case the predicate
succeeds.

Should all rules fail, the behavior is different for conditions and actions.

In the case of conditions, the predicate fails. Predicates that are supposed to fail for
certain arguments are used as guards in rules: if they fail, then at the place of invocation
the next rule will be considered. By way of an example, consider
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’condition’ IsJimsColor(Color)

’rule’ IsJimsColor(red)

This predicate is intended to succeed for red and to fail for all other colors.

In contrast, consider the predicate length declared above. The predicate is intended
to work for all arguments. It is not used to signal failure. Such predicates are declared
with the keyword ’action’. If for an action no rule is applicable, this does not indicate
failure but an error in the specification. Hence, in this case an error message is issued
that indicates the incomplete predicate, and the program is terminated.

For example, if we had omitted the rule dealing with the case nil, the specification of
length would have be incomplete. If length had been declared as a condition, this
error would not have been detected at the earliest possible point, but would simply
result in failure of the rule that invoked length with an empty list. This again could
propagate the failure to even wider contexts, making it hard to locate the error.

If a program is correct, all actions could be declared as conditions without changing
the behavior. But if the program contains incompletely specified predicates, these can
be detected much easier when using actions.

In addition, declaring a predicate as an action indicates to the human reader that this
predicate is not intended to test its arguments for a certain condition, but to compute
ouput values for all input values.

It turns out that the majority of predicates are actions. The reason is that, in Gentle,
the program flow is controlled by pattern matching, i.e. the structure of the data being
processed.

Other predicate categories are discussed in following sections.

1.5 Describing Syntax

We have discussed rules of the form

’rule’ A : B1 B2 ... Bn

that could be interpreted as a decomposition scheme describing how a task A can be
solved: Select a suitable rule for A, and solve the subtasks B1, B2, ... , Bn. Given the
interpretation

A if B1 and B2 and ... and Bn

this could also be read as: A proof of A can be obtained from proofs of B1 , B2 , ... ,
Bn.

The same kind of rules can also be used to describe formal languages by recursive
definitions. In the definition of Algol 60 the following notation (known as Backus-
Naur-Formalism, BNF) was used:
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〈A〉 ::= 〈B1〉 〈B2〉 ... 〈Bn〉

which states that a member of a syntactic class 〈A〉 can be composed from members of
syntactic classes 〈B1〉, 〈B2〉, ..., 〈Bn〉.

1.5.1 Syntax Definitions

Using this grammatical interpretation of rules we can write

’rule’ Program : Declarationpart Statementpart

which states that a Program is given by a Declarationpart and a Statementpart.

We also need basic symbols of the language that are not defined by rules. These symbols
are called terminal symbols or tokens and are written as strings denoting themselves.
For example,

’rule’ Statement : "IF" Expression "THEN" Statement "ELSE" Statement

Here, "IF", "THEN", and "ELSE" are terminal symbols.

Grammatical symbols such as Statement that are defined by rules are called nonter-
minal symbols.

A grammar not only describes what is a valid text of a language, but also imposes
a structure on the text. A grammar is given by a set of terminal symbols, a set of
nonterminal symbols, and a set of rules. Rules have the form:

’rule’ A : B1 B2 ... Bn

where A is a nonterminal and the Bi are terminal or nonterminal symbols. A valid
phrase of class A can be constructed by replacing each Bi by a valid phrase of Bi (if Bi

is a terminal, the valid phrase is the terminal itself).

Given the rule for Statement and assuming that x>y is an expression and that x:=x-y
and y:=y-x are statements, we can construct the more complex statement

IF x>y THEN x:=x-y ELSE y:=y-x

The distinction between tokens and nonterminals reflects the fact that the analysis of
the input text is generally decomposed into two (interleaved) steps: First the input
is partitioned into tokens (lexical analysis), then the token stream is structured into
hierarchical phrases (syntax analysis). Different techniques are used for each task.
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1.5.2 Nonterm Predicates

Nonterminals must be declared as predicates of the class ’nonterm’. For example, the
full declaration of Statement might be

’nonterm’ Statement

’rule’ Statement: Variable ":=" Expression

’rule’ Statement: "IF" Expression "THEN" Statement "ELSE" Statement

’rule’ Statement: "WHILE" Expression "DO" Statement

’rule’ Statement: "BEGIN" StmtSeq "END"

1.5.3 Token Predicates

Besides recognizing tokens that appear literally in the grammar, lexical analysis often
also deals with items that appear as atoms for syntactic analysis but are structured at
a lower level. An example of this are numbers that are treated as tokens, but specified
as a sequence of digits at the level of lexical analysis.

Things like blanks, comments, and other separators that do not contribute to the syn-
tactic structure are usually filtered out by lexical analysis as white space. Thus one
criterion for deciding whether an item should be handled as a token is whether its
components can be separated by white space: in a Statement a newline can (or must)
appear between IF and the following Expression. In a Number this is not allowed as it
would split the number into two tokens.

A complex token is introduced as a predicate of the category token. A predicate of
this category is not defined by rules.

For example, a token Variable can be declared as

’token’ Variable

and can then be used as member of a rule body:

’rule’ Statement: Variable ":=" Expression

The declaration of a token does not provide rules. The actual description is given
outside the Gentle specification. In many cases existing descriptions can be reused.

(See the manual on the Reflex tool for details of how to describe tokens and white space
conventions.)

1.5.4 Attributes

Nonterm and token predicates may have parameters that are declared and used in
the same way as with other predicates, except that for grammar symbols only output
parameters are supported.
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Given a structuring of the input into phrases (a parse), each nonterm application cor-
responds to a particular part of the input. The parameter values for that nonterm are
often called attributes of the construct that corresponds to the nonterm application.
Attributes can be computed from the attributes of constituents.

Here is a classical grammar that computes the value of a binary number:

’root’ bits(-> N) print(N)

’nonterm’ bits(-> INT)

’rule’ bits(-> B): bit(-> B)

’rule’ bits(-> N*2+B): bits(-> N) bit(-> B)

’nonterm’ bit(-> INT)

’rule’ bit(-> 0): "0"

’rule’ bit(-> 1): "1"

Consider the input

1 0 1

which is decomposed by the second rule into bits (1 0) with value N = 2 and bit (1)
with value B = 1. The attribute of the whole sequence is computed as N*2+B = 5.

1.5.5 Actions in Grammar Rules

Besides computations on parameter position (as in the above example), grammar rules
can also contain normal statements such as predicate invocations to compute attribute
values.

The second rule could have been written

’rule’ bits(-> R): bits(-> N) bit(-> B) ShiftAndAdd(N, B -> R)

where ShiftAndAdd is an action.

1.5.6 Rule Selection

The rule-selection strategy used for nonterm predicates differs from that of actions
and conditions. Instead of backtracking, an LALR(1) parsing algorithm is used. The
Gentle compiler passes the underlying grammar to the parser generator Yacc. When
Yacc processes the grammar it may flag certain rules as violating restrictions of this
method. (See the documentation on Yacc for details of how to deal with this.)

Rule selection depends exclusively on the structure of the input and is not controlled
by failure of predicates.
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1.5.7 Abstract Syntax

It is advisable not to mix up the syntactic description of a language with its semantic
analysis and transformation but to separate concerns. The syntax description gives the
concrete grammar of the language and introduces a more abstract term representation.
This term representation is then processed by predicates that follow the structure of
these terms. This pays off because abstract syntax is usually much simpler than con-
crete syntax and because predicate evaluation is much more flexible than interleaving
computations with parsing.

Given a concrete grammar, a straight forward way of defining an abstract representation
is simply to mirror the grammar by term definitions.

For each nonterm there is corresponding type; for each grammar rule there is a corre-
sponding functor. Terms with this functor have an argument for each nonterm and for
each named token. Each nonterm has one attribute, its term representation. This is
constructed from term representation of the members of the rule body.

For example, the nonterm Statement from above gets an associated type STATEMENT

which is defined as follows:

’type’ STATEMENT

assignment(VARIABLE, EXPRESSION)

if(EXPRESSION, STATEMENT, STATEMENT)

while(EXPRESSION, STATEMENT)

compound(STMTSEQ)

We can then decorate the above grammar:

’nonterm’ Statement(-> STATEMENT)

’rule’ Statement(-> assignment(V, E)):

Variable(-> V) ":=" Expression(-> E)

’rule’ Statement(-> if(E, S1, S2)):

"IF" Expression(-> E) "THEN" Statement(-> S1)

"ELSE" Statement(-> S2)

’rule’ Statement(-> while(E, S)):

"WHILE" Expression(-> E) "DO" Statement(-> S)

’rule’ Statement(-> compound(S)):

"BEGIN" StmtSeq(-> S) "END"

Abstract syntax can be simpler than concrete syntax.

Since abstract syntax has a unique tree structure, it is not necessary to reflect binding
strength using different types, as we did with different nonterminals to avoid ambiguity.
For example, in a preceding example, the nonterminals expression (introducing addi-
tive operators) and expr2 (introducing multiplicative operators) both have an argument
of type Expr that covers all operators.



34 1 GENTLE PRIMER

Abstract syntax can allow cases that are forbidden in concrete syntax. For example,
whereas in concrete syntax a list may require at least one member, in abstract syntax
one could use empty lists. (Lists that are terminated by an empty tail, nil, are simpler
to process because the rule for the end of the list does not have to deal with a list
member.)

Abstract syntax can normalize cases in which the concrete syntax allows several repre-
sentations for the same meaning, e.g. A[i,j] and A[i][j] in Pascal.

Abstract syntax can simplify complex constructs of the concrete syntax enforced by
restrictions of the parsing strategy.

1.5.8 Source Coordinates

Syntactic errors are detected while the source file is being read, hence the actual position
is available and can be used as part of an error message (this does not need to be
programmed by the user). Semantic errors are detected when processing abstract syntax
terms. In order to be able to issue a user-friendly error message, the source coordinates
of the program text that is represented by the term should be available.

Gentle code automatically computes the coordinate of the “most significant” terminal
of a construct. This is defined as follows: If a rule body contains one or more terminals,
the position of the leftmost terminal is taken. If the rule body does not contain any
terminals but one or more nonterminals then the coordinate of the leftmost nonterminal
is taken. If the rule body is empty then the actual source position is taken.

This means, for example, that for expressions the coordinate of its top operator is
taken. The expression a*b+c*d gets the coordinate of +. The expression a-b*c-d gets
the coordinate of the second -.

This coordinate is available via the built-in predicate @, which can appear at the begin-
ning of a syntax rule or after a nonterminal or token. If it appears at the beginning of
a rule, it delivers the most significant coordinate of the phrase recognized by that rule;
if it appears after a symbol, it delivers the coordinate of that symbol. An invocation
has the form

@(-> P)

and the output parameter has the type POSITION.

The type POSITION need not be declared. Its representation is not defined by the Gentle
language. A library provides functions that implement and process this type. Values
normally contain an indication of the line and column of a coordinate. See the Library
Reference Manual for details.

The position should be part of those abstract syntax terms that may be the subject of
error messages. For example,

’type’ DECLARATION
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declare(VARIABLE, TYPE, POSITION)

’nonterm’ Declaration(-> DECLARATION)

’rule’ Declaration(-> declare(V,T,P)):

"DECLARE" Variable(-> V) @(-> P) ":" Type(-> T) ";"

selects the coordinate of the Variable and stores it in the abstract syntax term for a
declaration. This can then be used for semantic processing.

1.6 Using Types and Predicates Written in C

Gentle tries to cover most tasks of compiler writing within a high-level uniform frame-
work. However, there are also tasks for which languages like C are better suited.

Gentle allows the user to implement types and predicates in C, but use them as if they
were implemented in Gentle.

The Gentle system comes with some ready-to-use C types and functions that are acces-
sible in this way. The mechanism may also be applied by the user to build his or her
own external types and functions.

1.6.1 External Types

An external type, i.e. a type whose values are not defined in Gentle, may be introduced
by a type declaration without functor definitions.

By way of example, consider the declaration

’type’ IDENT

which introduces an external type IDENT.

Since in Gentle the values of this type are not specified they cannot be denoted by
terms. On the other hand, values of an external type such as IDENT can be used in the
same way as values of other types: they can appear as parameters of predicates and
may be used as constituents of terms.

We could, for example, define a new type that introduces lists of IDENTs:

’type’ IDENTLIST

list (IDENT, IDENTLIST)

nil

and pass values of type IDENT as parameters as in

’action’ DeclareIdentList(IDENTLIST, TYPE)
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’rule’ DeclareIdentList(list(Ident, IdentList), Type):

DeclareIdent(Ident, Type)

DeclareIdentList(IdentList, Type)

’rule’ DeclareIdentList(nil, Type)

1.6.2 External Predicates

Actions and conditions may also be implemented externally. To make them accessi-
ble, the Gentle specification must provide a declaration without rules (just as a type
declaration without functors introduces an external type).

The declaration

’action’ string_to_id (STRING -> IDENT)

that comes without rules introduces a predicate that takes a STRING and yields an
IDENT. The implementation is not given in Gentle. The actual C implementation may
insert the string into a hash table and return a unique reference to the entry. IDENT is
the type of these references.

Other predicates may be declared that allow us to associate a “meaning” with an IDENT

and access this later:

’action’ DefMeaning (IDENT, MEANING)

’condition’ HasMeaning (IDENT -> MEANING)

(See the Library Reference Manual for information on how to implement external types
and predicates.)

1.7 Handling Global Information

Gentle encourages a declarative style of programming. However, there are cases in
which non declarative elements are appropriate.

One problem is parameter lists that tend to get too long if every bit of context infor-
mation is passed explicitly.

Consider a programming language that features a loop-statement and exit-statement
and specifies that an exit-statement can only occur inside a loop statement. To check
this constraint, the predicate that processes statements would have to be equipped
with a parameter indicating whether one is inside or outside a loop. This parameter
must be passed for each statement, e.g. an if-statement, because a constituent of that
statement - e.g. the then-part - could contain an exit-statement. On the other hand,
the constraint checking involves only the loop-statement and the exit-statement.

Gentle provides global variables. They are often used to represent a concept that is
global to the concept processed by a particular rule.

A global variable is introduced by a declaration of the form
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’var’ Name : Type

For example,

’var’ CurLoopContext: LoopContext

declares a global variable with the name CurLoopContext of type LoopContext (for
which we assume values inside and outside).

This variable cannot be used inside expressions and patterns. The only way to manip-
ulate and inspect its value is the update statement and the query statement that can be
used as a member in a rule body.

The update statement has the form

Name <- Expression

which assigns the value of the Expression to the variable given by Name.

For example,

CurLoopContext <- outside

sets the variable CurLoopContext to outside. The old value of the variable gets lost.

The query statement has the form

Name -> Pattern

It takes the value of the variable and matches it against the given pattern. This may
succeed, defining the variable inside the pattern. It may also fail, in which case the
query statements fails.

For example,

CurLoopContext -> outside

succeeds only if the variable holds the value outside.

CurLoopContext -> K

defines a new local variable of type LoopContext whose value is the current value of
CurLoopContext.

It is an error to access a global variable in a query statement if the variable has not
been defined by a preceding update statement. This error is checked when the query
statement is executed. Hence, term data structures cannot be corrupted by uninitialized
global variables.

We now show how the above loop exit constraint can be checked. Assume that a
predicate ProcessStatement traverses the abstract syntax of statements (we leave out
all details). This could be extended at two points:
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’rule’ ProcessStatement(loop(Body)):

CurLoopContext -> OldLoopContext

CurLoopContext <- inside

ProcessStatement(Body)

CurLoopContext <- OldLoopContext

’rule’ ProcessStatement(exit):

CurLoopContext -> K

CheckContextForExit(K)

1.8 Handling Mutable Information

Besides global variables, tables are another data structure that can be updated. They
are motivated by the observation that in certain cases not all information required to
construct a term is already available, and we need a mechanism to supply this later.
As we will see, tables may also be used to represent cyclic structures.

In Gentle, one cannot modify the fields of a term, but one can supply an immutable
key, that refers to a mutable record.

A table is an unbounded collection of records. Each record is identified by a unique key.
A record is a list of one or more mutable fields.

A table declaration has the form

’table’ Name ( Fields )

where Fields is a comma-separated list of one or more field specifications. The identifier
Name serves as a type name for the keys.

A field is specified in the form

FieldName : Type

To illustrate the use of tables, let us discuss the so-called basic-block-graph representa-
tion of programs. In this representation, the instructions of a program are grouped into
blocks (only the last instruction of a block can be a jump; only the first instruction of
a block can be the target of a jump).

Each block is characterized by a list of its instructions and a list of its successor blocks.

The basic-block graph can be described by a table:

’table’ BLOCK (Instructions: INSTRLIST, Successors: BLOCKLIST)

This introduces a table of records, where each record has a field Instructions (of type
INSTRLIST) and a field Successors (of type BLOCKLIST). It also introduces a new type,
BLOCK, the values of which are references to block records.

The type BLOCK can be used in the same way as any other type, e.g. as the type of the
fields of a term. Hence we can define the type BLOCKLIST as usual:



1.8 Handling Mutable Information 39

’type’ BLOCKLIST

list(BLOCK, BLOCKLIST)

nil

A new record and its unique key are created by an allocation statement. It has the form

V ar :: Name

This defines V ar as a local variable of the key type Name, holding a unique key of a
fresh record. The fields of this record are still undefined.

For example,

B :: BLOCK

defines the variable B as a new key of a BLOCK record. This key can already be used as
a value in terms, and it cannot be altered (hence terms still have the property of being
constants). But the associated record can be modified by subsequent statements.

The fields of an entry can be modified and inspected in exactly the same way as a global
variable, i.e. by update and query statements.

Instead of a simple variable name, a designator is used that specifies the key and the
field:

Key ’ FieldName

For example,

B’Successors

designates the Successors field of the record associated with the key given by the local
variable B.

An update statement

B’Successors <- nil

sets this field to nil.

A query statement

B’Successors -> L

accesses the field and copies its value into L.

With the statements

B’Successors -> OldList

B’Successors <- list(NewBlock, OldList)
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a new block can be inserted into the list of successors of B.

It is a checked run-time error to access a field that has not been defined.

In general, the basic blocks of a program form a graph that contains cycles. This can
be expressed with tables, for example:

’action’ BuildLoop(-> BLOCK)

’rule’ BuildLoop(-> B1)

B1 :: BLOCK

B2 :: BLOCK

B1’Instructions <- nil

B2’Instructions <- nil

B1’Successors <- list(B2, nil)

B2’Successors <- list(B1, nil)

After an invocation

BuildLoop(-> B)

B will refer to a block with one successor, the successor of which is B itself.

1.9 Control Structures

So far, rules were the only mechanism for describing decisions. When two cases had to
be described, two different rules were required. When a local decision was necessary
inside a rule body, a new predicate was introduced to handle this.

In this section, we introduce further constructs to deal with decisions.

1.9.1 The Alternative Statement

Assume that we wish to process the maximum of two values by applying a predicate
process to one of the values. Defining a predicate processmax, we can write

’action’ processmax(INT, INT -> INT)

’rule’ processmax(X, Y -> Z): ge(X, Y) process(X -> Z)

’rule’ processmax(X, Y -> Z): lt(X, Y) process(Y -> Z)

and invoke it as in
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get(-> A, B)

processmax(A, B -> C)

print(C)

The alternative statement discussed in this section allows us to insert the two rule bodies
inline and get rid of the predicate processmax:

get(-> A, B)

(|

ge(A, B) process(A -> C)

||

lt(A, B) process(B -> C)

|)

print(C)

An alternative statement has the form

(| A1 || A2 || ... || An |)

where the Ai are called alternatives and have the same form as a rule body (i.e. an
alternative is a sequence of statements).

The alternative statement is elaborated as follows. The alternatives are elaborated in
the given order. If an alternative succeeds, then the alternative statement succeeds. If
an alternative fails then the next alternative is elaborated. If all alternatives fail, then
the whole alternative statement fails.

An alternative is elaborated by elaborating its statements. If one statement fails, then
the alternative fails. If all statements succeed, then the alternative succeeds.

Roughly speaking, members of an alternative are connected by and, and alternatives
are connected by or, but since we use shallow backtracking, inside an alternative one
can assume that the preceding alternatives failed.

Thus the above could have been written as

get(-> A, B)

(| ge(A, B) process(A -> C) || process(B -> C) |)

print(C)

1.9.2 Dataflow

In our example, the variables A and B are defined outside the alternative statement.
They can be used inside.

The general rule is: A variable that is used in a pattern must be in a defined state
at the beginning of the whole alternative statement, or must defined by a preceding
member of the same alternative.
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In the example, the variable C is used after the alternative statement, and has no
definition outside the alternative statement. This is allowed because it is defined in
both alternatives. Regardless of which alternative is taken, C would be defined in all
cases (if no alternative is applicable then statement using C will not be reached).

The general rule is: A variable that is defined in all alternatives is said to be defined by
the whole alternative statement, and may be used subsequently. If a variable is defined
in all alternatives, it must be defined everywhere with the same type.

If a variable is defined in one or more - but not all - alternatives, it is said to be local
to the alternative containing the definition and cannot be used outside the alternative
statement.

If, in the above example, we had written

(| ge(A, B) process(A -> ResultA) || process(B -> ResultB) |)

neither ResultA nor ResultB could have been used in a subsequent statement because
it could not be guaranteed that it is always defined.

1.9.3 The Predicate where

In the previous example, each alternative invoked a procedure process that defined
the common result variable C. If no such action is adequate, we have to use something
similar to specify the result.

Gentle has a predefined predicate where that merely copies its input to its output. It
is defined for each type T

’action’ where(T -> T)

’rule’ where(X -> X)

This can be used to define variables. For example,

where(red -> Col)

defines Col as red

Consider the predicate max with rules

’rule’ max(X, Y -> X): ge(X, Y)

’rule’ max(X, Y -> Y): lt(X, Y)

If we want to replace an invocation

max(A, B -> C)

we can write
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(| ge(A, B) where(A -> C) || lt(A, B) where(B -> C) |)

Here, C is defined as the maximum of A and B.

In the example, an alternative was selected by giving a condition such as ge as a guard.
If we wish to replace a predicate inline, the rules of which are selected by pattern
matching, we have to use a different device.

Again, we can use the predefined predicate where. If we supply a pattern as the
output value the input value is matched against this pattern. The pattern may contain
variables, which are defined if matching succeeds. For examples,

where(Col -> red)

succeeds if Col is red.

Consider the predicate MapType(Type -> Rep) with rules

’rule’ MapType(array(N,Type) -> Rep): ArrayType(N,Type -> Rep)

’rule’ MapType(int -> Rep): IntType(-> Rep)

An invocation

MapType(Type -> Rep)

can be replaced by

(|

where(Type -> array(N, Type))

ArrayType(N, Type -> Rep)

||

where(Type -> int)

IntType(-> Rep)

|)

Here, Rep is defined in both alternatives, and therefore by the whole alternative state-
ment. N and Type are variables that are local to the first alternative.

1.9.4 Disjunctions

Since an alternative statement succeeds if one of its alternatives succeeds, it can be used
to express disjunction (or connection), whereas the members of a statement sequence
express conjunction (and connection). Alternative statements can be nested. For
example,
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’rule’ HandleType (Type):

(|

(| where(Type -> array(N, T)) || where(Type -> record(List) |)

HandleStructuredType(Type)

||

HandleSimpleType(Type)

|)

HandleStructuredType is invoked if Type matches array(N,T) or record(List). Oth-
erwise HandleSimpleType is invoked.

1.9.5 The Conditional Statement

A frequent case is that, if a certain condition holds, a specific action should be initiated,
otherwise nothing should happen. This could be expressed by an alternative statement
with an empty second alternative.

For example,

(| IsBad(Item) Complain(Item) || /*nothing*/ |)

This can be abbreviated by a conditional statement.

[| IsBad(Item) Complain(Item) |]

An alternative statement has the form

[| M1 M2 ... Mn |]

The members Mi are elaborated in the given order. If one member fails elaboration
is completed and and the conditional statement succeeds. If all members succeed the
conditional statement succeeds.

A conditional statement cannot define variables because if one member fails its concep-
tual empty second case is taken which defines no variables.

1.9.6 Using Alternative and Conditional Statements

Alternative and conditional statements allow decisions within a rule body without the
necessity of introducing an auxiliary predicate. When should predicates be used?

Of course predicates are necessary if the computation is recursive. Predicates should
also be used when the same piece of code occurs more than once.

In addition, a predicate should be used to name a subcomputation if it is otherwise
hard to understand or if the rule body gets longer than one can grasp. With conditional
statements, there is a the danger of writing long rule bodies that are hard to understand.
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On the other hand, a short conditional, given directly, is often more expressive than a
newly invented name for an auxiliary predicate.

Conditional statements should also be used when correctness relies on the fact that
earlier alternatives did not succeed (shallow backtracking). While rules are best under-
stood if one can read them in isolation, conditional statements are read in an if-then-else
style.

1.10 Smart Traversal

Some computations involve only a few functors, but to access them a traversal of a
complex data structure must be specified.

Assume that in an abstract syntax a type Expr is defined with a functor

id(IDENT, POS)

which is used to represent an application of an identifier at a given position. We wish to
describe the task of printing all identifier applications together with their coordinates.
For this purpose we use a predicate

ListApplication(Id, Pos)

each time we encounter a term id(Id, Pos).

For example,

’rule’ VisitExpr(id(Id, Pos)): ListApplication(Id, Pos)

In order to list all identifier applications, we have to inspect the whole abstract syntax by
a recursive traversal. For example, when we process a term if(Cond, Then, Else)),
all three constituents can contain identifier applications. We have to write

’rule’ VisitStmt(if(Cond,Then,Else)):

VisitExpr(Cond) VisitStmt(Then) VisitStmt(Else)

and similar rules for all other functors.

This can be abbreviated using sweep predicates.

A sweep predicate traverses the data structure given as its argument. When an explicitly
written rule is applicable this rule is taken. Otherwise a default rule is used that visits
recursively the constituents of the argument. Hence rules such as

’rule’ VisitExpr(id(Id, Pos)): ListApplication(Id, Pos)

must be specified, but rules such as
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’rule’ VisitStmt(if(Cond,Then,Else)):

VisitExpr(Cond) VisitStmt(Then) VisitStmt(Else)

need not be written.

A sweep predicate is declared as being of of category ’sweep’. It is a generic predicate
in the sense that it works on all term types, the parameter is specified as being of type
ANY (which is used as a generic type name).

The cross-reference application discussed above is completely specified by the following
declaration

’sweep’ Visit(ANY)

’rule’ Visit(id(Id, Pos)): ListApplication(Id, Pos)

Assuming that we specified the grammar by a predicate Program, we can list all appli-
cations of identifiers by writing

’root’ Program(-> Pgm) Visit(Pgm)

1.10.1 Default Rule

Consider a predicate

’sweep’ P ( ANY )

i.e. with one parameter. For a given functor

f ( T1 , T2 , ... , Tn )

the default rule has the form

’rule’ P ( f(X1 , X2 , ... , Xn) ) :
P ( X1 ) P ( X2 ) ... P ( Xn )

where a member P (Xi) is omitted if the corresponding type Ti is not defined by terms
(e.g if it is INT).

1.10.2 Broadcasted Parameter

A sweep predicate may also have an additional input parameter of an arbitrary type T

’sweep’ P ( ANY, T )

Then, the additional parameter is passed to all constituents. The default rule has the
form:

’rule’ P ( f(X1 , X2 , ... , Xn), Z ) :
P ( X1, Z ) P ( X2, Z ) ... P ( Xn, Z )
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1.10.3 Threaded Parameter

A sweep predicate may also have an additional input and an output parameter, which
must then both be of the same type:

’sweep’ P ( ANY, T -> T )

In the default rule, the parameter is threaded through the arguments (the input of a
member is the output of its predecessor):

’rule’ P ( f(X1 , X2 , ... , Xn), Z0 -> Zn) :
P ( X1, Z0 -> Z1 ) P ( X2, Z1 -> Z2 ) ... P ( Xn, Zn−1 -> Zn )

For example, to count all identifier applications, we can write

’root’ Program(-> Pgm) Count(Pgm, 0 -> N) print(N)

’sweep’ Count(ANY, INT -> INT)

’rule’ Count(id(Id, Pos), N -> N+1)

1.11 Optimal Rule Selection

This section introduces cost-driven rule selection. This is of particular use for unparsing
systems that do not define a unique translation. The compiler writer does not have to
specify how to combine pieces to form the best translation but simply lists possible
alternatives for the parts.

1.11.1 Code Generation for Expressions

Here, we discuss how to generate code for expressions.

For the sake of simplicity we let the abstract syntax of expressions be defined as

’type’ Stmnt

assign(Variable, Expr)

’type’ Expr

plus(Expr, Expr)

minus(Expr, Expr)

var(Variable)
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1.11.2 A Stack Computer

Our target computer is a stack computer with the following instructions (the instruc-
tions are given as predicates, that, when invoked, emit the instruction):

’action’ PLUS

’action’ MINUS

’action’ PUSH(Variable)

’action’ POP(Variable)

The instructions modify the stack of the computer. If the stack has the form

... X Y

then PLUS replaces the top two elements by their sum Z = X+Y , i.e. the stack becomes

... Z

Similarly, MINUS replaces X and Y by Z = X − Y .

If K is the value of a variable V, then PUSH(V) puts K onto the stack.

If K is the value on top of the stack, then POP(V) removes it from the stack and stores
it in V.

Let us write predicates Encode and StackCode that emit instructions for statements
and expressions.

If we have to generate code for assign(V, X), we have to emit code for the expression
X that computes its value on top of the stack. Then, we can use the POP instruction to
store it in V.

’rule’ Encode(assign(V,X)):

StackCode(X)

POP(V)

The predicate StackCode processes the alternatives for Expr:

’rule’ StackCode(plus(X,Y)):

StackCode(X)

StackCode(Y)

PLUS

’rule’ StackCode(minus(X,Y)):

StackCode(X)

StackCode(Y)

MINUS

’rule’ StackCode(var(V)):

PUSH(V)
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For the Statement

assign("Res", plus("A", minus("B", "C")))

the generated code is

PUSH A

PUSH B

PUSH C

MINUS

PLUS

POP Res

which, when executed, results in the following stack configurations

... (A)

... (A) (B)

... (A) (B) (C)

... (A) (B − C)

... (A + (B − C))

...

1.11.3 Unparsing

The above scheme is called an unparsing scheme. While a parser reads a source text
(driven by the structure of the source text) and constructs abstract syntax, an unparser
processes abstract syntax terms (driven by their structure) and emits a concrete target
program.

The rules of an unparser are similar to grammar rules. Predicates like StackCode

correspond to nonterminals, and predicates that directly emit target code correspond
to tokens. In a source grammar, symbols are decorated with output parameters that
specify their abstract representation. In a target grammar, symbols are decorated with
abstract input parameters for which a concrete representation has to be generated.

In many cases an unparsing scheme simply follows the structure of terms. In general
there is one rule for each functor, although sometimes larger patterns are used. This
results in a functional description such as that for the stack-computer code generator.

This will especially be the case if the target language is a higher-level language, as in
source-to-source translations (e.g. if a parallel extension of C is translated into plain
C).

1.11.4 A Computer with an Accumulator

Let us consider a different kind of computer that uses an accumulator to compute values.
The accumulator holds one of the operands of a computation, the other being given as
a parameter of an instruction. The result is placed into the accumulator.

These are the instructions:
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’action’ ACCUPLUS(Variable)

’action’ ACCUMINUS(Variable)

’action’ LOADACCU(Variable)

’action’ STOREACCU(Variable)

ACCUPLUS(X) means Accu := Accu + X, ACCUMINUS(X) means Accu := Accu - X,
LOADACCU(X) means Accu := X, STOREACCU(X) means X := Accu.

Here is an incomplete specification of code generation:

’rule’ Encode(assign(V,X)):

AccuCode(X)

STOREACCU(V)

’rule’ AccuCode(plus(X, var(V))):

AccuCode(X)

ACCUPLUS(V)

’rule’ AccuCode(minus(X, var(V))):

AccuCode(X)

ACCUMINUS(V)

’rule’ AccuCode(var(V)):

LOADACCU(V)

(The specification is still incomplete because we only consider the case where the second
operand of plus and minus is a variable. If it were be a more complex expression, we
would have to introduce temporary variables.)

1.11.5 A Combined Stack and Accumulator Computer

We show cost driven-rule selection by a computer combining stack and accumulator
processing (following Professor Ulrich Grude, who coined this example for his lectures
on Gentle).

The combined computer provides both sets of instructions, i.e. one can switch be-
tween stack- and accumulator-based computation. In addition, it offers two further
instructions that move data from stack to accumulator and vice versa:

’action’ STACKTOACCU

’action’ ACCUTOSTACK

STACKTOACCU pops the top element from the stack and stores it in the accumulator.
ACCUTOSTACK pushes the current value of the accumulator onto the stack.

Since the specification for the stack computer covers all cases, we can simply copy these
rules. Hence, we already have a correct code generator for the combined computer.

Because the rules for the accumulator-based computer are also correct, we copy them
as well.

We add a rule that computes stack values in the accumulator:
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’rule’ StackCode(X):

AccuCode(X)

ACCUTOSTACK

and a rule that computes accumulator values using the stack:

’rule’ AccuCode(X):

StackCode(X)

STACKTOACCU

1.11.6 Nondeterministic Unparsing

While the specification for stack code was functional, i.e. there was one unique trans-
lation for each abstract syntax term, the combined specification allows more than one
translation.

The combined specification is correct in the sense that each possible rule selection results
in correct target code. It is also complete in the sense that for each argument term there
is a possible selection of rules that emits code for the term. Hence, it should suffice as
a specification of code generation.

This is the case if we use cost-driven rule selection.

Cost-driven rule selection is performed for predicates that are declared as being of the
category choice. Rules of such predicates may be augmented by cost values. A rule is
given a cost by providing a specification of the form

$ N

at the end of the rule. N is a positive integer indicating the price for applying the rule.

When evaluating invocations of choice predicates, conceptually all possible sequences
of rule applications are considered. The total cost of a sequence of rule applications is
the sum of the costs of all rules. The sequence of rule applications that leads to the
minimal total cost is actually used for evaluation (if there are several best sequences
one of them is taken).

1.11.7 A Code-Generator Specification

Here is a specification of a code generator for the combined stack and accumulator
computer:

’choice’ Encode(Stmnt)

’rule’ Encode(assign(V,X)):

StackCode(X)

POP(V)
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$ 10

’rule’ Encode(assign(V,X)):

AccuCode(X)

STOREACCU(V)

$ 10

’choice’ StackCode(Expr)

’rule’ StackCode(plus(X,Y)):

StackCode(X)

StackCode(Y)

PLUS

$ 20

’rule’ StackCode(minus(X,Y)):

StackCode(X)

StackCode(Y)

MINUS

$ 20

’rule’ StackCode(var(V)):

PUSH(V)

$ 10

’rule’ StackCode(X):

AccuCode(X)

ACCUTOSTACK

$ 10

’choice’ AccuCode(Expr)

’rule’ AccuCode(plus(X, var(V))):

AccuCode(X)

ACCUPLUS(V)

$ 10

’rule’ AccuCode(minus(X, var(V))):

AccuCode(X)

ACCUMINUS(V)

$ 10

’rule’ AccuCode(var(V))

LOADACCU(V)

$ 10

’rule’ AccuCode(X):

StackCode(X)

STACKTOACCU

$ 20
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1.11.8 Cost-Driven Rule Selection

A rule gives the cost of the respective operation of the rule. For example, in the PLUS

operation counts 20 in

’rule’ StackCode(minus(X,Y)):

StackCode(X)

StackCode(Y)

MINUS

$ 20

The total cost of translating minus(X,Y) with this rule would be 20 plus the total cost
of translating X plus the total cost of translating Y.

The corresponding accumulator operation is cheaper:

’rule’ AccuCode(minus(X, var(V)):

AccuCode(X)

ACCUMINUS(V)

$ 10

The computation of an expression is cheaper if performed in the accumulator; hence
the translation of source source text

r := x-y

is

LOADACCU x

ACCUMINUS y

STOREACCU r

and not

PUSH a

PUSH b

MINUS

POP r

which is also a possible result of a series of rule applications.

If the expression appears in a context where stack code is required (the outer minus
does not have a simple operand) as in

r := (x-y)-(a-b)

it is computed on the stack:
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PUSH x

PUSH y

MINUS

PUSH a

PUSH b

MINUS

MINUS

POP r

because an operation that moves the intermediate result from the stack to the accumu-
lator would be too costly.

If a larger subexpression is used, then the cheaper accumulator computation outweighs
the cost of the ACCUTOSTACK instruction. The input

r := (x-y-z)-(a-b)

is translated into

LOADACCU x

ACCUMINUS y

ACCUMINUS z

ACCUTOSTACK

PUSH a

PUSH b

MINUS

MINUS

POP r

1.11.9 Using Output Parameters

In the above example, we used predicates such as PLUS to write the generated code to
the target file. It can also be returned as an output parameter of the predicate.

In many specifications, both methods are used. For example, an invocation

Register(X -> R)

emits code for the term X such that the result is stored in a register. The output
parameter R states which register is used.

Often, these output parameters are then used to construct a more complex result in
the rule heading. This result can specify a computation for which no instructions have
to be emitted, but which can be performed “via an addressing mode”.

By way of an example, consider a rule from a code-generator specification for the
MC68020:
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’rule’ EffectiveAddress

( addrplus(Array, intmult(Index, intconst(Size)))

-> ax(AR, 0, DR, Size) ) :

IsSuitableScaleFactor (Size)

AddressRegister (Array -> AR)

DataRegister (Index -> DR)

$ 14

Here, the choice predicates EffectiveAddress, AddressRegister, and DataRegister

translate their input argument such that the result is given as an “effective address”,
an address register, or a data register. The rule states that the term

addrplus(Array, intmult(Index, intconst(Size)))

(which is the translation of an array subscription) may be mapped to

ax(AR, 0, DR, Size)

(the “address register with index” addressing mode) when the value of Array is com-
puted in AR and the value of Index is computed in DR. To be a suitable operand for the
ax mode, Size must fulfill the condition IsSuitableScaleFactor.

1.11.10 The Two Processing Phases

Rules of choice predicates are processed in two phases: in the first phase, the optimal
rule combination is determined; in the second phase, these rules are elaborated just as
for ordinary predicates.

To determine which rules should be applied, the first phase performs pattern matching
and evaluates conditions. Conditions invoked from rules of choice predicates should
only test their arguments, but must have no side effects such as changing global vari-
ables.

In the second phase, only those rules are elaborated that were selected in the first phase.
During rule elaboration, now also predicates of the category action are invoked. These
invocations may have side effects, such as emitting code.

1.11.11 Well-formed Rules

The typical structure of rules describing code selection is as follows.

The predicate has a distinguished input argument (the first one) that represents the
construct to be translated; we call it the primary argument.

If the rule invokes conditions, this is to test certain properties of the primary argument
(such as IsSuitableScaleFactor in the example above).

If the rule invokes predicates of the category choice, this is to translate constituents
of the primary argument, e.g.
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’rule’ StackCode(plus(X,Y)):

StackCode(X)

StackCode(Y)

PLUS

$ 20

In some cases, the argument is simply passed as a whole to the invoked predicate, e.g.

’rule’ StackCode(X):

AccuCode(X)

ACCUTOSTACK

$ 10

Since choice predicates were introduced to specify code selection, we can restrict our-
selves to this form in order to support an efficient implementation.

Rules of choice predicates must obey the following restrictions:

The first input argument (the primary argument) of a choice must be of a type that
is defined with functors.

If condition or choice predicates are invoked in the rule body, then the input argu-
ments of condition predicates and the primary arguments of choice predicates are
given by constituents of the primary argument of the rule heading (or by that argument
as a whole).

Rule selection does not depend on the output values of predicates in the rule body.

These restrictions make it possible to avoid an exponential search and to use a linear-
time algorithm to find optimal rules.

1.12 Special Patterns and Expressions

1.12.1 Joker

In some cases, one is not interested in all constituents of a term. For example, if we
wish to process the head of a list but without consisdering the tail, we may write:

’rule’ ProcessHead(list(Head, Tail)):

ProcessColor(Head)

In this rule, two variables are defined in a pattern (Head and Tail), but only one of
them is applied in an expression (Head), In such cases, it is not necessary to invent a
name for a variable that is not used (here Tail); instead, we can use a joker, which is
written as an underscore (“_”) and matches any value. Hence, the above rule can be
rewritten:

’rule’ ProcessHead(list(Head, _)):

ProcessColor(Head)
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1.12.2 Named Patterns

Sometimes one wishes to process the constituents of a pattern, but also the pattern as
a whole. We can use the where predicate to inspect the term, as in

’rule’ HandleSignal(S):

where (S -> signal(C1, C2))

ProcessSignal(S)

ProcessColor(C1)

ProcessColor(C2)

Alternatively, we can prefix a pattern with a variable name (followed by a colon). This is
equivalent to the unprefixed pattern but if matching succeeds, then the named variable
is defined as if the pattern had simply been the variable name.

Thus, the above rule could also be written:

’rule’ HandleSignal(S : signal(C1, C2)):

ProcessSignal(S)

ProcessColor(C1)

ProcessColor(C2)

1.12.3 Type Prefixes

In virtually all cases, the type of a particular position is clear from the context. Hence
one can use the same names for functors of different types.

There is one exception where the type is not known: the parameter of “generic” pred-
icates such as the built-in predicate where or user defined predicates of the category
sweep.

For example, in

where(nil -> List)

it is not clear what kind of list should be constructed if there are several types (say,
ColorList and StatementList) that introduce nil.

To resolve the ambiguity, we can prefix the functor with the name of the type (followed
by a single quote (“’”)) as in

where(ColorList’nil -> List)

The same holds for the first parameter of sweep predicates. For example, in

’sweep’ Visit(ANY)

’rule’ Visit(list(Head, Tail)):

ProcessElem(Head)

Visit(Tail)
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it is not clear whether the rule deals with values of type ColorList or StatementList
if both types introduce the functor list. Again, we can prefix the ambiguous term:

’sweep’ Visit(ANY)

’rule’ Visit(ColorList’list(Head, Tail)):

ProcessElem(Head)

Visit(Tail)

1.13 A Summary of Predefined Predicates

Gentle has some built-in predicates that can be used like user-defined predicates but
that need not be declared. This section summarizes them.

1.13.1 The Predicates eq, ne, lt, le, ge, gt

The conditions eq and ne are used to compare values for equality.

eq(X, Y)

succeeds if X is equal to Y and fails otherwise.

ne(X, Y)

succeeds if X is not equal to Y and fails otherwise. These predicates work for all types
including user-defined types, i.e. they may be used to compare terms. For example,

eq(list(red, X), list(red, list(yellow,nil)))

succeeds if X is list(yellow,nil).

The predicates gt, ge, lt, and le are defined only for the types INT and STRING.

gt(X, Y)

succeeds if X is greater than Y and fails otherwise.

For example,

gt(N, 0)

succeeds if N is a positive number.

In the case of strings, the lexicographical order is used for comparison. For example,

gt("axy", "abc")

gt("aaaa", "aa")

succeed.

Similarly, ge, lt, and le stand for “greater or equal”, “less than”, and “less or equal”,
respectively
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1.13.2 The Predicate print

The predicate print may be used to print a value. It is meant for test output and may
be used, for example, to print the generated abstract syntax of a source text:

Expression(-> X) print(X)

The value will be printed using indentation for subterms.

1.13.3 The Predicate where

The predicate where is defined for each type. It simply copies its input parameter to
its output parameter. Hence, it may be used to construct a value and assign it to a
variable as in

where(list(red, nil) -> L)

or to inspect a value and define variables with subterms as in

where(L -> list(Head, Tail))

This predicate is of particular use in alternative statements and is discussed in the
corresponding section.

1.13.4 The Predicate @

The predicate @ is used in grammar rules to obtain the source coordinate of a construct
as in

Expr(-> X) @(-> P)

where P is defined as the source coordinate of the preceding Expr.

This predicate is discussed in the section on grammars.

1.14 Organizing Larger Projects

A Gentle specification is a list of declarations of types, predicates, and other items. In
simple cases, a specification is written into a single file and submitted to the compiler.

If projects become larger and if more than one programmer is involved, it becomes
desirable to split a specification into several files. Nevertheless, the compiler must still
be able to check whether an application of an item (say, a predicate) matches the
corresponding definition, even if that appears in a different file. Gentle supports this
kind of separate compilation.
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A specification may be decomposed into modules, where each module is written into its
own file.

The content of a module is a list of declarations. Hence, the simple case can be under-
stood as a one-module specification.

In addition to the list of declarations, a module may have a heading that lists the name
of the module, other modules whose items are used here, as well as items declared here
and made available to other modules.

Here is an example of a module heading:

’module’ CodeGen

’use’

IR, TargetFile

’export’

Encode

This introduces a module name CodeGen. The module uses items that are declared in
two other modules named IR and TargetFile. It declares an item (say a predicate)
Encode that can be used by other modules.

1.14.1 The Module Name

A module has a unique name (an identifier). If the name of a module is Mod, then the
corresponding file must have the name Mod.g .

The module name is introduced by a name clause of the form

’module’ Mod

where Mod is the name of the module.

If the name clause is missing, the module name is determined by the file name (this
style should only be used for single-module specifications).

1.14.2 The Use Clause

The use clause follows the name clause. It may be empty or of the form

’use’ M1 , ... , Mn

where M1 , ... , Mn is a list of module names (optionally separated by commas).
The items provided by modules that appear in this list can be used in the module
containing the use clause.

For example. if module IR provides a definition of a type Expr and module CodeGen

contains a use clause



1.14 Organizing Larger Projects 61

’use’

IR, TargetFile

then the type Expr can be used inside CodeGen.

A module with an empty use clause cannot use items declared in other modules.

1.14.3 The Export Clause

The export clause follows the use clause. It may be empty or of the form

’export’ I1 , ... , In

where I1 , ... , In is a list of identifiers (optionally) separated by commas. The
identifiers name items that are declared inside the module. These items are provided
for other modules. They can be used there if the module containing the export clause
appears in the use clauses of the other modules.

E.g. if a module CodeGen contains an export clause

’export’

Encode

then it must declare an item (say a predicate) Encode. This item can be used in the
module Compiler if Compiler lists CodeGen in its use clause.

Items declared in a module but not listed in the export clause are not available to other
modules. (A module does not constitute a separate name space; hence the name of
such an item cannot be reused in other modules.)

1.14.4 The Root Module

Exactly one module must contain a root definition that triggers the computation.

For example, a specification could be given by three modules: Compiler, IR, and
CodeGen, where the module heading of Compiler is

’module’ Compiler

’use’

IR, CodeGen

The module Compiler can contain a definition

’root’

Program(-> P)

Encode(P)

This specification is elaborated by first invoking Program declared in Compiler, and
then Encode declared in CodeGen.
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2 GETTING STARTED

2.1 Installation

Gentle runs on various platforms, including Unix, DOS, and Windows 95. For Unix
systems, Gentle is distributed as a compressed tar file gentle-97.tar.gz . To unpack
the system, type

gunzip gentle-97.tar.gz

tar -xvf gentle-97.tar

This creates a directory gentle-97 with subdirectories gentle, lib, reflex, and
examples.

Go to directory gentle and type

build

This creates the executable program gentle, the Gentle compiler, as well as the object
file grts.o, the Gentle run time system.

Go to directory lib and type

build

This compiles the modules of the user library.

Go to directory reflex and type

build

This creates the executable program reflex, a generator for Lex specifications.

To test the installation, go to directory examples/calc and type

build

This creates a simple desk calculator.

2.2 A First Example

This section describes how to use the Gentle system to construct a simple desk calcula-
tor. This calculator will read (from standard input or from a specified file) an expression
according to the following syntax:
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expression ::=

expression "+" expr2

| expression "-" expr2

| expr2

expr2 ::=

expr2 "*" expr3

| expr2 "/" expr3

| expr3

expr3 ::=

Number

| "-" expr3

| "+" expr3

| "(" expression ")"

where the token Number represents a sequence of decimal digits. The program will
calculate the value of the expression and print it on standard output.

Here is a Gentle specification of the calculator (file calc.g). This simply mirrors the
above grammar, where each nonterminal has an output parameter that represents its
value.

’root’ expression(-> X) print(X)

’nonterm’ expression(-> INT)

’rule’ expression(-> X): expr2(-> X)

’rule’ expression(-> X+Y): expression(-> X) "+" expr2(-> Y)

’rule’ expression(-> X-Y): expression(-> X) "-" expr2(-> Y)

’nonterm’ expr2(-> INT)

’rule’ expr2(-> X): expr3(-> X)

’rule’ expr2(-> X*Y): expr2(-> X) "*" expr3(-> Y)

’rule’ expr2(-> X/Y): expr2(-> X) "/" expr3(-> Y)

’nonterm’ expr3(-> INT)

’rule’ expr3(-> X): Number(-> X)

’rule’ expr3(-> - X): "-" expr3(-> X)

’rule’ expr3(-> + X): "+" expr3(-> X)
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’rule’ expr3(-> X): "(" expression(-> X) ")"

’token’ Number(-> INT)

The representation of the token Number is not specified in the Gentle specification.
Instead, we use a token description file from the reflex directory (file Number.t):

[0-9]+ {

yylval.attr[1] = atoi(yytext);

yysetpos();

return Number;

}

Assume that $GENTLE is the path name for the program gentle, $GRTS for the Gentle
run time system grts.o, $REFLEX for the program reflex, and $LIB is the user library.

Then the command sequence

$GENTLE calc.g

$REFLEX

lex gen.l

yacc gen.y

cc -o calc \

calc.c \

lex.yy.c \

y.tab.c \

$LIB/errmsg.o \

$LIB/main.o \

$GRTS

can be used to create the calculator program calc.

Here the command

$GENTLE calc.g

invokes the Gentle compiler, which translates the specification calc.g into a C file
calc.c. In addition, it generates some files gen.*, which the user need not bother
about.

The command

$REFLEX

invokes the program reflex. This creates a specification for the scanner generator Lex
(from files created by gentle and files provided by the user such as Number.t).

The commands
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lex gen.l

yacc gen.y

invoke the scanner generator Lex and the parser generator Yacc respectively.

Finally, the C compiler creates the program calc:

cc -o calc \

calc.c \

lex.yy.c \

y.tab.c \

$LIB/errmsg.o \

$LIB/main.o \

$GRTS

lex.yy.c and y.tab.c are C files created by Lex and Yacc. $LIB/errmsg.o and
$LIB/main.o are modules from the user library. They provide an error message routine
and and main function that invokes the code created by the Gentle compiler (a user
may use these components as they are, or adapt them according to his or her needs).

If testfile contains the line

2+3*4

then the command

calc testfile

emits 14 .

2.3 Generating a Compiler

To generate a compiler from a Gentle specification the Gentle compiler has to be invoked
for each Gentle module. Then the Reflex program is used to produce a Lex specification.
Lex and Yacc are used to generate a scanner and a parser. The C compiler then
translates the generated and (possibly user supplied) C modules. Figure 1 shows the
way these tools cooperate.

Gentle

The Gentle compiler is invoked by the command

gentle module.g
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gen.l

lex

lex.yy.cgrts.o

<file>.c<module>.g<token>.t <block>.b

gen.lit gen.tkn gen.y

reflex

yacc

y.tab.c

cc

Compiler

gentle

gen.h <module>.c

Figure 1: Generating a Compiler

This translates a Gentle module module.g into a C module module.c (file names for
Gentle modules must have the suffix .g).

If the module contains a grammar specification, then the following files are generated in
addition: gen.lit contains Lex specifications for terminal symbols that appear literally
in the specification. gen.tkn contains a list of tokens introduced in the specification.
gen.h is a C header file that introduces a data type for token attributes and defines
the codes of the tokens. gen.y is a Yacc specification of the underlying grammar.

See the Language Reference Manual for a description of Gentle.

Reflex

Reflex assembles various files and combines them to form a Lex specification.

For each token Token introduced in the specification, there must be a token description
file Token.t . This file must specify a regular expression for the token and an action
that computes the attributes of the token.

A block Block of the Lex specification may be overridden by a file Block.b . This allows
the specific definition of white space and comment conventions (LAYOUT.b, COMMENTS.b).

The directory reflex contains reusable token description and block files.

Reflex is invoked by the command
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reflex

This creates a Lex specification gen.l .

See the Reflex Reference Manual for details.

Lex

The command

lex gen.l

invokes the scanner generator Lex with the specification gen.l . This creates a C
module lex.yy.c .

Yacc

The command

yacc gen.y

invokes the parser generator Yacc with the specification gen.y . This creates a C module
y.tab.c .

C Compiler

The command

cc file.c ... grts.o

creates an executable program. file.c ... is a list of generated or user-written C
files. One of these modules must supply a function main that invokes the generated
function ROOT(). The library provides such a function (module main.c).

See the Library Reference Manual for a description of library modules.
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3.1 Introduction

Gentle is a high-level programming language for compiler writers. It covers the whole
spectrum of compiler construction, ranging from analysis over transformation to syn-
thesis. Gentle provides a uniform notation for all tasks.

Language Overview

The language is based on recursive definition and structural induction, the underlying
paradigm of virtually all translation tasks.

Gentle allows the user to define mutally recursive types by enumerating alternative
structures

Expr = plus(Expr,Expr), minus(Expr,Expr), const(INT)

Programs in Gentle are expressed by rules of the form

G : A B C

These rules may be interpreted as grammar rules (G is constructed from A, B, and C),
as logical statements (G is true if A, B, and C are true), or in a procedural manner (to
solve task G, solve subtasks A, B, and C).

Members of a rule may have parameters (an arrow separating input from output pa-
rameters). This results in attributed grammars

AddingExpression(-> plus(X1, X2)):

AddingExpression(-> X1) "+" Primary(-> X2)

or in transformation schemes that inductively follow the structure of terms

Eval(plus (X1, X2)->N1+N2): Eval(X1->N1) Eval(X2->N2).

Eval(minus(X1, X2)->N1-N2): Eval(X1->N1) Eval(X2->N2).

Eval(const(N) ->N).

Unparsing may be expressed in a similar way

Code(plus(X1, X2) -> Reg2) :

Code(X1 -> Reg1)

Code(X2 -> Reg2)

Emit("add", Reg1, Reg2).
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Such rules can be augmented by cost values. Then, rules are selected in such a way
that the sum of the costs of all selected rules is optimal. This allows a nondeterministic
specification that handles idioms of the target machine by rules with corresponding
patterns.

Gentle is a strongly typed language that allows a tool to statically check the consistency
of the specification. Traditional errors such as uninitialized variables can be detected
at the earliest point.

Gentle has a declarative flavor. It also provides mutable global variables and tables
to represent deferred information and cyclic structures. Gentle supports procedures
written in other languages.

Related Languages

Gentle descends from CDL [7] and Prolog [15]. An early version was described in [10].

3.2 Syntax and Vocabulary

The syntax of Gentle is defined in the Extended Backus Naur Formalism which uses
the following conventions: X|Y denotes X or Y, [X] denotes X or empty, {X} denotes a
possibly empty sequence of X’s, and (X) denotes X.

Terminal symbols are enclosed in quotes. In addition, Ident denotes a sequence com-
posed of letters, digits, and underscores and starting with a letter. IdentLC is an Ident
that starts with a lower-case letter, IdentUC is an Ident that starts with an upper-case
letter. Number denotes a sequence of decimal digits. String denotes a possibly empty
sequence of characters enclosed in quotes (‘"’). Inside a String, the sequence ‘\t’ rep-
resents a tabulator, ‘\n’ represents a new-line character, ‘\\’ stands for ‘\’, and ‘\"’
stands for ‘"’.

Blanks, newlines, tabulators, and comments may be inserted between symbols. A
comment is a sequence of characters starting with ‘--’ and ending at the end of the
line, or a sequence of characters enclosed in ‘/*’ and ‘*/’ (comments of this style may
be nested).

3.3 Specifications

A Gentle specification is a list of declarations. A declaration introduces a type, a pred-
icate, a context variable, or a context table. Exactly one declaration of a specification
must be a root definition, this defining the elaboration of the specification. Declarations
may be given in any order.
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Example

’root’ bits(-> N) print(N)

’nonterm’ bits(-> INT)

’rule’ bits(-> B): bit(-> B)

’rule’ bits(-> N*2+B): bits(-> N) bit(-> B)

’nonterm’ bit(-> INT)

’rule’ bit(-> 0): "0"

’rule’ bit(-> 1): "1"

This program reads a sequence of binary digits and prints the corresponding
decimal value.

3.4 Types

TypeDecl = ”’type’” Ident [[”=”] TermSpec {[”,”] TermSpec}] .
TermSpec = IdentLC [”(”[ParamSpec {”,” ParamSpec}]”)”] .
ParamSpec = [Ident ”:”] Ident .

Term Types

A type declaration

’type’ T

f1 ( T1,1 , . . . , T1,n1
)

· · ·
fm ( Tm,1 , . . . , Tm,nm

)

defines a type T and a set of values of that type. A value is called a term and is
constructed by applying a functor fi to arguments. If τ1, . . . , τni

are values of types
Ti,1, . . ., Ti,ni

, then fi(τ1, . . . , τni
) is a value of type T .

Examples

’type’ Color

red, yellow, blue

Values of type Color are: red, yellow, and blue.
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’type’ List

list(Color, List)

nil

Values of type List include:
nil, list(red,nil), list(yellow(list(red,nil)).

A parameter specification may be written as

N : T

where N is an identifier documenting the meaning of the parameter.

Example
list(Head: Color, Tail: List)

Abstract Types

A type declaration without functor specifications introduces an abstract type. The
values of such a type are not specified in Gentle.

Example
’type’ IDENT

Basic Types

There are three basic types that may be used without being declared. The type INT

comprises integer numbers. The type STRING comprises strings of characters. The type
POS comprises source coordinates.

3.5 Expressions

Expression = Expr2 | Expression ( ”+” | ”-” ) Expr2 .
Expr2 = Expr3 | Expr2 ( ”*” | ”/” ) Expr3 .
Expr3 = IdentUC | Number | String
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| Functor [”(”[Expression {”,” Expression}]”)”]
| ( ”+” | ”-” ) Expr3 | ”(” Expression ”)”

Functor = [Ident ”’”] IdentLC .

An expression describes the computation of a value. The value of an expression E on
a position with type T is computed as follows.

Variables

If E has the form

V

where V is a variable, the value of the expression is the value of the variable. The type
of the variable must be T .

Numbers

If E has the form

N

where N is a number, T must be INT. The value of E is the value of the number.

Strings

If E has the form

S

where S is a string, T must be STRING. The value of E is the value of the string.

Terms

If E has the form

f ( E1 , . . . , En )

the declaration of T must contain a functor specification f ( T1 , . . . , Tn ). E1, . . .,
En appear on positions with types T1, . . ., Tn. E1, . . ., En are evaluated yielding values
σ1, . . ., σn. The value of E is given as f ( σ1 , . . . , σn ).

If the type T of the position is unknown (in the case of generic predicates) and if f is
defined for more than one type, f must be prefixed by the type: T ’ f .
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Example

list(X1, list(yellow, X2))

If the value of X1 is red and the value of X2 is nil, the value of the expression
is list(red(list(yellow,nil)).

Arithmetic Expressions

If E has the form

E1 op E2

where op is one of +, -, *, /, T must be INT and E1 and E2 must be expressions of type
INT. The value of P is computed by applying the operator to the values of E1 and E2.

If E has the form

op E1

where op is one of +, -, T must be INT and E1 must be an expression of type INT. The
value of P is computed by applying the operator to the value of E1.

If E has the form

( E1 )

the value of E is the value of E1. E1 must be an expression of type T .

3.6 Patterns

Pattern = IdentUC [”:” Pattern]
| Functor [”(”[Pattern {”,” Pattern}]”)”]
| ” ”

A given value τ may be matched against a pattern P . This may succeed, thereby
defining the variables appearing in P , or fail.

Variables

If P has the form

V

where V is a variable, the value of V is defined as τ and the type of V is the type of
the position.
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Terms

If P has the form

f ( P1 , . . . , Pn )

the matching succeeds if τ has the form f ( τ1 , . . . , τn ) and matching τ1, . . ., τn

against P1, . . ., Pn succeeds, thereby defining the variables appearing in P1, . . ., Pn.
Otherwise, the matching fails.

If P appears on a position with type T , the declaration of T must contain a functor
specification f ( T1 , . . . , Tn ). P1, . . ., Pn appear on positions with types T1, . . ., Tn.

Example

list(X1, list(yellow, X2))

If a value τ is matched against this pattern (on a position of type List), the
matching succeeds if τ has the form list( τ1 ,list(yellow, τ2 )). It defines
X1 as a variable of type Color with value τ1 and X2 as a variable of type List

with value τ2. Otherwise, the matching fails.

Named Patterns

If P has the form

V : P1

τ is matched against P1 as if the pattern P had been simply P1. If this succeeds, V is
defined as if the pattern P had been simply V .

Joker

If P has the form

(underscore) the matching always succeeds.
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3.7 Predicates

PredicateDecl = Category Ident Signature Rules .
Category = ”’nonterm’” | ”’token’” | ”’action’”

| ”’condition’” | ”’choice’” | ”’sweep’” .
Signature =

[”(” [ParamSpec {”,” ParamSpec}] [”->”[ParamSpec {”,” ParamSpec}]]”)”] .
Rules = {Head ”:” Body ”.”} | {”’rule’” Head [”:”] Body [”.”]} .
Head = Ident [”(” [Pattern {”,” Pattern}] [”->” [Expression {”,” Expression}]] ”)”] .
Body = {Member} [CostSpec]
CostSpec = ”$” Number .

Predicate Declarations

A predicate declaration of the form

Category p ( T1 , . . . , Tn -> S1 , . . . , Sm )

Rule1

· · ·
Ruler

introduces a predicate p of category Category with n input parameters of types T1, . . .,
Tn, and with m output parameters of types S1, . . ., Sm.

A predicate may be used in a predicate invocation.

A predicate that is invoked with input values τ1, . . ., τn is elaborated as follows. If no
rule is applicable, the invocation fails. Otherwise, a rule is selected and elaborated,
yielding output values σ1, . . ., σn, and the invocation succeeds.

Example
’condition’ HasCode (Color -> INT)

’rule’ HasCode(red -> 1)

’rule’ HasCode(yellow -> 2)

An invocation of HasCode with input value yellow succeeds and yields output
value 2. An invocation of HasCode with input value blue fails.

Rules

A rule has the form
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’rule’ p ( P1 , . . . , Pn -> E1 , . . . , Em ) : M1 . . . Mk

For given input values τ1, . . ., τn, the rule is elaborated as follows. Let V1, . . ., Vnin

be the variables appearing in P1, . . ., Pn, and W1, . . ., Wnout
the variables appearing

in E1, . . ., Em. If the input values τ1, . . ., τn do not match the patterns P1, . . ., Pn,
the rule is not applicable. Otherwise, the variables V1, . . ., Vnin

are defined. Then
the members M1 . . . Mk are elaborated. If one of the members fails, the rule is not
applicable. Otherwise, the variables W1, . . ., Wnout

are defined. The expressions E1 . . .

Em are evaluated, yielding output values σ1, . . ., σm.

A variable that appears in a pattern is said to be defined. A variable that appears in
an expression is said to be applied. Each applied variable must be a defined variable.
Variables that are applied in a member Mi must be defined by one of the patterns P1,
. . ., Pn or in a member Mj that appears to the left of Mi . A defined variable cannot
be redefined.

Example
’action’ append(List, List -> List)

’rule’ append(list(H,T), L -> list(H, TL): append(T, L -> TL)

’rule’ append(nil, L -> L)

For input values τ1 = list(red,nil) and τ2 = list(yellow,nil), the second
rule is not applicable because τ1 6= nil.

The elaboration of the first rule matches τ1 with list(H,T) defining H as red

and T as nil; it matches τ2 with L, defining L as list(yellow,nil).

The member append(T,L -> TL) defines TL as list(yellow,nil).

The output value σ1 = list(red,(list(yellow,nil)) is yielded by replacing
H and TL in list(H,TL) by their values.

3.8 Context Variables

VariableDecl = ”’var’” Ident ”:” Ident .

A declaration of the form

’var’ C : T

introduces a context variable C of type T .

The value of a context variable is defined by a context update and is accessed in a
context query.
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Example

’var’ NestingLevel: INT

defines a context variable NestingLevel of type INT.

This variable may be defined as in

NestingLevel <- N

and accessed as in

NestingLevel -> N

3.9 Context Tables

TableDecl = ”’table’” Ident ”(” Ident ”:” Ident {”,” Ident ”:” Ident} ”)” .

A declaration of the form

’table’ T ( F1 : Tn , . . . , Fn : Tn )

introduces a context table T .

A context table is an unbounded collection of entries. An entry has a unique key and
a record of fields. These fields have names F1, . . . , Fn and types T1, . . . , Tn. The name
of the table, T , acts as the name for the type of the keys.

A unique key is created by a key definition statement. The value of a field is defined
by a context update and accessed in a context query.

Example

’table’ Label (Coordinate: INT)

This defines a table Label. Entries of this table have one field with name
Coordinate and type INT. Keys of entries have type Label.

A value of type Label can be created without knowing the value of field Coordinate.

Lab :: Label

defines Lab as unique value of type Label.

Lab’Coordinate <- Loc

may be used later to define the field Coordinate.

Lab’Coordinate -> Loc

is used to access the field Coordinate.
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3.10 Members

Member = Ident [”(” [Expression {”,” Expression}] [”->” [Pattern {”,” Pattern}]] ”)”]
| ContextDesignator ”<-” Expression
| ContextDesignator ”->” Pattern
| IdentUC ”::” Ident
| String
| ”(|” {Member} ”||” {Member} {”||” {Member}} ”|)”
| ”[|” {Member} ”|]” .

ContextDesignator = [IdentUC ”’”] Ident .

The body of a rule is given by a sequence of members. A member is elaborated as
follows.

Predicate Invocations

A member of the form

p ( E1 , . . . , En -> P1 , . . . , Pm )

denotes a predicate invocation.

p must be a predicate with n input parameters and m output parameters. Let T1, . . .,
Tn be the input types and S1, . . ., Sm the output types. The expressions E1, . . ., En

appear on positions with types T1, . . ., Tn, and the patterns P1, . . ., Pm appear on
positions with types S1, . . ., Sm.

The expressions E1, . . ., En are evaluated, yielding values τ1, . . ., τn. p is invoked with
these input values. If the invocation fails, the member M fails. If it succeeds, it yields
output values σ1, . . ., σm. These values are matched against the patterns P1, . . ., Pm.
If the matching fails, the member M fails. Otherwise, the member succeeds and the
variables appearing in P1, . . ., Pm are defined.

Context Updates

A member of the form

D <- E

denotes an context update.

The value of D is defined as the value of the expression E. If T is the type of D, E

appears on a position with type T .

The context designator D may be of the form C, where C must be declared as a context
variable. The type of the designator is the type of the context variable.
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Example
NestingLevel <- N

This sets the value of the context variable NestingLevel to the value of the
local variable N.

A context designator may also have the form I ’ F ; I must be a variable of the key
type of a context table T . Entries of T must have a field F . The type of the designator
is the type of the F .

Example

Let Lab be a local variable that refers to a table entry with a field Coordinate.
Then
Lab’Coordinate <- Loc

sets this field to the value of Loc.

Context Queries

A member of the form

D -> P

denotes a context query.

The value of the context designator D is matched against the pattern P . If this succeeds,
the member succeeds and the variables appearing in P are defined. Otherwise, the
member fails.

Examples
NestingLevel -> N

This defines the local variable N according to the current value of the context
variable NestingLevel.

Let Lab be a local variable that refers to a table entry with a field Coordinate.
Then
Lab’Coordinate -> Loc

defines the local variable Loc according to the value of this field.
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It is a checked run-time error to access an undefined context designator.

Key Definitions

A member of the form

V :: T

denotes a key definition.

The variable V is defined as a unique key of type T .

Example
Lab :: Label

The value of the local variable Lab is the unique key of a newly created entry of
table Label.

Anonymous Tokens

A member of the form

S

where S is a string, is equivalent to a member of the form p, where p is an implicitly
declared predicate of class token whose lexical representation is S.

Alternative Statements

A member of the form

(| A1 || . . . || An |)

denotes an alternative statement.

The alternatives A1, . . ., An are evaluated from left to right until one alternative Ai

succeeds. Then M succeeds. If all alternatives fail, M fails.

An alternative Ai has the form Mi,1, . . ., Mi,ni
. These members are evaluated from left

to right until one member fails. Then the alternative fails. If all members succeed, the
alternative succeeds.

A variable that is defined in all alternatives A1, . . ., An is defined by the alternative
statement and may be used outside it. Such a variable must be defined with the same
type in all alternatives.

A variable that is defined in one but not all alternatives is local to that alternative.
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Conditional Statements

A member of the form

[| A |]

is equivalent to (| A || /* empty */ |).

3.11 Root Definition

RootDef = ”’root’” {Member} .

A root definition has the form

’root’ M1 . . . Mn

The elaboration of a specification is the elaboration of the members M1, . . ., Mn.

3.12 Modules

Module = [”’module’” Ident] [UseClause] [ExportClause] Declarations .
UseClause = ”’use’” Ident {”,” Ident} .
ExportClause = ”’export’” Ident {”,” Ident} .

A specification may be decomposed into several modules.

A Module M has the form

’module’ M

’use’ M1 , . . . , Mn

’export’ E1 , . . . , Em

D1

· · ·
Dd

Items introduced by the declarations D1, . . ., Dd and items exported by modules M1,
. . ., Mn are visible in M . E1, . . ., Em must be items declared in D1, . . ., Dd. They are
exported by M , i.e. the can be made visible in other modules.

3.13 Predicate Categories

The Category specification of a predicate declaration may be one of

”’nonterm’”, ”’token’”, ”’action’”,
”’condition’”, ”’choice’”, ”’sweep’”.

The category of a predicate determines the rule-selection strategy applied for that
predicate.
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Grammar Predicates

token and nonterm predicates constitute the underlying context-free grammar and are
evaluated by LR parsing.

Action and Condition Predicates

condition and action predicates are evaluated by shallow backtracking. action pred-
icates may not fail.

Choice Predicates

Rules of choice predicates may be augmented by cost specifications. Rules are selected
in such a way that the sum of the costs of all rules applied is minimal.

Rule selection for choice predicates must depend exclusively on the first argument of
the predicate: only the first argument or its constituents may be used as arguments to
condition predicates or as the first argument of choice predicates invoked in a rule of
a choice predicate.

Invocations of condition predicates in a rule of choice predicates may not change
context variables or tables or have other side effects.

Sweep Predicates

sweep predicates provide implicit traversals where only rules deviating from the de-
fault rule have to be specified. The default rule recursively visits the fields of its first
argument.

A sweep predicate p is declared in one of three forms

’sweep’ p (ANY)

’sweep’ p (ANY, T )

’sweep’ p (ANY, T -> T )

where T is an arbitrary type. The first argument of a sweep predicate may be of any
type that is declared with functors

f ( T1 , . . . , Tn )

The default rule for a functor f has the form

’rule’ p ( f ( X1 , . . . , Xn )):

p ( X1 )

. . .

p ( Xn )
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or

’rule’ p ( f ( X1 , . . . , Xn ), Z ):

p ( X1 , Z )

. . .

p ( Xn , Z )

or

’rule’ p ( f ( X1 , . . . , Xn ), Z0 -> Zn ):

p ( X1 , Z0 -> Z1 )

. . .

p ( X1 , Zn−1 -> Zn )

3.14 Predefined Predicates

The following predicates can be used without being declared:

eq, ne, gt, ge, lt, le,
print, where, @ .

Relations

The predicates eq and ne are declared for each type T

’condition’ eq(T, T)

’condition’ ne(T, T)

The invocations

eq(X, Y)

ne(X, Y)

succeed if X is equal (not equal) to Y.

The predicates gt, ge, lt, le,
are declared

’condition’ gt(T, T)

’condition’ ge(T, T)

’condition’ lt(T, T)

’condition’ le(T, T)

where T is INT or STRING.

The invocations
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lt(X, Y)

le(X, Y)

gt(X, Y)

ge(X, Y)

succeed if X is less than (less or equal to, greater than, greater or equal to) Y.

Printing Values

The predicate print is defined for each type T.

’action’ print(T)

An invocation

print(X)

prints the value of X.

Inspecting and Defining Variables

The predicate where is defined for each type T.

’action’ where(T -> T)

’rule’ where(X -> X)

Examples
where (List -> list(Head, Tail))

inspects the value of List and succeeds if it matches the pattern list(Head,Tail),
thereby defining the variables Head and Tail.

where (list(Head, Tail) -> List)

constructs the value list(Head,Tail) and defines the variable List.

Source Coordinates

The predicate @ is defined

’action’ @(-> POS)
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It may appear after a nonterm or token predicate and it defines its output variable
as the coordinate of the source text recognized by the preceding symbol. It may also
appear at the beginning of a rule for a grammar rule, in which case it defines its output
variable as the coordinate of the source text recognized by the body of the rule.

The coordinate of the text recognized by a rule body is the coordinate of the leftmost
token, if there is one, or else the coordinate of the leftmost nonterm. If the body is
empty, the current coordinate is used.

Examples
’rule’ Statement: "IF" @(->P) Expression "THEN" Statement

Here, P is defined as the coordinate of "IF".
’rule’ Statement: "IF" Expression @(->P) "THEN" Statement

Here, P is defined as the coordinate of Expression.
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3.15 Syntax Summary

Module = [”’module’” Ident] [UseClause] [ExportClause] Declarations .
UseClause = ”’use’” Ident {”,” Ident} .
ExportClause = ”’export’” Ident {”,” Ident} .
Declarations = {Declaration} .
Declaration = TypeDecl | PredicateDecl | VariableDecl | TableDecl | RootDef .
TypeDecl = ”’type’” Ident [[”=”] TermSpec {[”,”] TermSpec}] .
TermSpec = IdentLC [”(”[ParamSpec {”,” ParamSpec}]”)”] .
ParamSpec = [Ident ”:”] Ident .
VariableDecl = ”’var’” Ident ”:” Ident .
TableDecl = ”’table’” Ident ”(” Ident ”:” Ident {”,” Ident ”:” Ident} ”)” .
PredicateDeclaration = Category Ident Signature Rules .
Category = ”’nonterm’” | ”’token’” | ”’action’”

| ”’condition’” | ”’choice’” | ”’sweep’” .
Signature =

[”(” [ParamSpec {”,” ParamSpec}] [”->”[ParamSpec {”,” ParamSpec}]]”)”] .
Rules = {Head ”:” Body ”.”} | {”’rule’” Head [”:”] Body [”.”]} .
Head = Ident [”(” [Pattern {”,” Pattern}] [”->” [Expression {”,” Expression}]] ”)”] .
Pattern = IdentUC [”:” Pattern]

| Functor [”(”[Pattern {”,” Pattern}]”)”]
| ” ”

Expression = Expr2 | Expression ( ”+” | ”-” ) Expr2 .
Expr2 = Expr3 | Expr2 ( ”*” | ”/” ) Expr3 .
Expr3 = IdentUC | Number | String

| Functor [”(”[Expression {”,” Expression}]”)”]
| ( ”+” | ”-” ) Expr3 | ”(” Expression ”)”

Functor = [Ident ”’”] IdentLC .
Body = {Member} [CostSpec]
CostSpec = ”$” Number .
Member = Ident [”(” [Expression {”,” Expression}] [”->” [Pattern {”,” Pattern}]] ”)”]

| ContextDesignator ”<-” Expression
| ContextDesignator ”->” Pattern
| IdentUC ”::” Ident
| String
| ”(|” {Member} ”||” {Member} {”||” {Member}} ”|)”
| ”[|” {Member} ”|]” .

ContextDesignator = [IdentUC ”’”] Ident .
RootDef = ”’root’” {Member} .
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4.1 Introduction

The scanner for a compiler generated with Gentle must be implemented as a function
yylex(). This may be done manually or by using the scanner generator Lex. The tool
Reflex provides a convenient way of constructing a scanner specification for Lex from
information extracted from the Gentle specification, token description files, and other
sources. In many cases no manual intervention is required, because existing descriptions
can be reused.

4.2 How To Describe a Token

For each token Token introduced in the Gentle specification, there must be a token
description file Token.t . This file must specify a Lex rule that handles the token.
Such a rule is given by a regular expression that matches the token, and an action that
computes the attributes of the token.

pattern { action }

If the rule does not fit on one line, the action may be written on several lines, but the
opening brace must appear on the first line.

By way of an example, a token introduced in a Gentle specification as

’token’ Number (-> INT)

may be described in file Number.t:

[0-9]+ {

yylval.attr[1] = atoi(yytext);

yysetpos();

return Number;

}

The pattern

[0-9]+

matches a non-empty sequence of digits.

The line

yylval.attr[1] = atoi(yytext);
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converts the matched input token (yytext) into an integer (using the C function atoi)
and assigns it as the first attribute. The Lex variable yylval has a field attr which is
an array of token attributes. attr[i] stands for the i-th attribute.

The macro

yysetpos();

defines the source position of the token (the source position is stored in yylval.attr[0]).
In a Gentle specification, this value may be accessed with the @-predicate.

The line

return Number;

returns the code of the token. The token code is a constant that has the same name as
the token.

4.3 How To Describe Layout and Comments

The generated Lex specification contains blocks that can be overridden by the user. A
block Block may be replaced by the content of a file Block.b .

There is a block LAYOUT which unless overridden has the following form:

\ { yypos += 1; }

\t { yypos += 1; }

\r { yypos += 1; }

\n { yyPosToNextLine(); }

These are three Lex rules that match blank, newline, and tabulator. They do not
include return statements, so the input recognized by the rule is skipped.

The variable yypos keeps track of the source position. It is incremented by the length
of the input. In the case of newlines the variable is adjusted by the library function
yyPosToNextLine.

This handling of white space may be overridden by providing a file LAYOUT.b .

In addition, a file COMMENTS.b may define comments that are to be skipped. By default,
the COMMENTS block is empty.

4.4 Usage

Reflex is invoked by the command

reflex [ name=file ... ]
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Each token Token has to be defined by a file Token.t. Alternatively, an argument
Token=file may be used to specify a file with a different name (the file must have the
suffix .t).

Each block Block may be overridden by a file Block.b. An alternative file name may
be specified by an argument Block=file (the file must have the suffix .b).

4.5 Output

A specification constructed by Reflex has the following structure:

%{

YYSTYPE Block

SETPOS Block

LITBLOCK Block

%}

LEXDEF Block

%%

Token Section

COMMENTS Block

LAYOUT Block

ILLEGAL Block

%%

LEXFUNC Block

YYWRAP Block

The block YYSTYPE has the form

#include "gen.h"

extern YYSTYPE yylval;

The block SETPOS has the form

extern long yypos;

#define yysetpos() { yylval.attr[0] = yypos; yypos += yyleng; }

The blocks LITBLOCK and LEXDEF are empty.

The Token Section contains, for each token "alpha" appearing literally in the Gentle
specification a Lex rule of the form

"alpha" { yysetpos(); return token_code; }

These rules are followed by the rules appearing in the token description files.

The block COMMENTS and LAYOUT are described above.

The block ILLEGAL has the form



90 4 REFLEX REFERENCE MANUAL

. { yysetpos(); yyerror("illegal token"); }

The block LEXFUNC is empty.

The block YYWRAP has the form.

#ifndef yywrap

yywrap() { return 1; }

#endif
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5.1 Introduction

Besides the C code generated by Lex, Yacc, and Gentle some additional code must
be provided to construct a functioning compiler. This includes a main procedure for
handling command-line arguments and procedures for error reporting. Gentle allows
the invocation of procedures implemented in C.

The library supplies a set of C modules. It covers the basic functionality as required
for classroom projects, and provides a foundation for user-specific extensions.

5.2 Module main

For compilers generated with Gentle a C function main must be provided. This function
must call the generated function ROOT, which has no parameters and elaborates the
’root’ clause of the Gentle specification. In the simplest case the procedure main

could have the form

main() { ROOT(); }

In addition the function main may contain code for initialization and finalization. The
parameters of main provide access to the Unix command arguments.

The library provides a simple version of main. It implements a command with none or
one argument. If no argument is specified, standard input is used as source file. If one
argument is specified, this is taken as name of the source file.

5.3 Module errmsg

The module errmsg provides procedures to emit error messages. This module supports
the Gentle type POS and encodes the current file, line, and column into a value.

long yypos;

The variable yypos keeps track of the current source position.

To advance to the next column this variable must be incremented by one. To advance
to the next line or the next file the procedures yyPosToNextLine or yyPosToNextFile
must be used.

At the beginning of a line the column is set to one, after reading a token the column is
the first column after the token.

void yyGetPos(ref_pos)

long *ref_pos;
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The procedure yyGetPos sets the variable referred by its argument to the current source
position minus 1.

void yyPosToNextLine()

The procedure yyPosToNextLine must be called by the lexer when a new source line is
read. It adjust the variable yypos.

void yyPosToNextFile()

The procedure yyPosToNextFile must be called by the lexer when a new source file is
read. It adjust the variable yypos.

’action’ Error (STRING, POS)

void Error(msg, pos)

char *msg;

long pos;

The procedure error prints the message specified by the first parameter together with
the source position specified by the second parameter. Then the program is terminated.

yyerror(msg)

char *msg;

The procedure yyerror is called by the Yacc generated parser in case of syntax errors.
It may also be called by the lexer. It behaves like Error where the actual source position
is used.

5.4 Module idents

The module idents implements an abstract type IDENT.

’type’ IDENT

A value of type IDENT (an identifier) is a reference to an entry of the identifier table
maintained by the module.

Each entry has a unique string representation which may be used to select the entry:
the procedure string to id provides a mapping from strings to values of type IDENT.
Such an identifier may have a meaning: procedure HasMeaning defines a mapping from
identifiers to meanings.
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’action’ string_to_id (STRING -> IDENT)

void string_to_id (string, ref_id)

char *string;

IDENT *ref_id;

If an identifier with the string representation given by the first parameter exists in
the identifier table it is a assigned to the variable referred by the second parameter.
Otherwise such an identifier is created and assigned to that variable.

’action’ id_to_string (IDENT -> STRING)

void id_to_string (id, ref_string)

IDENT id;

char **ref_string;

The procedure assigns the string representation of the identifier given as first parameter
to the variable referred by the second parameter.

’action’ DefMeaning (IDENT, MEANING)

void DefMeaning (id, m)

IDENT id;

long m;

The procedure DefMeaning defines the value of its second parameter as the meaning of
the identifier given as the first parameter (a previous value is overridden).

MEANING may be any Gentle type.

’action’ UndefMeaning (IDENT)

void UndefMeaning (id)

IDENT id;

The procedure UndefMeaning indicates that the identifier given as parameter has no
associated meaning (a previous value is overridden).

’condition’ HasMeaning (IDENT -> MEANING)

int HasMeaning (id, ref_meaning)

IDENT id;

long *ref_meaning;
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If the identifier given as first parameter has an associated meaning it is assigned to
the variable referred by the second parameter, the procedure succeeds (returns 1).
Otherwise the procedure fails (returns 0).

’action’ ErrorI (STRING, IDENT, STRING, POS)

ErrorI (str1, id, str2, pos)

char *str1;

IDENT id;

char *str2;

long pos;

Procedure ErrorI is equivalent to procedure Error of module errmsg except that the
text of the error message is given as the concatenation of the first parameter, the string
representation of the identifier given as second parameter, and the third parameter.

5.5 Module output

The module output provides procedures to write the target file of a compiler.

’action’ OpenOutput (STRING)

OpenOutput (Name)

char *Name;

If open the target file is closed. The procedure OpenOutput opens the target file for
output with the file name given as parameter.

Before writing to the file this procedure must be called.

’action’ CloseOutput

CloseOutput ()

The procedure CloseOutput flushes and closes the target file.

It must be called after the last output to the target file.

’action’ Put(STRING)

Put(Str)

char *Str;

The procedure Put writes its argument to the target file.
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’action’ PutI(INT)

PutI (N)

long N;

The procedure PutI writes its argument to the target file.

’action’ Nl(INT)

Nl ()

The procedure Nl writes a newline character to the output file.

5.6 Module strings

The module strings provides a string memory that can handle strings of arbitrary
length. It may be used for the lexical processing of strings. The lexer may extend
the current string (which is initially empty) character by character using procedure
AppendToString. The string is terminated by procedure GetStringRef which yields a
reference to the string.

AppendToString (ch)

char ch;

The procedure AppendToString appends the character given as parameter to the cur-
rent string.

GetStringRef(ref_string)

char **ref_string;

The procedure GetStringRef terminates the current string with a null character and
assigns a reference to the string to the variable referred by the parameter. The current
string is set to empty.

5.7 Implementing Types and Predicates in C

A type that is is defined without functors or a procedure that is defined without rules
must be implemented in C.

Abstract types may be implemented as values of type long or as pointers.

For example, if a Gentle specification contains the declaration

’type’ IDENT
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this type may be implemented in a C module as

typedef struct IDENTSTRUCT *IDENT;

which defines values of type IDENT as references to structures.

Abstract procedures are implemented by C routines that take long arguments as input
parameters and use (long *) arguments to realize output parameters.

For example, if a Gentle specifications defines a procedure as

’action’ Max (INT, INT -> INT)

it may be implemented in C as

void Max (x, y, ref_result)

long x;

long y;

long *ref_result;

{

*ref_result = (x > y ? x : y);

}

The Gentle type INT corresponds to the C type long. Gentle terms and the type POS

may also be treated as long. The Gentle type STRING corresponds to (char *).

A ’condition’ must be implemented as a function returning int that yields 1 if the
call succeeds and 0 if it fails.

For example, a procedure introduced by

’condition’ HasMeaning (IDENT -> MEANING)

may be implemented by

int HasMeaning (id, ref_meaning)

IDENT id;

long *ref_meaning;

{

if (id->meaning == 0)

return 0;

*ref_meaning = id->meaning;

return 1;

}
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We present a guided tour through the compiler for a simple programming language.
We first introduce the source language MiniLAX and the target instruction set ICode.
Then we discuss the compiler.

MiniLAX and ICode were designed for classes on compiler construction. They have also
been used as a basis for comparing compiler construction kits [13] (The presentations
of MiniLAX and ICode were taken from [13]).

6.1 The Source Language

The programming language MiniLAX (Mini LAnguage eXample) is a Pascal relative.
To be more specific, it is a subset of the example language LAX [14], which is used to
illustrate problems in compiler construction. MiniLAX contains a carefully selected set
of language concepts:

• types

• type coercion

• overloaded operators

• arrays

• procedures

• reference and value parameters

• nested scopes

Concepts with a low didactical value and concepts that would make the language un-
necessary complex have been left out, along with “syntactic sugar”.

6.1.1 Summary of the Language

A computer program consists of two essential parts, a description of actions which are
to be performed, and a description of the data, which are manipulated by these actions.
Actions are described by statements, and data are described by declarations.

The data are represented by constants and values of variables. Every variable occur-
ring in a statement must be introduced by a variable declaration which associates an
identifier and a data type with that variable. The data type essentially defines the set
of values which may be assumed by that variable. The data type is directly described
in the variable declaration.

There exist three basic types: Boolean, integer, and real. The values of the type Boolean
are denoted by reserved identifiers, the numeric values are denoted by numbers.
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Array types are defined by describing the types of their components and an integer
range. A component of an array value is selected by an integer index. The type of the
component is the component type of the corresponding array type.

The most fundamental statement is the assignment statement. It specifies that a newly
computed value be assigned to a variable (or a component of a variable). The value is
obtained by evaluating an expression. Expressions consist of variables, constants and
operators operating on the denoted quantities and producing new values. MiniLAX
defines a fixed set of operators, each of which can be regarded as describing a mapping
from the operand types onto the result type. The set of operators is subdivided into

• Arithmetic operators: addition and multiplication

• Boolean operators: negation

• Relational operators: comparison

The result of a comparison is of type Boolean. The procedure statement causes the
execution of the designated procedure (see below). Assignment and procedure state-
ments are the components or building blocks of structured statements, which specify
sequential, selective, or repeated execution of their components. Sequential execution of
statements is specified by statement sequences, selective execution by the if statement,
and repeated execution by the while statement. The if statement serves to make the
execution of two alternative statements dependent on the value of a Boolean expression.
The while statement serves to execute a statement while a Boolean expression is true.

A statement sequence can be given a name (identifier), and be referenced through that
identifier. The statement sequence is then called a procedure, and its declaration a
procedure declaration. Such a declaration may additionally contain a set of variable
declarations and further procedure declarations. The variables and procedures thus
declared can be referenced only within the procedure itself, and are therefore called
local to the procedure. Their identifiers have significance only within the program
text which constitutes the procedure declaration and which is called the scope of these
identifiers. Since procedures may be declared local to other procedures, scopes may
be nested. Entities which are declared in the main program, i.e. not local to some
procedure, are called global. A procedure has a fixed number of parameters, each of
which is denoted within the procedure by an identifier called the formal parameter.
Upon an activation of the procedure statement, an actual quantity has to be indicated
for each parameter, which can be referenced from within the procedure through the
formal parameter. This quantity is called the actual parameter. There are two kinds
of parameters: value parameters and variable parameters. In the first case, the actual
parameter is an expression which is evaluated once. The formal parameter represents a
local variable to which the result of this evaluation is assigned before the execution of
the procedure. In the case of a variable parameter, the actual parameter is a variable,
and the formal parameter stands for this variable. Possible indices are evaluated before
execution of the procedure.
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6.1.2 Notation, Terminology, and Vocabulary

The syntax is described in Extended Backus Naur Form. Syntactic constructs are
denoted by (abbreviated) English words consisting of upper- and lower-case letters, and
containing at least one lower-case letter. The angular brackets < and > are omitted.
Strings of letters consisting solely of upper-case letters stand for themselves, i.e. for
reserved identifiers of the language. Strings of characters enclosed in single quotes ’ ’

are also to be taken literally. Square brackets [ ] denote optional constructs. Curly
brackets { } stand for zero or more repetitions of the enclosed construct. Alternative
constructs are separated by a vertical bar |. Parentheses ( ) are used for grouping.

The basic vocabulary of MiniLAX consists of basic symbols classified into delimiters,
identifiers, and constants.

Spaces, line ends, and comments may occur anywhere in a program except within a
basic symbol. At least one space, line end or comment must occur between any two
adjacent identifiers or constants. Otherwise, spaces, line ends, and comments do not
influence the meaning of a program.

A comment has the form

’(*’ any sequence of characters not containing *) ’*)’

Delimiters

Delimiters are reserved identifiers or (strings of) special characters.

Delim ::= ’:’ | ’;’ | ’:=’ | ’(’ | ’)’ | ’.’ | ’,’

| ’..’ | ’[’ | ’]’ | ’+’ | ’*’ | ’<’

| ’ARRAY’ | ’BEGIN’ | ’BOOLEAN’ | ’DECLARE’ | ’DO’

| ’ELSE’ | ’END’ | ’FALSE’ | ’IF’ | ’INTEGER’

| ’NOT’ |’OF’ | ’PROCEDURE’ | ’PROGRAM’ | ’READ’

| ’REAL’ |’THEN’ | ’TRUE’ | ’VAR’ | ’WHILE’

| ’WRITE’

Identifiers

Identifiers serve to denote variables and procedures. Their association must be unique
within their scope of validity, i.e. within the procedure or function in which they are
declared.

Id ::= Letter { Letter | Digit }

All letters and digits of an identifier are significant. Upper and lower case letters are
distinguished. Delimiters are reserved identifiers that cannot be used otherwise.
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Numbers

The usual decimal notation is used for numbers, which are the constants of the data
types integer and real. The letter ’E’ preceding the scale factor is pronounced as
”’times”10

IntConst ::= Digit { Digit }

RealConst ::= [ IntConst ] ’.’ IntConst [ ScaleFactor ]

ScaleFactor ::= ’E’ [ ’+’ | ’-’ ] IntConst

Examples:

1 100 .1 87.35E-8

6.1.3 Data Types

A data type determines the set of values which variables of that type may assume.

Type ::= SimpleType | ArrayType

Simple Types

SimpleType ::= ’INTEGER’ | ’REAL’ | ’BOOLEAN’

The values of type INTEGER are a subset of the whole numbers defined by individual
implementations. Its values are the integers.

The values of type REAL are a subset of the real numbers depending on a particular
implementation. The values are denoted by real numbers.

The values of type BOOLEAN are the truth values denoted by the reserved identifiers
TRUE and FALSE.

Array Types

An array type is a structure consisting of a fixed number of components which are all
of the same type, called the component type. The elements of the array are designated
by integer indices. The array type specifies the component type as well as a subrange
of the integers to be used as indices.

ArrayType ::= ’ARRAY’ ’[’ IntConst ’..’ IntConst ’]’

’OF’ Type

Examples:

ARRAY [1..100] OF INTEGER

ARRAY [4..7] OF ARRAY [2..2] OF BOOLEAN

The index range must contain at least one element, i.e. the lower bound of an index
range must not exceed the upper bound.
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6.1.4 Declarations and Denotations of Variables

Variable declarations consist of an identifier denoting the new variable, followed by its
type.

VarDecl ::= Id ’:’ Type

Examples:

i: INTEGER

r: REAL

b: BOOLEAN

a: ARRAY [4..7] OF ARRAY [2..2] OF INTEGER

Denotations of variables either designate an entire variable or a component of an array
variable. Variables occurring in examples in subsequent chapters are assumed to be
declared as indicated above.

Var ::= Id | Var ’[’ Expr ’]’

Examples:

i a[4][2]

An entire variable is denoted by its identifier. A component of an array variable is de-
noted by the variable followed by an index expression. The value of the index expression
must lie in the range of the indices of the corresponding array type.

6.1.5 Expressions

Expressions are constructs denoting rules of computation for obtaining values of vari-
ables and generating new values by the application of operators. Expressions consist of
operators and operands, i.e. variables and constants.

The rules of composition specify operator precedences according to four classes of op-
erators. The operator NOT has the highest precedence, followed by the multiplying
operator ’*’, the adding operator ’+’, and finally, with the lowest precedence, the rela-
tional operator. Sequences of operators of the same precedence are executed from left
to right.

Expr ::= Expr ( ’+’ | ’*’ | ’<’ ) Expr | ’NOT’ Expr

| ’(’ Expr ’)’ | Var | IntConst | RealConst

| ’TRUE’ | ’FALSE’
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Examples:

i 15 TRUE 2*(i+r)

NOT b NOT (i<1)

The operators are summarized in the following table:

Table of Operators

left right
Priority Operator Operand Operand Result Operation

4 NOT BOOLEAN BOOLEAN negation
3 * INTEGER INTEGER INTEGER integer

multiplication
REAL REAL REAL real

multiplication
2 + INTEGER INTEGER INTEGER integer

addition
REAL REAL REAL real

addition
1 < INTEGER INTEGER BOOLEAN integer

comparison
REAL REAL BOOLEAN real

comparison
BOOLEAN BOOLEAN BOOLEAN boolean

comparison

Note that, for Boolean values, FALSE < TRUE.

6.1.6 Statements

Statements denote algorithmic actions, and are said to be executable.

Stat ::= AssignStat | CondStat | LoopStat | ProcStat

Statement sequences

A statement sequence specifies that its component statements are to be executed in the
same sequence as they are written.

StatSeq ::= Stat { ’;’ Stat }
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Assignment Statements

The assignment statement serves to replace the current value of a variable by a new
value specified as an expression.

AssignStat ::= Var ’:=’ Expr

Examples:

i := i+1

r := r*3.141592

b := i<1

a[4][2] := r

The variable and the expression must be of identical type, with the following exception
being permitted: The type of the variable is REAL, and the type of the expression is
INTEGER. In any case, the variable must be of a simple type.

Procedure Statements

A procedure statement serves to execute the procedure denoted by the procedure iden-
tifier. The procedure statement may contain a list of actual parameters which are
substituted in place of their corresponding formal parameters defined in the procedure
declaration. The correspondence is established by the positions of the parameters in the
lists of actual and formal parameters respectively. There exist two kinds of parameters:
value parameters and variable parameters.

In the case of a value parameter, the actual parameter must be an expression (of which
a variable is a simple case). The corresponding formal parameter represents a local
variable of the called procedure, and the current value of the expression is initially
assigned to this variable. Value parameters must have a simple type. In the case of
a variable parameter, the actual parameter must be a variable of the same type, and
the corresponding formal parameter represents this actual variable during the entire
execution of the procedure. If this variable is a component of an array, its index is
evaluated when the procedure is called. A variable parameter must be used whenever
the parameter represents a result of the procedure.

ProcStat ::= Id [ ’(’ Expr { ’,’ Expr } ’)’ ]

Examples:

next Transpose(a,m,n)
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Conditional Statements

The if statement specifies that a statement be executed only if a certain condition
(Boolean expression) is true. If it is false, the statement following the delimiter ELSE
is to be executed.

CondStat ::= ’IF’ Expr ’THEN’ StatSeq

’ELSE’ StatSeq ’END’

Examples:

IF i < 0 THEN i := 1 ELSE i := 2 END

The expression between the delimiters IF and THEN must be of type Boolean.

Repetitive Statements

The while statement specifies that a certain statement is to be executed repeatedly.

LoopStat ::= ’WHILE’ Expr ’DO’ StatSeq ’END’

The expression controlling repetition must be of type Boolean. The statement is repeat-
edly executed as long as the expression is true. If it evaluates to false at the beginning,
the statement is not executed at all. The while statement

WHILE b DO s END

is equivalent to

IF b

THEN s; WHILE b DO s END

ELSE (* nothing *)

END

Examples:

WHILE a [i] < r DO i := i + 1 END

WHILE i < n DO

r := 2 * r;

i := i + 1

END
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Declarations

Procedure declarations serve to define parts of programs and to associate identifiers
with them so that they can be activated by procedure statements.

ProcDecl ::= ProcHead ’;’ Block

Block ::= ’DECLARE’ Decl { ’;’ Decl }

’BEGIN’ StatSeq ’END’

Decl ::= VarDecl | ProcDecl

The procedure heading specifies the identifier naming the procedure and the formal
parameter identifiers (if any). The parameters are either value or variable parameters.

ProcHead ::= ’PROCEDURE’ Id

[ ’(’ Formal { ’;’ Formal } ’)’ ]

Formal ::= [ ’VAR’ ] Id ’:’ Type

If a formal starts with the delimiter VAR it specifies a variable parameter, otherwise a
value parameter.

The statement sequence of the block specifies the algorithmic actions to be executed
upon an activation of the procedure by a procedure statement.

All identifiers introduced in the formal parameter part of the procedure heading and in
the declaration part of the associated block are local to the procedure declaration which
is called the scope of these identifiers. They are not known outside their scope. In the
case of local variables, their values are undefined at the beginning of the statement part.

The use of the procedure identifier in a procedure statement within its declaration
implies recursive execution of the procedure.

Examples of procedure declarations:

PROCEDURE ReadPosInteger (VAR i: INTEGER);

DECLARE

j: INTEGER;

BEGIN

i := 0;

WHILE NOT (0 < i) DO READ (i) END

END

PROCEDURE Sort

(VAR a: ARRAY [1..10] OF REAL; n: INTEGER);

DECLARE

i: INTEGER; j: INTEGER; k: INTEGER; h: REAL;

BEGIN

i := 1;
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WHILE i < n DO

(* a [1], ... , a [i] is sorted *)

j := i; k := i;

WHILE j < n DO

(* a [k] = min {a [i], ... , a [j]} *)

j := j + 1;

IF a [j] < a [k] THEN k := j ELSE k := k END

END;

h := a [i]; a [i] := a [k]; a [k] := h;

i := i + 1

END

END

6.1.7 Input and Output

Input and output of values of simple types is achieved by the standard procedures
READ and WRITE.

The procedure READ takes one actual parameter which must be a variable of a simple
type. It reads a value of the corresponding type from the standard input and assigns it
to that variable.

The procedure WRITE takes one actual parameter which must be an expression with
a simple type. It writes the value of that expression onto the standard output.

Example:

(* read integers and write *)

(* until a nonpositive number is read *)

READ (i);

WHILE 0 < i DO

WRITE (i); READ (i)

END

6.1.8 Programs

A MiniLAX program has the form of a procedure declaration except for its heading.

Program ::= ’PROGRAM’ Id ’;’ Block ’.’

The identifier following the symbol PROGRAM is the program name; it has no further
significance inside the program.

Example:
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PROGRAM test;

(* read, sort and write an array of n numbers *)

(* this program shows the following features: *)

(* procedure calls from main level, to a local, *)

(* and to a global procedure *)

(* access to a global array *)

(* access to local, global and *)

(* intermediate variables *)

(* recursion *)

(* reading and writing of all types *)

(* integer to real conversion *)

DECLARE

test : BOOLEAN;

n : INTEGER;

a : ARRAY [1..100] OF REAL;

PROCEDURE skip; (* do nothing *)

DECLARE

n: INTEGER

BEGIN

n := n

END;

PROCEDURE read

(VAR n: INTEGER; VAR a: ARRAY [1..100] OF REAL);

DECLARE

i: INTEGER

BEGIN

WRITE (TRUE); READ (test);

WRITE (5); READ (n);

i := 1;

WHILE i < n DO

i := i + 1; WRITE (1.0E-7); READ (a [i])

END

END;

PROCEDURE write (m: INTEGER); (* write a [m..n] *)

DECLARE

x: INTEGER

BEGIN

WRITE (a [m]);

IF m < n THEN write (m + 1) ELSE skip END
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END;

PROCEDURE sort (VAR a: ARRAY [1..100] OF REAL);

(* sort a [1..n] *)

DECLARE

i : INTEGER;

j : INTEGER;

k : INTEGER;

h : REAL;

ok: BOOLEAN;

PROCEDURE check (VAR ok: BOOLEAN);

(* check order of a [1..n] *)

DECLARE

continue: BOOLEAN

BEGIN

IF test THEN write (1) ELSE skip END;

i := 1; continue := TRUE;

WHILE continue DO

IF i < n THEN

continue := NOT (a [i + 1] < a [i]);

IF continue THEN i := i + 1 ELSE skip END

ELSE

continue := FALSE

END

END;

ok := NOT (i < n)

END

BEGIN (* sort *)

i := 1;

WHILE i < n DO

write (1);

j := i; k := i;

WHILE j < n DO (* a [k] = MIN a [i..j] *)

j := j + 1;

IF a [j] < a [k] THEN k := j ELSE skip END

END;

h := a [i]; a [i] := a [k]; a [k] := h;

i := i + 1

END;

check (ok); WRITE (ok)

END
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BEGIN (* main program *)

a [1] := 2.1415926536;

a [1] := a [1] + 1.0;

read (n, a);

sort (a);

IF NOT test THEN write (0) ELSE skip END

END.

6.2 The Target Machine

The intermediate code (ICode) for MiniLAX is a subset of the intermediate code for
Pascal (P-Code) [9]. ICode programs consist of simple instructions for a hypothetical
computer - a stack machine.

6.2.1 The ICode Machine

The ICode Machine consists of three registers and memory. The registers are

• PC the program counter

• SP the stack pointer

• AP the activation record pointer

The program counter points to the current instruction in the memory. The stack pointer
points to the highest occupied stack cell. The activation record pointer points to the
‘static link’ field of the current activation record.

The memory is divided in two parts, one containing the program (Code) and the other
containing data (Store). Code is an array of ICode instructions. Store is organized
as stack (growing upwards) which contains the data of the program executed. Each
activation of a procedure results in pushing an activation record on the stack, which
contains storage for parameters and local data.
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An activation record has the following layout:

|------------------------|

| | store for

| | local data

|------------------------|

| - values of |

| value parameters | store for

| - addresses of | parameters

| reference parameters |

|------------------------|

| return address |

|------------------------| procedure call

| dynamic link |

|------------------------| information

AP --> | static link |

|------------------------|

At initialization time, the static and dynamic links and the return address of the main
program are all set to 0. The registers are initialized as follows: PC := 0, SP := 3,
and AP := 1. The start address is 0, i.e. Code [0] contains the first ICode instruction
to be executed. PC is incremented before the according instruction is executed. The
interpreter stops at return from the main program. The stop condition is: (PC = 0).

A procedure call enforces

• the creation of static and dynamic links of the new activation record (ICode
instruction: MST)

• parameter passing: The values of value parameters and the addresses of reference
parameters are evaluated and pushed on the stack.

• storing the return address and a jump to the procedure (ICode instruction: JSR)

• reservation of store for local data of the new activation record (ICode instruction:
ENT)

A return from a procedure enforces

• discarding the current activation record by updating the registers

6.2.2 ICode Instructions

For each ICode instruction its operation code, its parameters and its meaning are given
in the following. The meaning is given as text and as formula which describe operations
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on the runtime stack. To simplify the description, within formulas it is not taken care
about the types of the stack elements.

If not further mentioned, the operations apply to the top of the stack, which contains
the actual element. The following shorthand notations are used:

S runtime stack
base(P) returns a pointer to the P’th static predecessor

of the current activation record

An instruction may have up to two parameters with the following meaning:

o offset
c, c1, c2 constants
a address (index of code section)
t indicates type

integer (1), real (2) or boolean (3)
l block level difference between

current and referenced activation record

Note: The types integer, real and boolean are encoded with 1, 2, and 3. The boolean
values FALSE and TRUE are encoded by 0 and 1.

Load Instructions

LDA l o

load address with base and offset

SP:=SP+1

S[SP]:=base(l)+o;

LDC t c

load constant c of type t

SP:=SP+1;

S[SP]:=c;

LDI

load indirect

S[SP]:=S[S[SP]]

Store Instructions

STI

store into address contained in the element below the top

S[S[SP-1]]:=S[SP];

SP:=SP-1;
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Jump Instructions

JMP a

unconditional jump

PC:=a;

FJP a

conditional jump

if not S[SP] then PC:=a;

SP:=SP-1;

Arithmetic Instructions

ADD t

addition of type t

SP:=SP-1;

S[SP]:=S[SP]+S[SP+1];

SUB

integer subtraction

SP:=SP-1;

S[SP]:=S[SP]-S[SP+1];

MUL t

multiplication of type t

SP:=SP-1;

S[SP]:=S[SP]*S[SP+1];

Logic Instructions

INV

S[SP]:=not S[SP];

LES t

less operation of type t

SP:=SP-1;

S[SP]:=S[SP]<S[SP+1];
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Address Calculation Instructions

IXA c”

compute indexed address

SP:=SP-1;

S[SP]:=c*S[SP+1]+S[SP];

Convert Instructions

FLT

converts from integer to real

S[SP]:=real(S[SP]);

Input-Output Instructions

WRI t

write(S[SP]);

SP:=SP-1;

REA t

SP:=SP+1;

read(S[SP]);

Subroutine Handling Instructions

MST l

activation record initialization:

S[SP+1]:=base(l);- store static predecessor

S[SP+2]:=AP; - store dynamic predecessor

SP:=SP+3; - return address (=S[SP+3]) is stored by JSR

JSR o a

set AP to point to new activation record
o = number of locations for parameters
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AP:=SP-(o+2);

S[AP+2]:=PC; - store return address

PC:=a ; - set PC to first instruction of subroutine

ENT o

storage reservation for new block
o = length of local data segment

SP:=SP+o

RET

return from subroutine:

SP:=AP-1;

PC:=S[SP+3]; - fetch return address to restore PC

AP:=S[SP+2]; - restore activation record pointer AP

Check Instructions

CHK c1 c2

check against upper and lower bounds

if (S[SP]<c1) or (S[SP]>c2) then error
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6.3 The Compiler

We now present a compiler for MiniLAX.

This section contains the complete Gentle specification for MiniLAX.

6.3.1 Overall Structure

The task of a compiler is to translate a program written in a source language into a
semantically equivalent program in a target language.

This task can be decomposed into subtasks

• Discover the structure of the source program.

• Process this structure to generate the target program.

In Gentle this can be written as

Program(-> P) Translate(P)

Here, Program reads the source program and returns a structured representation (the
“abstract syntax”) in its output parameter P. This representation is then processed by
Translate, which is invoked with P as an input parameter.

Consider the example MiniLAX program in Fig. 6.1.

PROGRAM test;

DECLARE

i: INTEGER

BEGIN

i := 0

END.

Fig. 6.1 Example Program in MiniLAX
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For this program the predicate Program will deliver a value of P as shown in Fig. 6.2.

dcl(

<identifier "test">,

proc(

nil,

decllist(

dcl( <identifier "i">, variable( integer), <line 4, col 3> ),

nil

),

assign(

id( <identifier "i">, <line 6, col 3> ),

int( 0 ),

<line 6, col 5>

)

),

<line 1, col 9>

)

Fig. 6.2 Example Program in Abstract Syntax

This will be translated by Translate into the ICode program shown in Fig. 6.3.

0: ENT 1

1: LDA 0 3

2: LDC 1 0

3: STI

4: RET

Fig. 6.3 Example Program in ICode

The abstract syntax representation of a prgram is a structured value (a “term”) that ex-
presses the hierarchical composition of the program. Abstract syntax ignores syntactic
sugar and concrete tokens, that only serve to make the input unambiguous. It merely
specifies which alternative was used for a construct and what its constituents were.

A term type is introduced by a type declaration. For example, the following declaration
introduces the abstract syntax of statements:
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’type’ STMT

assign(DESIG, EXPR, POS)

read(DESIG, POS)

write(EXPR, POS)

call(IDENT, EXPRLIST, POS)

if(EXPR, STMT, STMT, POS)

while(EXPR, STMT, POS)

seq(STMT, STMT)

These alternatives serve as templates for values: If E is an EXPR, S an STMT, and Pos

the source coordinate of the phrase, then

while (E, S, Pos)

is a value of type STMT.

Concrete syntax is described by grammar rules, e.g.

’rule’ Stat(-> while(E, S, Pos)) :

"WHILE" Expr(-> E) @(-> Pos) "DO" StatSeq(-> S) "END"

This rule parses a phrase

WHILE Expr DO StatSeq END

E is the abstract syntax of Expr, S the abstract syntax of StatSeq, and Pos the source
coordinate of Expr. From these values, the abstract syntax of the phrase is constructed:

while (E, S, Pos)

Translation is described by action rules, e.g.

’rule’ Statement(while(E, S, Pos)) :

NewLabel(-> L1)

NewLabel(-> L2)

JMP(L2)

LAB(L1)

Statement(S)

LAB(L2)

Expression(E -> T)

CheckBool(T, Pos)

INV

FJP(L1)

This rule unparses the term
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while (E, S, Pos)

thereby emitting the target code

JMP L2

L1: Statement

L2: Expression

INV

FJP L1

where Statement is the code for S, and Expression is the code for E.

When the source program is translated into an internal representation, rules are selected
by the parser according to the given source. Consider the rules

’rule’ Stat(-> read(V, Pos)) :

"READ" "(" Desig(-> V) @(-> Pos) ")"

’rule’ Stat(-> write(E, Pos)) :

"WRITE" "(" Expr(-> E) @(-> Pos) ")"

If a statement has the form READ(Desig), the first rule is selected and the internal form
is read(V,Pos). If a statement has the form WRITE(Expr), the second rule is selected
and the internal form is write(E,Pos).

When the internal representation is processed, rules are selected according to the given
term. Consider the rules

’rule’ Statement(read(V, Pos)) :

Designator(V -> T)

CheckSimple(T, Pos)

TypeCode(T -> N)

REA(N)

STI

’rule’ Statement(write(E, Pos)) :

Expression(E -> T)

CheckSimple(T, Pos)

TypeCode(T -> N)

WRI(N)

If the predicate Statement is called with the term read(V, Pos), the first rule is
selected and corresponding target code for reading an item is emitted. If the predicate
is called with write(E, Pos), the the second rule is selected and emits code to write
an item.

The overall organization of the compiler is expressed by the root clause, which is elab-
orated by executing its statements. Our specification starts with the root clause:
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001 ’root’

002 Program(-> P) Translate(P)

Now we have to define the abstract syntax and have to specify how a concrete source
program is mapped to the abstract representation (Program) and how this representa-
tion is processed to produce the target program (Translate).

6.3.2 Abstract Syntax

Here is the definition of the abstract representation of MiniLAX programs:
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003 ’type’ DECL

004 dcl(IDENT, DEF, POS)

005 ’type’ DECLLIST

006 decllist(DECL, DECLLIST)

007 nil

008 ’type’ DEF

009 variable(TYPE)

010 valueparam(TYPE)

011 varparam(TYPE)

012 proc(Formals: DECLLIST, Locals: DECLLIST, STMT)

013 ’type’ TYPE

014 integer

015 real

016 boolean

017 array(INT, INT, TYPE)

018 none

019 ’type’ STMT

020 assign(DESIG, EXPR, POS)

021 read(DESIG, POS)

022 write(EXPR, POS)

023 call(IDENT, EXPRLIST, POS)

024 if(EXPR, STMT, STMT, POS)

025 while(EXPR, STMT, POS)

026 seq(STMT, STMT)

027 ’type’ DESIG

028 id(IDENT, POS)

029 subscr(DESIG, EXPR, POS)

030 none

031 ’type’ EXPR

032 binary(OP, EXPR, EXPR, POS)

033 opnot(EXPR, POS)

034 int(INT)

035 float(FLOAT)

036 true

037 false

038 desig(DESIG)
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039 ’type’ EXPRLIST

040 exprlist(EXPR, EXPRLIST, POS)

041 nil(POS)

042 ’type’ OP

043 less

044 plus

045 mult

6.3.3 Concrete Syntax

Here is the concrete grammar of MiniLAX and the mapping to abstract syntax:

046 ’nonterm’ Program(-> DECL)

047 ’rule’ Program(-> dcl(I, proc(nil, Ds, S), Pos)) :

048 "PROGRAM" Ident(-> I) @(-> Pos) ";"

049 "DECLARE" DeclList(-> Ds) "BEGIN" StatSeq(-> S) "END" "."

050 ’nonterm’ DeclList(-> DECLLIST)

051 ’rule’ DeclList(-> decllist(D, Ds)) :

052 Decl(-> D) ";" DeclList(-> Ds)

053 ’rule’ DeclList(-> decllist(D, nil)) :

054 Decl(-> D)

055 ’nonterm’ Decl(-> DECL)

056 ’rule’ Decl(-> dcl(I, variable(T), Pos)) :

057 Ident(-> I) @(-> Pos) ":" Type(-> T)

058 ’rule’ Decl(-> dcl(I, proc(Fs, Ds, S), Pos)) :

059 "PROCEDURE" Ident(-> I) @(-> Pos) FormalPart(-> Fs) ";"

060 "DECLARE" DeclList(-> Ds)

061 "BEGIN" StatSeq(-> S) "END"

062 ’nonterm’ Type(-> TYPE)

063 ’rule’ Type(-> integer) :

064 "INTEGER"

065 ’rule’ Type(-> real) :

066 "REAL"

067 ’rule’ Type(-> boolean) :

068 "BOOLEAN"
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069 ’rule’ Type(-> array(Lwb, Upb, T)) :

070 "ARRAY" "[" Number(-> Lwb) ".." Number(-> Upb) "]"

071 "OF" Type(-> T)

072 ’nonterm’ FormalPart(-> DECLLIST)

073 ’rule’ FormalPart(-> nil) :

074 ’rule’ FormalPart(-> Fs) :

075 "(" FormalList(-> Fs) ")"

076 ’nonterm’ FormalList(-> DECLLIST)

077 ’rule’ FormalList(-> decllist(F, nil)) :

078 Formal(-> F)

079 ’rule’ FormalList(-> decllist(F, Fs)) :

080 Formal(-> F) ";" FormalList(-> Fs)

081 ’nonterm’ Formal(-> DECL)

082 ’rule’ Formal(-> dcl(I, varparam(T), Pos)) :

083 "VAR" Ident(-> I) ":" @(-> Pos) Type(-> T)

084 ’rule’ Formal(-> dcl(I, valueparam(T), Pos)) :

085 Ident(-> I) ":" @(-> Pos) Type(-> T)

086 ’nonterm’ StatSeq(-> STMT)

087 ’rule’ StatSeq(-> S) :

088 Stat(-> S)

089 ’rule’ StatSeq(-> seq(S1, S2)) :

090 StatSeq(-> S1) ";" Stat(-> S2)

091 ’nonterm’ Stat(-> STMT)

092 ’rule’ Stat(-> assign(V, E, Pos)) :

093 Desig(-> V) ":=" @(-> Pos) Expr(-> E)

094 ’rule’ Stat(-> read(V, Pos)) :

095 "READ" "(" Desig(-> V) @(-> Pos) ")"

096 ’rule’ Stat(-> write(E, Pos)) :

097 "WRITE" "(" Expr(-> E) @(-> Pos) ")"

098 ’rule’ Stat(-> call(I, Es, Pos)) :

099 Ident(-> I) "(" ExprList(-> Es) ")" @(-> Pos)

100 ’rule’ Stat(-> call(I, nil(Pos), Pos)) :

101 Ident(-> I) @(-> Pos)

102 ’rule’ Stat(-> if(E, S1, S2, Pos)) :

103 "IF" Expr(-> E) @(-> Pos) "THEN" StatSeq(-> S1)

104 "ELSE" StatSeq(-> S2) "END"

105 ’rule’ Stat(-> while(E, S, Pos)) :

106 "WHILE" Expr(-> E) @(-> Pos) "DO" StatSeq(-> S) "END"
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107 ’nonterm’ Desig(-> DESIG)

108 ’rule’ Desig(-> id(I, Pos)) :

109 Ident(-> I) @(-> Pos)

110 ’rule’ Desig(-> subscr(V, E, Pos)) :

111 Desig(-> V) "[" Expr(-> E) "]" @(-> Pos)

112 ’nonterm’ ExprList(-> EXPRLIST)

113 ’rule’ ExprList(-> exprlist(E, nil(Pos), Pos)) :

114 Expr(-> E) @(-> Pos)

115 ’rule’ ExprList(-> exprlist(E, Es, Pos)) :

116 Expr(-> E) @(-> Pos) "," ExprList(-> Es)

117 ’nonterm’ Expr(-> EXPR)

118 ’rule’ Expr(-> binary(less, X, Y, Pos)) :

119 Expr(-> X) "<" @(-> Pos) Expr2(-> Y)

120 ’rule’ Expr(-> X) :

121 Expr2(-> X)

122 ’nonterm’ Expr2(-> EXPR)

123 ’rule’ Expr2(-> binary(plus, X, Y, Pos)) :

124 Expr2(-> X) "+" @(-> Pos) Expr3(-> Y)

125 ’rule’ Expr2(-> X) :

126 Expr3(-> X)

127 ’nonterm’ Expr3(-> EXPR)

128 ’rule’ Expr3(-> binary(mult, X, Y, Pos)) :

129 Expr3(-> X) "*" @(-> Pos) Expr4(-> Y)

130 ’rule’ Expr3(-> X) :

131 Expr4(-> X)

132 ’nonterm’ Expr4(-> EXPR)

133 ’rule’ Expr4(-> opnot(X, Pos)) :

134 "NOT" @(-> Pos) Expr4(-> X)

135 ’rule’ Expr4(-> X) :

136 "(" Expr(-> X) ")"

137 ’rule’ Expr4(-> desig(D)) :

138 Desig(-> D)

139 ’rule’ Expr4(-> int(N)) :

140 Number(-> N)

141 ’rule’ Expr4(-> float(F)) :

142 Float(-> F)

143 ’rule’ Expr4(-> true) :

144 "TRUE"

145 ’rule’ Expr4(-> false) :
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146 "FALSE"

147 ’token’ Ident(-> IDENT)

148 ’token’ Number(-> INT)

149 ’token’ Float(-> FLOAT)

The tokens Ident, Number, and REALCONST are specified by token description files out-
side the Gentle specification. (These files are processed by the tool Reflex and integrated
into a specification for Lex.)

For example, here is the description for Ident:

[A-Za-z][A-Za-z0-9]* {

long id;

string_to_id (yytext, &id);

yylval.attr[1] = id;

yysetpos();

return Ident;

}

This rule gives a regular expression that matches identifiers and an action that computes
its attributes. The type IDENT, which is used to maintain identifiers (see the discussion
of scope handling below), is defined by a module of the Gentle library. The library
predicate string to id converts the recognized input (yytext) into a value of type
IDENT. This can later be used to attach a “meaning” to the identifier.

6.3.4 Translating Procedures

We have just described how a source program is translated into an internal representa-
tion. We now discuss how to translate the internal representation into a target program.

150 ’action’ Translate(Program: DECL)

151 ’rule’ Translate(P):

152 SetCurrentNesting(0)

153 Procedure(P)

154 Emit

155 ’action’ Procedure(Proc: DECL)

156 ’rule’ Procedure(dcl(Ident, proc(Formals,Locals,Body), Pos)) :

157 GetCurrentNesting(-> OuterLevel)

158 SetCurrentNesting(OuterLevel+1)
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159 DeclareList(Formals, 3 -> SizeFormals)

160 DeclareList(Locals, SizeFormals+3 -> SizeLocals)

161 ENT(SizeLocals)

162 Statement(Body)

163 RET

164 LocalProcedures(Locals)

165 UndeclareList(Locals)

166 UndeclareList(Formals)

167 SetCurrentNesting(OuterLevel)

168 ’action’ LocalProcedures(Decls: DECLLIST)

169 ’rule’ LocalProcedures(decllist(Head, Tail)) :

170 LocalProcedure(Head)

171 LocalProcedures(Tail)

172 ’rule’ LocalProcedures(nil)

173 ’action’ LocalProcedure(DECL)

174 ’rule’ LocalProcedure(dcl(Ident, proc(Fs, Ds, S), Pos)) :

175 HasMeaning (Ident -> object(procobj(Start,_),_,_))

176 LAB(Start)

177 Procedure(dcl(Ident, proc(Fs, Ds, S), Pos))

178 ’rule’ LocalProcedure(Decl) :

Translate

The predicate Translate(Program) is invoked in the root clause of the specification.
The whole program is merely represented as a simple procedure without parameters.
Hence, we can simply use Procedure to process the given abstract syntax tree. Before
calling Procedure, we initialize the current nesting level of procedures (which is imple-
mented as a global variable). After generating the code, we invoke emit to write it to
the target file.

Procedure

The predicate Procedure(Proc) handles a single procedure declaration the abstract
syntax of which is

dcl(Ident, proc(Formals, Locals, Body), Pos)

The procedure has a name given by Ident; formal parameters and local declarations
are given by Formals and Locals; the procedure body is given by Body.

First, the current procedure nesting is updated accordingly. It is reset to its old value
at the end of the rule.
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During the processing of Body and local procedures, the formal parameters and the local
declarations must be accessible. Hence, they are made visible by processing Formals

and Locals with the predicate DeclareList. Outside the given procedure, the formal
parameters and local declarations cannot be used. Hence, they are made invisible again
(UndeclareList) after processing the body and the local procedures.

DeclareList (to be discussed later) has additional parameters: DeclareList(X, Loc

-> Size) indicates that the items in X are stored from location Loc and that they
occupy Size units.

The stack frame of the procedure is organized as follows: 3 units for administrative data
(static link, dynamic link, return address), SizeFormal units as to store parameters,
and SizeLocals units to store local variables.

The target code of the procedure is given as follows:

ENT(SizeLocals)

Code of body

RET

Code of local procedure

The code for the body is generated by the predicate Statement, the code for the local
procedures is generated by LocalProcedures.

LocalProcedures

LocalProcedures(Decls) invokes LocalProcedure for each element of the declaration
list(Decls).

LocalProcedure

If LocalProcedure(Decl) is invoked with a procedure declaration, it processes this
declaration. Otherwise the passed element is skipped. A procedure is processed by
Procedure (in the case of a local procedure, we first emit a start label).

We now refine the processing of procedure bodies. We discuss statements, expressions,
and designators.

6.3.5 Translating Statements

Here is the specification for translating statements:

179 ’action’ Statement(Stmt: STMT)

180 ’rule’ Statement(assign(V, E, Pos)) :

181 Designator(V -> TV)

182 Expression(E -> TE)
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183 Assign(TV, TE, Pos)

184 ’rule’ Statement(read(V, Pos)) :

185 Designator(V -> T)

186 CheckSimple(T, Pos)

187 TypeCode(T -> N)

188 REA(N)

189 STI

190 ’rule’ Statement(write(E, Pos)) :

191 Expression(E -> T)

192 CheckSimple(T, Pos)

193 TypeCode(T -> N)

194 WRI(N)

195 ’rule’ Statement(call(Ident, Actuals, Pos)) :

196 Apply(Ident, Pos -> Obj)

197 CheckProcedure(Obj, Pos -> Formals, Level, Start)

198 GetCurrentNesting(-> CurLev)

199 MST(CurLev-Level)

200 ParamList(Formals, Actuals -> Size)

201 JSR(Size, Start)

202 ’rule’ Statement(if(E, S1, S2, Pos)) :

203 Expression(E -> T)

204 CheckBool(T, Pos)

205 NewLabel(-> L1)

206 NewLabel(-> L2)

207 FJP(L1)

208 Statement(S1)

209 JMP(L2)

210 LAB(L1)

211 Statement(S2)

212 LAB(L2)

213 ’rule’ Statement(while(E, S, Pos)) :

214 NewLabel(-> L1)

215 NewLabel(-> L2)

216 JMP(L2)

217 LAB(L1)

218 Statement(S)

219 LAB(L2)

220 Expression(E -> T)

221 CheckBool(T, Pos)

222 INV

223 FJP(L1)

224 ’rule’ Statement(seq(S1, S2)) :

225 Statement(S1)

226 Statement(S2)
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227 ’action’ Assign(LhsType: TYPE, RhsType: TYPE, Pos: POS)

228 ’rule’ Assign(integer, integer, Pos) : STI

229 ’rule’ Assign(real, integer, Pos) : FLT STI

230 ’rule’ Assign(real, real, Pos) : STI

231 ’rule’ Assign(boolean, boolean, Pos) : STI

232 ’rule’ Assign(T1, T2, Pos) :

233 Error("Invalid types in assignment", Pos)

234 ’action’ ParamList(Formals: DECLLIST, Actuals: EXPRLIST

235 -> Size: INT)

236 ’rule’ ParamList(decllist(dcl(Id,D,_), Fs), exprlist(E,Es,Pos)

237 -> S+1) :

238 Param(D, E, Pos)

239 ParamList(Fs, Es -> S)

240 ’rule’ ParamList(nil, nil -> 0)

241 ’rule’ ParamList(decllist(D, Fs), nil(Pos) -> 0) :

242 Error("Too few actual parameters", Pos)

243 ’rule’ ParamList(nil, exprlist(E, Es, Pos) -> 0) :

244 Error("Too many actual parameters", Pos)

245 ’action’ Param(Formal: DEF, Actual: EXPR, Pos: POS)

246 ’rule’ Param(valueparam(FType), Actual, Pos) :

247 Expression(Actual -> AType)

248 CheckEquiv(FType, AType, Pos)

249 ’rule’ Param(varparam(FType), Actual, Pos) :

250 CheckDesignator(Actual, Pos -> D)

251 Designator(D -> AType)

252 CheckEquiv(FType, AType, Pos)

Statement

The predicate Statement(Stmt) analyzes and translates statements. For each alterna-
tive of the abstract syntax, there is a separate rule.

As an example, consider the treatment of if-statements that are represented by

if(E, S1, S2, Pos)

The code for this construct is

code for expression E

FJP(L1)

code for statement S1
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JMP(L2)

LAB(L1)

code for statement S2

LAB(L2)

where L1 and L2 are two unique labels. First, the expression is evaluated. If this yields
false, the FJP instruction jumps to L2. Otherwise, the statement S1 is executed. After
that, we jump over the code for S2. The code for S2 is preceded by a label S2, which
is the target of FJP.

New labels are created by NewLabel. The predicate Expression not only generates
codes for its argument E, but also computes the type T of E. In an if-statement this type
must be bool. This is checked by CheckBool.

Hence, the rule for if is

’rule’ Statement(if(E, S1, S2, Pos)) :

Expression(E -> T)

CheckBool(T, Pos)

NewLabel(-> L1)

NewLabel(-> L2)

FJP(L1)

Statement(S1)

JMP(L2)

LAB(L1)

Statement(S2)

LAB(L2)

An assignment

assign(V, E, Pos)

is compiled into code for the designator V and code for the expression E.

After evaluation of these code sequences, the stack top comprises the address given by
V and the value of E. An instruction STI is used to store the value at the given address
and to remove the two items from the stack. The types TV and TE of V and E must be
equal and scalar. In addition, TV may be real and TE may be int. Then the STI must
be preceeded by an FLT instruction. This check and the generation of FLT and STI are
expressed by the predicate Assign.

The code for a procedure call is

MST(CurLev-Level)

code for parameters

JSR(Size, Start)
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where CurLev is the current nesting level and the procedure has been declared at level
Level and with start label Start. The code for parameters is generated by ParamList.

Assign

Assign(LhsType, RhsType, Pos) checks whether a value of type RhsType can be as-
signed to a designator of type LhsType. If so, it emits the corresponding instruction(s).

ParamList

The code for parameter passing is constructed by the predicate ParamList(Formals,

Actuals -> Size) which processes the lists of formal and actual parameters in parallel.

Param

A pair of formal and actual parameters is handled by Param(Formal, Actual, Pos).

6.3.6 Translating Expressions

Here is the specification for translating expressions:

253 ’action’ Expression(Expr: EXPR -> Type: TYPE)

254 ’rule’ Expression(binary(Op, X, Y, Pos) -> T) :

255 Expression(X -> TX)

256 Expression(Y -> TY)

257 BinaryOp(Op, TX, TY, Pos -> T)

258 ’rule’ Expression(opnot(X, Pos) -> TX) :

259 Expression(X -> TX)

260 CheckBool(TX, Pos)

261 ’rule’ Expression(int(N) -> integer) :

262 LDC(1, N)

263 ’rule’ Expression(float(Float) -> real) :

264 LDF(Float)

265 ’rule’ Expression(true -> boolean) :

266 LDC(3, 1)

267 ’rule’ Expression(false -> boolean) :

268 LDC(3, 0)

269 ’rule’ Expression(desig(D) -> T) :

270 Designator(D -> T)

271 LDI

272 ’action’ BinaryOp(Op: OP, T1: TYPE, T2: TYPE, Pos: POS -> T: TYPE)

273 ’rule’ BinaryOp(less, integer, integer, Pos -> boolean) : LES(1)

274 ’rule’ BinaryOp(less, real, real, Pos -> boolean) : LES(2)
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275 ’rule’ BinaryOp(less, boolean, boolean, Pos -> boolean) : LES(3)

276 ’rule’ BinaryOp(plus, integer, integer, Pos -> integer) : ADD(1)

277 ’rule’ BinaryOp(mult, integer, integer, Pos -> integer) : MUL(1)

278 ’rule’ BinaryOp(plus, real, real, Pos -> real) : ADD(2)

279 ’rule’ BinaryOp(mult, real, real, Pos -> real) : MUL(2)

280 ’rule’ BinaryOp(Op, T1, T2, Pos -> none) :

281 Error("Invalid types for operator", Pos)

Expression

The predicate Expression(Expr -> Type) translates an expression E and computes
its type T.

An expression that is simply a literal is translated into an instruction that pushes the
value onto the stack.

An expression involving an operator is translated into code for the operands, followed
by an instruction depending on the operator. In the case of binary operators, this
instruction is selected by the predicate BinaryOp.

If the operand is a designator (a construct that designates a variable or an array ele-
ment), then code to compute the address is generated, followed by a load instruction
(LDI).

BinaryOp

In the case of binary operators the corresponding instruction is selected by BinaryOp(Op,

T1, T2, Pos -> T), which also checks the types of the arguments and yields the type
of the result.

6.3.7 Translating Designators

Here is the specification for translating designators:

282 ’action’ Designator(Desig: DESIG -> Type: TYPE)

283 ’rule’ Designator(id(Ident, Pos) -> T) :

284 Apply(Ident, Pos -> Obj)

285 Access(Obj, Pos -> T)

286 ’rule’ Designator(subscr(Array, Index, Pos) -> T) :

287 Designator(Array -> TArray)

288 Expression(Index -> TIndex)

289 CheckArrayType(TArray, Pos -> Lwb, Upb, T)

290 TypeSize(T -> Size)

291 CheckInt(TIndex, Pos)
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292 CHK(Lwb, Upb)

293 LDC(1, Lwb)

294 SUB

295 IXA(Size)

296 ’action’ Access(Obj: OBJ, Pos: POS -> Type: TYPE)

297 ’rule’ Access(object(varobj(Offset, Type), Level, Hidden), Pos

298 -> Type) :

299 GetCurrentNesting(-> CurLev)

300 LDA(CurLev-Level, Offset)

301 ’rule’ Access(object(varparamobj(Offset,Type), Level, Hidden),

302 Pos -> Type) :

303 GetCurrentNesting(-> CurLev)

304 LDA(CurLev-Level, Offset)

305 LDI

306 ’rule’ Access(object(valueparamobj(Offset,Type),Level,Hidden),

307 Pos -> Type) :

308 GetCurrentNesting(-> CurLev)

309 LDA(CurLev-Level, Offset)

310 ’rule’ Access(object(procobj(_,_),_,_), Pos -> none) :

311 Error("procedure not allowed here", Pos)

Designator

Designator(Desig -> Type) generates code for the designator Desig (a construct
yielding an address) and computes its type Type.

If the designator is a simple identifier, we look up its definition and use Access to
determine the code and type.

Access

Access(Obj, Pos -> Type) generates the code to access the object Obj and return its
type. By way of an example, consider the rule that handles variables:

’rule’ Access(object(varobj(Offset, Type), Level, Hidden), Pos

-> Type) :

GetCurrentNesting(-> CurLev)

LDA(CurLev-Level, Offset)

The object has the offset Offset and the type Type ; it was declared on nesting level
Level. This results in an instruction

LDA CurLev-Level, Offset
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where CurLevel is the nesting level of the location where the object is used.

The representation of objects is discussed next.

6.3.8 Scope Handling

We now discuss scope handling, a topic that has to be treated in most compilers.

While in most cases the translation of a phrase can be constructed from the translation
of its constituents, the meaning of identifiers depends on the context.

The Gentle library provides the type IDENT and predicates for defining and querying
the meaning of IDENT values.

In order to allow fast access, IDENT values are not merely strings that stand for iden-
tifiers, but references into a “symbol table”. The library module idents provides a
procedure string to id for converting a string into an IDENT value. This procedure is
used in the token description for identifiers.

Given a value Id of type IDENT

DefMeaning(Id, M)

associates a meaning M with Id.

GetMeaning(Id -> M)

later returns the meaning M associated with Id. GetMeaning is defined as a condition:
it signals failure if there was no previous DefMeaning for Id. Thus it can be used to
check whether an identifier is undeclared.

Here is the signature of these predicates (IDENT is an abstract type defined by the
library, and OBJ is a user-defined type, discussed below):

312 ’type’ IDENT

313 ’action’ DefMeaning(Id: IDENT, Obj: OBJ)

314 ’condition’ HasMeaning(Id: IDENT -> Obj: OBJ)

These predicates can be used to implement a flat name space, i.e. they can be used
directly to deal with languages without nested scopes.

Most languages (including MiniLAX) support nested scopes. These can be implemented
on top of the predicates discussed so far.

Consider the program
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PROGRAM test;

DECLARE

x : BOOLEAN;

PROCEDURE P;

DECLARE

x : INTEGER

BEGIN

x := 1

END

BEGIN

x := TRUE

END.

Here the x declared as INTEGER local to procedure P hides the globally declared x of
type BOOLEAN.

We want to associate a descriptor with each declared item. For this we introduce the
type DESCR:

315 ’type’ DESCR

316 varobj(INT, TYPE)

317 varparamobj(INT, TYPE)

318 valueparamobj(INT, TYPE)

319 procobj(LABEL, DECLLIST)

For example, if an item is declared as a variable with offset 3 and BOOLEAN (such as the
global x) it gets the descriptor

varobj( 3, boolean )

The local x gets the descripror

varobj( 3, integer )

In the case of a flat name space we could merely associate the descriptor with an
identifier, using the action DefMeaning. In case of nested scopes the situation is sligthly
more complex.

In the discussion of translating procedures we already sketched the general strategy:
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When we enter a procedure (recall that the program itself is treated as a procedure),
we make the items declared there visible. We do this by invoking DeclareList for the
formal parameters and the local declarations, thereby hiding possible declarations for
items with the same name. When leaving the procedure, the hidden declarations are
made visible again. This is done by invoking UndeclareList.

We therefore associate an entry with an identifier, that not only specifies its descriptor
but also what is currently hidden by the actual declaration. When we use the identifier
we get the actual descriptor. When leaving the procedure, we can return to the old
meaning. For this prpose we introduce the type OBJ:

320 ’type’ OBJ

321 object(DESCR, INT, OBJ)

322 none

If a term

object( Descr, Level, Hidden )

is associated with an identifier, this means that the actual descriptor is Descr, that the
corresponding declaration was at nesting level Level, and that Hidden was the previous
association of the identifier (the Hidden entry forms a list of zero or more associations).

For example, if we access the identifier x at the assignment x := TRUE in the global
scope, the association is

object(

varobj( 3, boolean ),

1,

none

)

The current descriptor is

varobj( 3, boolean )

the nesting level is 1, and there is no hidden item.

If we access x at the assignment x := 1 in the local scope, we get the association

object(

varobj( 3, integer ),

2,
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object(

varobj( 3, boolean ),

1,

none

)

)

The current descriptor is

varobj( 3, integer ),

the nesting level is 2, and the previous association is defined as hidden.

We use the predicates GetMeaning and HasMeaning define and query these associations.

Note that with this strategy accessing the meaning of identifiers has the same cost as in
the case of a flat name space. It is done in constatnt time because the library predicates
use a hash table algorithm.

Here are the predicates for scope handling:

323 ’action’ DeclareList(Decls: DECLLIST, Location: INT -> Size: INT)

324 ’rule’ DeclareList(decllist(D, Ds), Loc -> Size1+Size2) :

325 Declare(D, Loc -> Size1) DeclareList(Ds,Loc+Size1 -> Size2)

326 ’rule’ DeclareList(nil, Loc -> 0)

327 ’action’ Declare(Decl: DECL, Location: INT -> Size: INT)

328 ’rule’ Declare(dcl(Ident, Def, Pos), Loc -> Size) :

329 GetCurrentNesting(-> Level)

330 CurObject(Ident -> Hidden)

331 CheckNotYetDeclared(Hidden, Level, Pos)

332 Descriptor(Def, Loc, Pos -> Descr, Size)

333 DefMeaning(Ident, object(Descr, Level, Hidden))

334 ’action’ UndeclareList(Decls: DECLLIST)

335 ’rule’ UndeclareList(decllist(D, Ds)) :

336 Undeclare(D) UndeclareList(Ds)

337 ’rule’ UndeclareList(nil)

338 ’action’ Undeclare(Decl: DECL)

339 ’rule’ Undeclare(dcl(Ident, Def, Pos)) :

340 HasMeaning(Ident -> object(Descr, Level, Hidden))

341 DefMeaning(Ident, Hidden)

342 ’action’ CurObject(Ident: IDENT -> Obj: OBJ)

343 ’rule’ CurObject(Ident -> Obj) : HasMeaning(Ident -> Obj)
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344 ’rule’ CurObject(Ident -> none)

345 ’action’ Apply(Ident: IDENT, Pos: POS -> Obj: OBJ)

346 ’rule’ Apply(Ident, Pos -> Obj) : HasMeaning(Ident -> Obj)

347 ’rule’ Apply(Ident, Pos -> none) : Error("id not declared", Pos)

348 ’action’ Descriptor(Def: DEF, Loc: INT, Pos: POS

349 -> Descr: DESCR, Size: INT)

350 ’rule’ Descriptor(variable(T), Loc, Pos

351 -> varobj(Loc, T), Size) :

352 CheckType(T, Pos) TypeSize(T -> Size)

353 ’rule’ Descriptor(valueparam(T), Loc, Pos

354 -> valueparamobj(Loc, T), 1) :

355 CheckType(T, Pos) CheckSimple(T, Pos)

356 ’rule’ Descriptor(varparam(T), Loc, Pos

357 -> varparamobj(Loc, T), 1) :

358 CheckType(T, Pos)

359 ’rule’ Descriptor(proc(Fs, Ds, S), _, _

360 -> procobj(Start, Fs), 0)

361 NewLabel(-> Start)

DeclareList

DeclareList(List, Loc -> Size) declares the items appearing in the declaration list
List, i.e. it makes them visible. The items start at Loc in the stackfame and occupy
Size locations.

Declare

Declare(dcl(Ident, Def, Pos), Loc -> Size) declares the identfier Ident with def-
inition Def. It determines the current nesting level (Level), gets the current association
of Ident (Hidden), builds a descriptor (Descr), and the defines

object(Descr, Level, Hidden)

as the the new meaning of Ident.

UndeclareList

UndeclareList(Decls) invokes the predicate Undeclare for each member of Decls.

Undeclare

Undeclare(dcl(Ident, Def, Pos)) resets the meaning of Ident to its old value.
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CurObject

CurObj(Ident -> Obj) returns the current object associated with Ident (which is
none if there was no previous declaration for Ident.

The specification

’rule’ CurObject(Ident -> Obj) : HasMeaning(Ident -> Obj)

’rule’ CurObject(Ident -> none)

relies on the fact the rules are evaluated in the given order. Hence we know in the
second rule that HasMeaning was not applicable (failed) for Ident and that we have to
return none.

This could also have been written in one rule using a conditional statement.

Apply

Apply(Ident, Pos -> Obj) is similar to CurObj(Ident -> Obj) except that it emits
an error message if there is no current association for Ident.

Descriptor

Descriptor(Def, Loc, Pos -> Descr, Size), where Def is a definition of an item
that should be placed at location Loc and was declared at position Pos, construct
a corresponding descriptor Descr. It also computes the size Size of the item. The
invocation also checks the definition for semantic constraints.

6.3.9 Auxiliary Predicates

We now define some auxiliary predicates that were used in the above specifications.

(The checks could also be written “inline” using conditional statements. We refrained
from doing so in order to keep the number of concepts small in the example compiler).

362 ’action’ CheckInt(Type: TYPE, Pos: POS)

363 ’rule’ CheckInt(integer, Pos)

364 ’rule’ CheckInt(T, Pos) : Error("Integer expected", Pos)

365 ’action’ CheckBool(Type: TYPE, Pos: POS)

366 ’rule’ CheckBool(boolean, Pos) :

367 ’rule’ CheckBool(T, Pos) : Error("Boolean expected", Pos)

368 ’action’ CheckSimple(Type: TYPE, Pos: POS)

369 ’rule’ CheckSimple(integer, _)
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370 ’rule’ CheckSimple(real, _)

371 ’rule’ CheckSimple(boolean, _)

372 ’rule’ CheckSimple(T, Pos) : Error("simple type expected", Pos)

373 ’action’ CheckArrayType(Type: TYPE, Pos: POS

374 -> Lwb: INT, Upb: INT, ElemType: TYPE)

375 ’rule’ CheckArrayType(array(Lwb, Upb, ElemType), Pos

376 -> Lwb, Upb, ElemType)

377 ’rule’ CheckArrayType(T, Pos -> 0, 0, none) :

378 Error("Subscripted var is not an array", Pos)

379 ’action’ CheckDesignator(E: EXPR, Pos: POS -> D: DESIG)

380 ’rule’ CheckDesignator(desig(D), _ -> D)

381 ’rule’ CheckDesignator(E, Pos -> none) :

382 Error("VAR parameter expected", Pos)

383 ’action’ CheckEquiv(T1: TYPE, T2: TYPE, Pos: POS)

384 ’rule’ CheckEquiv(T1, T2, Pos) : eq(T1, T2)

385 ’rule’ CheckEquiv(T1, T2, Pos) :

386 Error("Types are not equivalent", Pos)

387 ’action’ CheckType(Type: TYPE, Pos: POS)

388 ’rule’ CheckType(array(Lwb, Upb, ElemType), Pos) :

389 CheckBounds(Lwb, Upb, Pos) CheckType(ElemType, Pos)

390 ’rule’ CheckType(_, _) :

391 ’action’ CheckBounds(Lwb: INT, Upb: INT, Pos: POS)

392 ’rule’ CheckBounds(Lwb, Upb, _): le(Lwb, Upb)

393 ’rule’ CheckBounds(_, _, Pos):

394 Error("lower bound exceeds upper bound", Pos)

395 ’action’ CheckNotYetDeclared(Obj: OBJ, Lev: INT, Pos: POS)

396 ’rule’ CheckNotYetDeclared(none, Level, Pos) :

397 ’rule’ CheckNotYetDeclared(object(_, ObjLev, _), Level, Pos) :

398 lt(ObjLev, Level)

399 ’rule’ CheckNotYetDeclared(_, _, Pos) :

400 Error("id already declared", Pos)

401 ’action’ CheckProcedure(OBJ, POS -> DECLLIST, INT, LABEL)

402 ’rule’ CheckProcedure(object(procobj(Start,Formals),Level,_),_

403 -> Formals, Level, Start)

404 ’rule’ CheckProcedure(_, Pos -> nil, 0, Null):

405 Error("procedure expected", Pos)

406 NewLabel(-> Null)
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407 ’action’ Error(Msg: STRING, Pos: POS)

The above predicates check their first argument for semantic constraints. If it is erro-
neous, then an error message is issued using the library predicate Error(Msg, Pos)).

Some predicates return certain characteristics of their argument.

For example, CheckArrayType(Type, Pos -> Lwb, Upb, ElemType) checks whether
the argument is an array type, and returns the lower and upper bound and the element
type if this is true.

408 ’var’ CurNestingLevel: INT

409 ’action’ SetCurrentNesting(N: INT)

410 ’rule’ SetCurrentNesting(N): CurNestingLevel <- N

411 ’action’ GetCurrentNesting(-> INT)

412 ’rule’ GetCurrentNesting(-> N): CurNestingLevel -> N

413 ’action’ TypeCode(Type: TYPE -> Code: INT)

414 ’rule’ TypeCode(integer -> 1)

415 ’rule’ TypeCode(real -> 2)

416 ’rule’ TypeCode(boolean -> 3)

417 ’action’ TypeSize(Type: TYPE -> Size: INT)

418 ’rule’ TypeSize(integer -> 1)

419 ’rule’ TypeSize(real -> 1)

420 ’rule’ TypeSize(boolean -> 1)

421 ’rule’ TypeSize(array(Lwb, Upb, ElemType)

422 ->((Upb-Lwb)+1)*ElemSize) :

423 TypeSize(ElemType -> ElemSize)

The current nesting level of procedures is implemented as a global variable, the predi-
cates SetCurrentNesting and GetCurrentNesting are used to set and get its value.

The predicates TypeCode and TypeSize compute the encoding and the size of a type.
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6.3.10 Target Interface

The virtual MiniLAX machine is implemented as a C module. Here is the Gentle
interface for this module:

424 ’type’ LABEL

425 ’type’ FLOAT

426 ’action’ LDA(INT, INT)

427 ’action’ LDC(INT, INT)

428 ’action’ LDF(FLOAT)

429 ’action’ LDI

430 ’action’ STI

431 ’action’ JMP(LABEL)

432 ’action’ FJP(LABEL)

433 ’action’ ADD(INT)

434 ’action’ SUB

435 ’action’ MUL(INT)

436 ’action’ INV

437 ’action’ LES(INT)

438 ’action’ IXA(INT)

439 ’action’ FLT

440 ’action’ WRI(INT)

441 ’action’ REA(INT)

442 ’action’ MST(INT)

443 ’action’ JSR(INT, LABEL)

444 ’action’ ENT(INT)

445 ’action’ RET

446 ’action’ CHK(INT, INT)

447 ’action’ NewLabel(-> L: LABEL)

448 ’action’ LAB(L: LABEL)

449 ’action’ Emit

For each instruction (LDA, LDC, ... , CHK), there is a corresponding predicate. For
example,

’action’ CHK (INT, INT)

corresponds to the ICode CHK instruction.

CHK (1, 20)
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appends an instruction

CHK 1, 20

to the target program.

The type Label comprises “symbolic values” that are used as labels; final machine
addresses are not used as instruction operands. The translation of symbolic values into
addresses is done by the virtual machine if the program is complete.

A new label is created by

NewLabel(-> Lab)

Thereafter, Lab can be used in instructions, e.g.

JMP(Lab)

The location of the label must be defined by the pseudo-instruction

LAB(Lab)

which defines the following instruction as the target of a jump to Lab.

The action Emit writes the target program into a file (alternatively, it could be inter-
preted directly).
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[ 3] H. Emmelmann, F. W. Schröer, R. Landwehr: BEG - a Generator for Efficient
Back Ends. Proceedings of the Sigplan’89 Conference on Programming Language
Design and Implementation, Portland, Oregon, 1989, Sigplan Notices, Vol. 24,
Number 7, July 1989

[ 4] H. Emmelmann, J. Grosch: A Tool Box for Compiler Construction. GMD Karl-
sruhe, Technical Report 1990.

[ 5] S.C. Johnson: Yacc - Yet Another Compiler-Compiler. Comp Sci. Tech rep. No
32. Bell Laboratories, July 1975

[ 6] B.W. Kernighan, D.M. Ritchie: The C Programming Language. Second Edition.
Prentice Hall, 1978

[ 7] C.H.A. Koster: Using the CDL compiler-compiler. In [2].

[ 8] M.E. Lesk: Lex - A Lexical Analyzer Generator. Comp. Sci. Tech. rep. No. 39.
Bell Laboratories, October 1975.

[ 9] K. V. Nori, U. Ammann, K Jensen, H.H. Nägeli, C. Jacobi: The Pascal-P Compiler:
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[10] F. W. Schröer: Gentle. In [13].
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