
III. Hierarchical Program Structures

OLE-JOHAN DAHL AND C. A. R. HOARE

1. INTRODUCTION

In this monograph we shall explore certain ways of program structuring and
point out their relationship to concept modelling.

We shall make use of the programming language S I MULA 67 with
particular emphasis on structuring mechanisms. S IMULA 67 is based on
A L G O L 60 and contains a slightly restricted and modified version of
A L G O L 60 as a subset. Additional language features are motivated and
explained informally when introduced. The student should have a good
knowledge of A L G O L 60 and preferably be acquainted with list processing
techniques.

For a full exposition of the S IMULA language we refer to the "Simula 67
Common Base Language" [2]. Some of the linguistic mechanisms introduced
in the monograph are currently outside the " C o m m o n Base"*.

The monograph is an extension and reworking of a series of lectures
given by Dahl at the N A T O Summer School on Programming, Marktoberdorf
1970. Some of the added material is based on programming examples that
have occurred elsewhere [3, 4, 5].

2. PRELIMINARIES

2.1 BASIC CONCEPTS

Our subject matter as programmers is a special class of dynamic system,
which we call computing processes or data processes. A programming

* The Simula 67 language was originally designed at the Norwegian Computing Center,
Oslo. The Common Base defines those language features which are common to all
implementations. The Common Base is continually being maintained and revised by the
"Simula Standards Group", each of whose members represents an organisation responsible
for an implementation. 8 organisations are currently represented on the SSG. (Summer
1971).

175

176 OLE-JOHAN DAHL AND C. A. R. HOARE

language provides us with basic concepts and composition rules for con-
structing and analysing computing processes.

The following are some of the basic concepts provided by ALGOL 60.

(1) A type is a class of values. Associated with each type there are a
number of operations which apply to such values, e.g. arithmetic operations
and relations for values of type integer.

(2) A variable is a class of values of a given type ordered in a time sequence.
The associated operations are accessing and assigning its current value.
Both can be understood as copying operations.

(3) An array is a class of variables ordered in a spatial pattern. Associated
is the operation of subscripting.

Notice that each of the concepts includes a data structure as well as one
or more associated operations.

As another example consider machine level programming. The funda-
mental data structure is a bit string, which is not itself a very meaningful
thing. However, combined with an appropriate sensing mechanism it has the
significance of a sequence of Boolean values. In connection with a binary
adder the bit string has the meaning of a number in some range, each bit
being a digit in the base two number system. An output channel coupled to a
line printer turns the bit string into a sequence of characters, and so forth.
Thus the meaning of the data structure critically depends on the kind of
operations associated with it.

On the other hand, no data process is conceivable which does not involve
some data. In short, data and operations on data seem to be so closely
connected in our minds, that it takes elements of both kinds to make up any
concept useful for understanding computing processes.

2.2. HIGHER LEVEL CONCEPTS

As the result of the large capacity of computing instruments, we have to
deal with computing processes of such complexity that they can hardly be
constructed and understood in terms of basic general purpose concepts. The
limit is set by the nature of our own intellect: precise thinking is possible
only in terms of a small number of elements at a time.

The only efficient way to deal with complicated systems is in a hierarchical
fashion. The dynamic system is constructed and understood in terms of
high level concepts, which are in turn constructed and understood in terms of
lower level concepts, and so forth. This must be reflected in the structure of
the program which defines the dynamic system; in some way or another the
higher level concepts will correspond to program components.

HIERARCHICAL PROGRAM STRUCTURES 177

The construction of concepts suitable in a given situation is a creative
process which often requires insights obtained at later stages of the system
construction. Therefore, as programmers are painfully aware, any software
project tends to be a complicated iterative process involving reconstruction
and revision at each stage.

Each concept necessarily concerns a limited aspect of the system and
should correspond to a piece of program obtained by decomposition of the
total program. Good decomposition means that each component may be
programmed independently and revised with no, or reasonably few, impli-
cations for the rest of the system. Thereby the total iteration process may be
speeded up.

Any useful concept has some degree of generality, i.e. it is a class of
specialised instances. In other words one tries to group phenomena occurring
in a dynamic system into classes of phenomena and to describe each class by a
single piece of program.

As an obvious example consider the arithmetic operations involved in a
matrix multiplication. They may all be classified as dynamic instances
(executions) of the single statement

C[i, j] : = C[i, j] + A[i, k] x B[k, j] ;

provided that the matrix coefficients are classified as elements of two-
dimensional arrays A, B, and C, and that the variables i, j, and k are given
values according to a certain pattern.

The above statement is not sufficiently well decomposed to be thought of
as a "concept". The procedure declaration below, however, defines in a concise
way the concept of matrix multiplication.

It is important that a concept may be classified as a syntactic category
(e.g. (block), (procedure)) in a general language framework. Structured
thought in terms of given concepts implies the construction of sentences,
where the concepts have syntactic and semantic relationships to one another.
The procedure below is related to other program components through calling
sequences (procedure statements).

procedure matmult (A, B, C, m, n, p);
array A, B, C; integer m, n, p;

begin integer i, j, k;
for i" = 1 step 1 until m do
for j: = 1 step 1 until n do
begin C[i, j] '= O;

for k: = 1 step 1 until p do
C[i, j]: = C[i, j] + A[i, k] × B[k, i]

end
end;

178 OLE-JOHAN DAHL AND C. A. R. HOARE

The parameter mechanism of procedures in SIMULA deviates somewhat
from that of ALGOL 60. The default transmission mode is by value for
ordinary simple (type)parameters , and by "reference" for parameters of
other kinds. This deviation is introduced for various pragmatic reasons, one
of them being the compatibility with class declarations (cf. 3.1). Thus, in
the above procedure the parameters i, j, and k are called by value, A, B, and
C by reference.

2.3. BLOCKS AND BLOCK INSTANCES

One of the most powerful mechanisms for program structuring in ALGOL 60
is the block and procedure concept. It has the following useful properties
from the standpoint of concept modelling.

(1) Duality. A block head and block tail together define an entity which
has properties and performs actions. Furthermore the properties may include
a data structure as well as associated operators (local procedures).

~,,

(2) Decomposition. A block where cnly local quantities are referenced is a
completely selfcontained program component, which will function as
specified in any context. Through a procedure heading a block (procedure)
instance may interact with a calling sequence. Procedures which reference
or change non-local variables represent a partial decomposition of the total
task, which is useful for direct interaction with the program environment.

(3) Class of instances. In ALGOL 60 a sharp distinction is made between a
block, which is a piece of program text, and a dynamic block instance,
which is (a component of) a computing process. An immediate and useful
consequence is that a block may be identified with the class of its potential
activations. (Strictly speaking a "block" in this context means either the
outermost block or a block immediately enclosed by a dynamic block
instance.) Through the recursion mechanism of ALGOL 60 different instances
of the same block may co-exist in a computing process at the same time.

(4) Language element. A block is itself a statement, which is a syntactic
category of the language. Furthermore, throughthe procedure mechanism,
reference to a block may be dissociated from its defining text.

Referring back to our earlier discussion it appears that the ALGOL block
mechanism has all the properties required of a concept modelling mechanism.
On closer inspection, however, it turns out that the composition rules and
interaction mechanisms provided place certain restrictions on the range of
concepts to be formulated.

In ALGOL 60, the rules of the language have been carefully designed to
ensure that the lifetimes of block instances are nested, in the sense that those
instances that are latest activated are the first to go out of existence. It is
this feature that permits an ALGOL 60 implementation to take advantage of a

HIERARCHICAL PROGRAM STRUCTURES 179

stack as a method of dynamic storage allocation and relinquishment. But it
has the disadvantage that a program which creates a new block instance can
never interact with it as an object which exists and has attributes, since it has
disappeared by the time the calling program regains control. Thus the calling
program can observe only the results of the actions of the procedures it calls.
Consequently, the operational aspects of a block are overemphasised; and
algorithms (for example, matrix multiplication) are the only concepts that can
be modelled.

In SIMULA 67, a block instance is permitted to outlive its calling statement,
and to remain in existence for as long as the program needs to refer to it. It
may even-oat4i.~e-the block instance that called it into existence. As a conse-
quence, it is no longer possible to administer storage allocation as a simple
stack; a general garbage-collector, including a scan-mark operation, is re-
quired to detect and reclaim those areas of store (local workspace of block
instances) which can no longer be referenced by the running program. The
reason for accepting this extra complexity is that it permits a wider range of
concepts to be conveniently expressed. In particular, it clarifies the relation-
ship between data and the operations which may be performed upon it, in a
way which is awkward or impossible in ALGOL 60.

3. OBJECT CLASSES

A procedure which is capable of giving rise to block instances which survive
its call will be known as a class; and the instances will be known as objects
of that class. A class may be declared, with or without parameters, in exactly
the same way as a procedure:

(class declaration):: = class (class identifier)

(formal parameter part) ; (specification part) ;

(class body)

(class body) :: = (statement)

Any variables or procedures declared local to the class body are called
attributes of that class; and so are the formal parameters, whether called by
value or called by reference. If the class body is not a block, it is regarded
as if it were surrounded by block brackets begin . . , end.

A call of a class generates a new object of that class. The initial values
of those of its attributes corresponding to formal parameters are specified in
the actual parameter part of the generator. A generator always appears as a
function designator, returning as its value a reference to the newly generated
object:

(object generator):: = new (class identifier)

(actual parameter part)

180 OLE-JOHAN DAHL AND C. A. R. HOARE

In order to be able to refer again to a generated object, it is necessary
to store the reference to it in a variable. Variables used for this purpose
should be declared as of reference type; and the declaration should also be
qualified by stating the class of objects to which that variable will refer.

(reference variable declarat ion) '" =

ref ((qualification)) ,(identifier list)

(q u a l i f i c a t i o n) " = (class identifier)

The notation ref ((qualification)) may also be used to declare reference
arrays, procedures, and parameters. An analogous mechanism for "record
handling" was first proposed by Hoare [6].

There is a neutral reference value none which does not refer to any object;
and this is automatically assigned as initial value to every reference variable.

Reference values may be assigned, and tested for equality or inequality;
but in S IMULA these operations are given special symbols, in order to
emphasise the fact that they operate on references to objects, and not upon
the current values contained in those objects.

Thus '
: - denotes reference assignment

denotes reference equality

= / = denotes reference inequality.

Reference values may also be passed as parameters, and they may be returned
as the result of a function designator. A special example of such a function
designator is of course the object generator which brings the object into
existence, and passes back a reference to it as result.

Example"
class C (. . .) ; . . . class body for C . . . ;

r e f (C)X;

i f X = = none then X : - new C (. . .) ;

The attributes of any object may be inspected or changed by the technique
of remote identification. If X is a reference variable qualified by class C,
and A is an attribute identifier (i.e. local quantity) of that class, then X.A
refers to the attribute A of the object currently referenced by X. If X has
the value n.one, the remote access is erroneous. If A is a variable attribute,
t". A may appear to the left of an assignment, as an actual parameter, for in an
expression. If A is a procedure attribute, X.A may appear as an actual
parameter, or as a procedure statement or function designator, in which case
it will be immediately followed by an actual parameter part. In short , :a
remote identifier X.A m a y a p p e a r in any context in which an ordinary
identifier may appear, except for a defining occurrence in a declaration.

HIERARCHICAL PROGRAM STRUCTURES 181

In addition to reference variables, every reference parameter, function
or expression has a qualification associated with it. In every assignment to
a reference variable, it is possible to check that the assignment is valid, by
comparing the qualifications of the left hand and right hand sides.
SIMULA 67 has been designed to ensure that this check can be carried out
wholly at compile time, thus avoiding the inefficiency of run-time checking,
and the inconvenience of run-time error. Furthermore all remote identifiers
can be checked at compile time to ensure that the combination of reference
variable and attribute identifier is valid, so that the only error that has to be
detected at run-time is when the reference variable has the value none.

The following sections provide examples of concepts modelled by means
of class declarations.

3.1. FREQUENCY HISTOGRAM

A frequency histogram of a real random variable with respect to given
disjoint intervals can be represented by a table of integers To, T1 , Tn,
where T~ is the number of observations falling in the ith interval. A sequence
of increasing numbers X1, X 2 , . . . , Xn partitions the real axis into the
following n + 1 intervals:

<-oo, x~>, (x~, x~>, ..., (xo, oo>.
The ith relative frequency (i = 0, 1, . . . , n) is equal to T~/N, where N is the
total number of observations tabulated in the histogram.

We wish to represent the concept of a histogram as a self-contained piece
of program, which can be incorporated in any subsequently written program
which requires it. In a realistic program, it will be necessary to maintain
several histograms to tabulate different random variables; for example, it
may be necessary to record not only random lengths, but also random weights
and random heights, and this will require three separate histograms, existing
simultaneously with each other and with the main program which has
generated them and which is using them. Furthermore, the numbers of the
intervals and the partitioning values between them may be different in each
case. This suggests that the histogram should be declared as a class, with
two parameters:

class histogram (X, n); array X; integer n;

where X is a real array of n elements specifying the boundaries of the
partitions. The main program will use this class in the following way"

begin ref (histogram) heights, weights, lengths;

real array All :7], B[1:12];

. . .initialise A, B . . . ;

h e i g h t s ' - new histogram (A, 7);

i

182 OLE-JOHAN DAHL AND C. A. R. HOARE

w e i g h t s ' - new histogram (B, 12);

lengths: - new histogram (A, 7);

. . . . rest of program

end

In the rest of the program, the three histograms may be referred to by the
names of the three reference variables. In order to record each new obser-
vation (say h or w) in the appropriate histogram, the program will contain
the corresponding calls on a procedure tabulate:

weights, tabulate (w);

heights, tabulate (h);

The procedure "tabulate" must therefore be an attribute of the histogram
class. Another attribute of the class must be the array T which counts the
number of observations in each interval; and also a variable N to count the
total number of observations recorded so far. Finally, a function frequency (i)
is required so that the relative frequency of observations in the ith interval
may be read out. The only action required of the class body is to initialise
these variables.

The declaration of the histogram class may be given:

class histogram (X, n); array X; integer n;

begin integer N; integer array T[O: n];

procedure tabulate (Y); real Y;

begin integer i; i" = O;

while (if i < n then Y < X[i + 1] else false)
d o i : = i + 1 ;

T[i] := T[i] + I ; N : = N + I

end of tabulate;

real proeedure frequency (i); integer i;

f requency:= T[i]/N;

integer i;

for i: = 0 step 1 until n do T[i]: = 0; N: = 0

end of histogram;

Note. (1) In SIMULA 67, all simple parameters of a class or a procedure
are called by value, even if the value parts are omitted. Arrays and other
parameters are called by name.

(2) In SIMULA 67 all variables are automatically initialised on declara-
tion to neutral values, false for Booleans, 0 for numbers, none for references.
Thus in the examples given above the statements i: = 0, N: = 0, and the
loop initialising T could have been omitted.

H I E R A R C H I C A L P R O G R A M STRUCTURES 183

It seems reasonable to claim that this piece of program adequately repre-
sents the concept of a histogram, in that it expresses the close relationship
between the data items X, n, T and N, and the operation of tabulation which
is to be performed on them. It would be possible, of course, to write the
operation in ALGOL 60 as a separate procedure with many parameters:

procedure tabulate (X, n, T, N, y);

which records observation y in the histogram T in accordance with partitions
defined by X, and also increments N. But this would be an artificial separation
of the operational aspect of the histogram from the data storage aspect; and
the failure in adequately representing the concept is evidenced by the com-
plexity of the specification of the procedure and the awkwardness of its use.

It is worth while to explain ttJe effect of creating a new object of class'
histogram by means of the statement

weights : - new histogram (B, 12).

First, a new object is created, consisting of the variables brought into
existence by execution of the declarations for T, N, i, and the parameters X
and n, which are initialised to B and 12 respectively. The body of the class
declaration is now executed to initialise the other variables. On exit from the
body, the variables are not deallocated. Rather a reference (pointer, address)
to them is passed back and assigned to the variable "weights". It is con-
venient to think of an object as a complete textual copy of the class body
(including the specification part), in which the parameters and local variables
and arrays correspond to actual storage locations. Thus an object may well
contain local procedure (and even class -) declarations, as well as executable
statements.

Subsequently, on execution of the procedure call weights.tabulate (w),
it is the tabulate procedure local to the object referenced by "weights" that
is actually executed, and causes updating of the local attributes T and N of
that object and no other.

3.2. GAUSS-INTEGRATION

A definite integral may be approximated by an "n-point Gauss formula",
which is a weighted sum of n function values computed at certain points in
the integration interval.

f f f (x) d x ~ i= l ~ wif(xi)

The weights and abscissa values are chosen such as to give an exact result for
the integral of any polynomial of degree less than 2n. By a suitable trans-
formation we find

w~ = (b - a)Wi and xi = a + (b - a)Xi,

i=

184 OLE=JOHAN DAHL AND C. A. R. HOARE

where Wi and Xi(i=l , 2 , . . . ,n) only depend on n, and not on a or b.
The idea of Gauss-integration is expressed in the following partly informal
class declaration.

class Gauss (n); integer n;

begin array W, X[1 :n];

real procedure integral (f, a, b);

real procedure f ; real a, b;

integral '= ~ W[i] xf(a + (b - a) × X[i]) x (b - a);
i=1

compute W[1] Win], Y([I], X[n] as

functions of n

end of Gauss;

ref (Gauss) G5, G7;

G 5 : - new Gauss (5); G 7 : - new Gauss (7);

. . . G5.integral (F, A, B) G7.integral (F, A, B)

Comments. The variables G5 and G7 refer to the concepts "5-point" and
"7-point Gauss-integration". Each of them is a specialised instance of the
more general concept of "n-point Gauss-integration", represented by the
class.

A Gauss object computes once and for all the values of its local array
elements, after which control returns to the (object generator). The pro-
cedure "integral" is intended for repeated use from outside the object.

The example indicates that the own-concept of ALGOL is superfluous in
this framework.

4. COROUTINES

In ALGOL 60, a most powerful method of combining two pieces of program
to accomplish some task is to declare one of them as a procedure, and to
invoke it (possibly repeatedly) from within the other. However, in some
cases the relationship between the two pieces of program is not fairly repre-
sented by this form of master/subordinate relationship; and it is better to
regard them as eoroutines operating in some sense at the same level.

HIERARCHICAL PROGRAM STRUCTURES 185

A simple example of coroutine structuring is provided by a games-playing
program, which calculates its own move and outputs it to its opponent, inputs
the opponent's response, computes its next move, and so on until the game is
complete. Suppose now that two different programs have been constructed to
play the same game, and it is desired to see which of them is the stronger
player. The complete program to play the game is very naturally structured
from its two component players, but the structuring method is that of the
coroutine rather than the subroutine.

Another example of coroutine structuring is provided in a two-pass
compiler for a programming language. The first pass normally outputs a long
sequence of messages which are subsequently input by the second pass.
However, if sufficient main storage is available to accommodate the program
for both passes simultaneously, it is possible to arrange for the whole trans-
lation to be carried out apparently in a single pass, where the sequence of
messages is transmitted piecewise from the first pass to the second pass.
First, the second pass is executed until it reaches its first request for an input
message. The first pass program is then executed until it produces its first
output message. The message is then handed over to the second pass, and the
process is repeated until the second pass is complete. In some circumstances
it might be possible to restructure one of the passes as a subroutine to the
other; but since the choice would be arbitrary, it is better to regard the
two programs as coroutines.

This case may be distinguished from the games-playing example in that
the flow of information is in one direction only, from the first pass program
which "produces" it to the second pass program which "consumes" it. This
suggests that a single coroutine may profitably be regarded as a complete
selfcontained program whose input and output instructions have been
replaced by calls upon other coroutines to produce and consume the data.
Each time a coroutine passes control to another coroutine for this purpose,
it will expect to resume at the next following instruction. The instruction
which causes transfer of control to another coroutine is known as

resume (X)

where X refers to the coroutine being resumed.
In SIMULA, a coroutine is represented by an object of some class, co-

operating by means of resume instructions with objects of the same or another
class, which are named by means of reference variables. The communication
of information may be accomplished in variables either global to all the
objects or local to one of them; a producing coroutine assigns values to these
variables, and the consuming coroutine accesses them. In the case of two-way
communication, both coroutines may update the same global variables in turn.

186 OLE-JOHAN DAHL AND C. A. R. HOARE

When an object is first generated, it has a subordinate, procedurelike
relationship to the block instance which generated it. This is evidenced by the
fact that control automatically returns to the generator upon passage through
the end of the object. The object does not in general know the identity of its
generating block instance; it cannot therefore use a resume instruction to
achieve the effect of a coroutine exit. A special, parameterless "detach"
instruction is therefore provided by which a generated object can return
control to the generator. The generator may then resume the detached object
at the point following its (most recently executed) detach instruction by the
statement

call (X)

where X is a reference to the detached object. Now the object is again in a
subordinate position, with respect to the caller, and has an obligation to
return to it either by a detach instruction or by going through its own end.

Thus a main program may establish a coroutine relationship with an object
that it has generated, using the call/detach mechanism instead of the more
symmetric resume/resume mechanism. In this case, the generated object
remains subordinate to the main program, and for this reason is sometimes
known as a Semicoroutine. But a semicoroutine may also be a full coroutine
with respect to a group of other generated objects, with which it communi-
cates by means of resume statements. In this case, if any of the group issues
a detach, control returns to the master program which originally called a
particular member of the group. Thus a coroutine issuing a resume statement
imposes on the resumed coroutine its own responsibility, eventually to pass
control back to the original caller by means of a detach.

Let X and Y be objects, generated by a "master program" M. Assume that
M issues a call (X), thereby invoking an "active phase" of X, terminated by a
detach operation in X; and then issues a call (Y), and so forth. In this way
M may act as a "supervisor" sequencing a pattern of active phases of X, Y,
and other objects. Each object is a "slave", which responds with an active
phase each time it is called for, whereas M has the responsibility to define the
large scale pattern of the entire computation.

CV f

HIERARCHICAL PROGRAM STRUCTURES 187

Alternatively the decision making may be "decentralised", allowing an object
itself to determine its dynamic successor by a resume operation.

resume . ~ , ~ , re,me __ ['--'1
1^1 ~(y) = i Y J 1 I

The operation resume (Y), executed by X, combines an exit out of X (by
detach) and a subsequent call (Y), thereby bypassing M. Obligation to
return to M is transferred to Y.

The history of a typical coroutine object may be summarised as follows:

(1) Upon generation, an object starts performing the operations of its
class body, and is said to be operating and attached to (the block instance
containing) the object generator which calls it into existence.

(2) The object issues a detach statement which returns control to the
point at which the object was generated. The object is then said to be detached,
but not yet terminated. The detach statement leaves a mark in the body of
the object specifying where its operations will be continued. This mark is
positioned at the end of the detach statement most recently executed by that
object.

(3) Control returns to the object on execution of either a call statement
or a resume statement specifying that object by means of its reference
parameter. It is then reattached to the calling block instance if called, or
to the original caller if resumed. The object may then temporarily relinquish
control again, either by a detach or by a resume, in which case it becomes
detached again.

(4) Alternatively, it may relinquish control finally by passing through
its end, which has the same effect as a detach. But in this case it is said
to be terminated, and it may not be reactivated either by a call or a resume.
However, it remains in existence as an item of data, which may be referenced
by remote identification of its attributes, including procedure and function
attributes, as in the case of the histogram.

Note. The detach operation represents a coroutine exit out of an object,
and is only available textually within objects, i.e. textually within class bodies.
If issued in a subblock or in a procedure body, a detach instruction still
represents an exit out of the (smallest) textually enclosing object. The same
is true for the resume instruction (which includes a coroutine exit). The call
instruction is, however, available at any point in a program.

i

188 OLE-JOHAN DAHL AND C. A, R. HOARE

4.1. TEXT TRANSFORMATION

AS an example of the cooperation of coroutines we take a problem posed
by Conway [7]. A text is to be read from cards and listed on a line printer.
The cards each contain 80 characters, but the line printer prints 125
characters on each line. It is intended to pack as many characters as possible
on each output line, marking the transition from one card to the next only by
insertion of an extra space. In the text, any consecutive pair of asterisks
is to be replaced by "~". The end of the text is marked by a special character
known as "end".

We assume the existence of a coroutine "incard", which on each resump-
tion will fill the array C[1:80] with characters read from the next card in the
card hopper, and pass the card through to the stacker. Also, we are given a
coroutine "lineout", which on each resumption will print on the next line of
paper the characters from the array L[1'125], and then throw the line.

The task is carried out by three coroutines, which will be known by
reference as:

ref disassembler, squasher, assembler;

The disassembler inputs a card (through C) and outputs individual characters
(through c l) to the squasher, after inserting a space between cards. The
squasher performs the transformation on double asterisks, and outputs
individual characters through c2 to the assembler. The assembler groups the
characters into lines and outputs them; it also detects the "end" character
and takes appropriate action.

The required class declarations are:

class pass 1 ;

begin detach;

while true do

begin integer i; resume (incard);

for i : = 1 step 1 until 80 do

begin c l : = C[i]; resume (squasher) end;

cl : = blank; resume (squasher)

end infinite loop;

end pass 1 ;

class pass 2;

begin detach;

while true do

begin if cl = "*" then

HIERARCHICAL PROGRAM STRUCTURES

begin resume (disassembler);

if cl = "*" then ¢2"= "T"

else begin c2: = "*"; resume (assembler);

c2: = cl

end;

end

189

else c 2 : = c l;

resume (assembler); resume (disassembler)

end infinite loop;

end pass 2;

class pass 3;

begin detach;

while true do

begin integer i;

for i: = 1 step 1 until 125 do

begin L[i]: = c2;

if c2 = "end" then

begin for i: = i + 1 step 1 until 125 do

L[i]: = blank;

resume (lineout);

detach; comment back to main program;

end

else resume (squasher)

end of this line;

resume (lineout)

end infinite loop

end pass 3;

The main program generates one instance of each of the passes. Each pass
immediately detaches itself from the main program. The system of coroutines
is initiated by calling the disassembler. On detection of the end of the task,
the assembler issues a detach instruction. Since the assembler obtained control
(indirectly) by resume instructions from the disassembler, its detach has the
same effect as it would have had if issued by the disassembler, and takes
control back to the main program, which then immediately terminates.

190 OLE-JOHAN DAHL AND C. A. R. HOARE

The main program is:

begin disassembler: - new pass l;

squasher: - new pass 2;

assembler : - new pass 3;

call (disassembler);

end

The relationships between the five coroutines and the main program may
be represented pictorially:

~ t a c h _

The horizontal arrows represent resume/resume relations. Their direction
corresponds to the flow of information; and they are annotated by the name
of the variable used to hold the communicated information.

In this example, it is intended that each class should only ever have one
object in it; and therefore the full class/generation/reference mechanism is
unnecessarily elaborate. The elaboration is inconvenient in that separate
names have to be invented for the class and its unique object (e.g. pass 1 and
disassembler). Furthermore, in the implementation it should be possible to
take advantage of this special case to save both space and time. But SIMULA
67 provides no means of achieving this.

4.2. PERMUTATION GENERATOR

We wish to define a class "permuter" representing the concept of permuta-
tions. An object of this class should be capable of generating all permutations
of the integers between 1 and n, where n is a parameter of the class. One of
the attributes of the class will be an integer array p[1 :n], which is to be
initialised to the value (1, 2, . . . , n) (representing the identity permutation)
when an obje& of the class is generated. Every subsequent call of the object
causes the array p to take a new permutation as value. When all permutations
are exhausted, an attribute

Boolean more;

(initially true) will be assigned the value false, and the object will terminate.

H I E R A R C H I C A L P R O G R A M S T R U C T U R E S 191

A typical structure for a program which wishes to inspect all permutations
of N numbers will be:

ref (permuter)P;

P: - new permuter (N);

while P. more do

begin. . . inspect P . p . . . ; call (P) end;

The structure of the permuter class will be a semicoroutine, which issues a
detach instruction after each updating o fF :

class permuter (n); integer n;

begin integer array p[1 :n];

Boolean more;

integer q;

for q: = 1 step 1 until n do p[q]: = q;

m o r e " = t l ' f i ¢ ,

. . . generate all permutations of p,

issuing a "detach" after each of t h e m . . . ;

more: = false

end

It remains to find an algorithm to carry out all the permutations of
p[1], p[2] p[n], and restore them to their original state. This algorithm
may be recursively structured. Let us assume that we know how to generate
all permutations of the numbers

p[1], p[2] , p [k - 1],

and finally return these to their original state. This will be accomplished by
a procedure call

permute (k - 1).

Now all that need be done is to use this procedure to permute every com-

b inat ion of k - 1 numbers from the original k numbers. Thus there must be
k calls of permute (k - 1), and on each call, exactly one of the p[i] for
1 ~< i ~< k must be excluded from the operation. A good way of excluding it
is to exchange its value with that ofp[k], which remains untouched by permute
(k - 1). In order to ensure that each of the k values is excluded exactly once,
we may take advantage of the assumption that the procedure returns the
given sequence unchanged. In that case p[k] will be assigned each value once

i

192 OLE-JOHAN DAHL AND C. A. R. HOARE

if we first swap p[1] and p[k], then p[2] and p[k] , . . . , and then p [k - 1] and
p[k] . Thus we are led to the following kernel:

integer i;

permute (k - 1);

for i: = 1 step 1 until k - 1 do

begin swap (p[i], p[k]); permute (k - 1) end;

On the assumption that permute (k - 1) leaves p unchanged, this kernel has
the net effect of rotating the elements p[1], p[2] , p [k] one place cyclically
to the right. This can be seen from the example"

original state: 1 2

after swap (p[1], p[5]): 5 2

after swap (p[2], p[5]): 5 1

after swap (p[3], p[5]): 5 1

after swap (p[4], p[5]): 5 1

3 4 5

3 4 1

3 4 2

2 4 3

2 3 4

Since the overall effect of the operation must be to leave the array p as it was
before, the right rotation must be followed by a compensatory left rotation.

q: = pil l ;

for i : = l step 1 until k - 1 d o p [i] : = p [i + l] ;

p[k]: = q

Finally it is necessary to determine an appropriate action for the case where
k = 1. Recall that the purpose of the procedure is to

"generate all permutations of k objects, issuing a detach command after
each of them".

Since the only permutation of one number is that number itself, all that is
necessary is to issue a single detach instruction.

The permute procedure must be written as an attribute of the permuter
class, so that the detach which it issues relates to the relevant object. The
whole class may now be declared:

class permuter (n); integer n;

begin integer array p[1 "n]; integer q; Boolean more;

procedure permute (k); integer k;

if k = 1 then detach else

begin integer i; permute (k - 1);

for i : = 1 step 1 until k - 1 do

begin q: = p[i]; p[i]: = p[k];

p[k]: = q; permute (k - 1) end;

HIERARCHICAL PROGRAM STRUCTURES 193

q: = p[1];

f o r i : = l step 1 u n t i l k - 1 d o p [i] : = p [i + l] ;

p[k]: = q

end of permute;

for q: = 1 step 1 until n do p[q]: -- q;

more: = true; permute (n); more: = false

end of permuter;

Note. The detach issued by a permute procedure instance is not an exit
out of the procedure instance, and does not return control to the call of the
procedure. Rather, it is an intermediate exit out of the object as a whole
(including the entire recursion process) and passes control back to the main
program which generated or called the object. A subsequent call on the object
will thus resume the recursion process exactly where it left off.

The decision (assumption) that the procedure permute should leave the
sequence unchanged is really quite arbitrary. The reader is invited to convince
himself of this fact by writing a procedure based on the same swapping
strategy, which returns with the numbers in the reverse order.

5. LeST STRUCTURES

The facilities introduced above for declaration of classes and reference to
objects may be used to represent recursive data structures such as stacks and
trees, and even cyclic structures such as two-way lists. This is accomplished
by declaring attributes of a class to be references to objects of the very same
class.

5.1. BINARY SEARCH TREES

A binary tree may be defined as

either (i) none

or (ii) a node,

where a node consists of

(a) a left component which is a tree

(b) a right component which is a tree

(c) a val which is an integer.

The val component may be regarded as being associated with each node of
the tree. A node whose left and right subtrees are both none is a terminal
element of the tree (leaf).

194 OLE-JOHAN DAHL AND C. A. R. HOARE

A binary search tree is defined as a binary tree which is either none, or
else it is a node which has a val lying between all vals of its left subtree and
all vals of its right subtree, which are themselves both binary search trees.
The purpose of a binary search tree is to provide for any integer a swift access
to the node which has val equal to that integer; and also to provide swift
means of inserting a new node with any given val. Thus a class representing
the concept of a binary search tree will have the form:

class tree (val); integer val;

begin ref (tree) left, right;

procedure insert (x); integer x;

• , ,, • • , , ~

ref (tree) procedure find (x); integer x;

. • ~

end of tree;

The bodies of the two procedure components are quite simple recursive
procedures, matching the recursive structure of the tree"

insert" if x < val then

begin if left = = none then l e f t : - new tree (x)

else left. insert (x)
end

else if right = = none then r i g h t : - new tree (x)

else right, insert (x);

find: if x = val then this tree

else if x < val then

(if left = = none then none

else left. find (x))

else if right = = none then none

else right, find (x);

In the body of "find" there occurs the expression

this tree

which is intended to yield as value a reference to the current node, that is, the
one which owns this particular instance of the find attribute. For example, if
the find procedure of X is called by the function designator

X. find (x)

and X. val = x, then the result of the function is the reference value of X itself.

HIERARCHICAL PROGRAM STRUCTURES 195

Another operation which is meaningful for a binary search tree is that of
scanning all its values in ascending order. This operation may be implemented
by a "producing" semicoroutine, which on each call assigns to its attribute

integer current;

the next higher value of a node on the tree. On exhaustion of the tree, the
attribute current will take the maximum integer value.

The scanning can be accomplished by a recursive procedure attribute,
local to the relevant instance of the coroutine.

class scanner (X); ref (tree) X;

begin integer current;

procedure traverse (X); ref (tree) X;

if X = / = none then

begin traverse (X. left);

current" = X. val;

detach;

traverse (X. right)

end traverse;

traverse (X);

current: = integer max

end scanner;

As an example of the use of these concepts, we consider the task of merging
values from several binary search trees, held in an array:

ref (tree) array forest [1 :N];

and outputting the values in ascending order. In order to do this we will
require N scanners, one operating on each tree of the forest:

ref (scanner) array trav [1 :N];

for i: = 1 step 1 until N do trav [i] : - new scanner (forest [i]);

Each scanner has now detached with its own minimal val assigned to its own
current. All that is now necessary is to locate the minimum of the N currents
and output it. The corresponding scanner should then be reinvoked to produce
its next higher val. When the minimum takes the maximum integer value,
the merge is complete.

196 OLE-JOHAN DAHL AND C. A. R. HOARE

integer min, j, i;

min: = 0;

while min < integer max do

begin min: = trav [1]. current; j : = 1 ;

for i: = 2 step 1 until N do

if min > trav [i] . current then

begin min: -- tray [i]. current;

j : = i
end search for smallest current;

if min < integer max then

begin output (min);

call (trav [j])

end

end of merge process;

5.2. SYNTAX ANALYSER

As a more substantial example of list processing, we take a general table-
driven context-free syntax analyser. We shall use a top-down back-tracking
algorithm, which will detect all possible analyses (more than one if the
grammar is ambiguous), on condition that the grammar does not contain
left recursion. The symbol string is represented by a "tape" with the following
operators.

procedure move right; ;

procedure move left; ;

integer procedure symbol; ;

The "move" operations move a reading head one symbol to the right or left.
The "symbol" procedure reads the symbol under the reading head, and
converts it to an integer according to a one-one mapping.

A given function "meta" determines whether a given integer represents
a meta-symbol.

Boolean procedure meta (S); integer S; . . . ;

For simplicity the grammar is represented by a three-dimensional array G

integer array G['];

where G[i, j, k] contains the kth symbol of the j th alternative right hand side
for the meta-symbol represented by i. There is an

integer array jm[.. .];

HIERARCHICAL PROGRAM STRUCTURES 197

where jm[i] is the number of right hand sides for a given meta-symbol.
Each right hand side is followed by a special symbol " ± " outside the
vocabulary of the grammar. If one of alternative definitions of the syntactic
class is (empty) , it will be represented by this symbol alone.

For example, consider a simple context-free grammar for a subclass of
arithmetic expressions:

(1) (exp): : = (term) l< te rm)(addop)(exp)

(2) (term) :: = (primary>l(primary)<mulop)<term>

(3) (primary) :: = <constant) i(variable>l(<exp))

(4) (a d d o p > : : = + [-

(5) (mulop) : : = X[/
(6) <cons tant) : := 1121314151617181910

(7) <variable> :: = II JI K] L I M[N

There are seven meta-symbols which may be given integer values 1 to 7.
The 22 terminal symbols may be given values 8 to 29 inclusive, and the
"_!_" terminating symbol may be given value 0.

The array G representing this grammar may now be declared:

integer array G[1:7, 1:10, 1:4]

The first plane of this array will take the value

G[1,. , .] = 2, 0, 0, 0 first alternative

2, 4, 1, 0 second alternative

0, 0, 0, 0 the other 8 rows

. are irrelevant.

0, 0, 0, 0

Note also that:
jm[1] = 2, jm[6] = 10

meta (1) = meta (77) = true

meta (8) = meta (29) = false

The desired result obtained by generating an instance of the syntax analyser,
with the first symbol of text under the reading head, will be a complete
syntax tree representing the text; the character after the last character of the
analysed text will be under the reading head, and a variable "good" will be
set to true. Subsequent calls of the same instance will produce trees repre-
senting alternative analyses. When no further analyses are possible, the input
text will be stepped back to the beginning, and the variable good will be set
false. This will happen on first generation, if the input text contains a syntax
o r r o r .

i

198 OLE-JOHAN DAHL AND C. A. R. HOARE

Note that the analyser will discover all successful analyses of any initial
segment of the text.

The syntax tree output on each call of the analyser will contain a node for
each phrase identified in the text. Each phrase has the following attributes:

integer i" indicating the syntactic class of the phrase

integer j: indicating which alternative of its class it belongs to

ref (phrase) sub:refers to the last subphrase of the given phrase

ref (phrase)left:refers to the phrase immediately preceding this phrase
on the same level of analysis. The left of the first
subphrase of any phrase is none.

Thus the expression
M x N + 7

should give rise to a tree of the form shown in Fig. 1.

The syntax analyser will be recursively structured, as a class of phrase
objects, each of which reproduces on a single phrase the intended behaviour
of the analyser as a whole.

A phrase object accepts a meta-symbol i and a left neighbour as parameter,
and is responsible for producing all possible syntax trees of the given syntax
class which match a portion of text to the right of (and including) the current
symbol. The input text will on each occasion be stepped on to the first
symbol which does not match the stated analysis. When all possible analyses
are complete, the tape is stepped back to the position it was before entry to
the given phrase, a global variable good is set to false, and the phrase
terminates.

We are now in a position to outline the general structure of the phrase
class:

class phrase (i, left); integer i; ref (phrase) left;

begin integer j; ref (phrase) sub;

for.j: = 1 step 1 until jm[i] do

. . . match remainder of text in all possible

ways to alternative j of class i,

issuing a detach after each successful ma tch . . . ;

good: = false

end of phrase;

Assume that an object has successfully matched the first k - l(k > 0)
symbols of a chosen alternative (j) for the given meta-symbol (i). We now
formulate a piece of program for matching the kth symbol to the input in all
possible ways. We assume that the remainder, if any, of the right hand side is

HIERARCHICAL PROGRAM STRUCTURES 199

i' [1 t expression
j I 2 1 sub" ~ _ ~ _ j t =

left"

\ ,
\

! ~ , 1 ~ m 1 4 iyadd°p [ii_iiii__i] expression : 1 1 1 " \ + I 1 l
1 n°°el \ I " 1

\ L

i ~-1,~ primory [~-~,~,mulop [2 i term Z term
~ 1 \ I ~ , \ × I , , [, t

t no:e i 1
,/ / or'o 'e 1 , i - ,

non....__..g , on..e~/ }none i I n., .. [~nc~ne

'I I ~ va~able 6 l c°nstant7] 7

l oone b oon°,
none none J

FIGURE 1

matched to the input in all possible ways by thestatement "match remainder",
and that this statement leaves unaltered the position of the reading head and
the part of the syntax tree so far constructed. We make the latter assumption
also for an object which has failed to identify (another) phrase.

1. begin integer g; g ' = G[i, j, k];

2. if g = "J_" then begin good: = true; detach end

3. else if g = symbol then

4. begin move right; match remainder; move left end

5. else if meta (g) then

6. begin s u b : - new phrase (g, sub);

=

200

10. end

11. end

OLE-JOHAN DAHL AND C. A. R. HOARE

while good do

begin match remainder; call (sub) end;

sub: - sub. left

Comments.

Line 1. The kth symbol of the right hand side numberj is called g for brevity.

Line 2. If g is the terminator symbol the whole right-hand side has been
successfully matched to the input. The object reports back to its
master. Line 2 does not alter the syntax tree or the position of the
reading head.

Line 4. Since we have a match the object moves the reading head to the next
symbol. After having matched the remainder in all possible ways the
object restores the position of the reading head. Thus, according to
assumptions, line 4 has a null net effect.

Line 6. Since g is a meta-symbol, a new phrase object is generated to
identify sub-phrases of the syntax class g. It becomes the new
rightmost sub-phrase. Its left neighbour phrase is the old rightmost
sub-phrase.

Line 7. We have assumed that an object when failing sets "good" to false.

Line 8. Since "good" is true, a sub-phrase has been identified matching g.
After having matched the remainder in all possible ways, "sub" is
called to identify the next possible sub-phrase. Since we want to
match g in all possible ways, line 8 is repeated until the sub-phrase
object fails.

Line 9. According to assumptions a phrase object which has failed, has had
a null net effect. The total effect of lines 6-8 is thus to add an
object to the syntax tree. Line 9 restores the syntax tree to its
original state.

The comments show that the block above matches the symbol g followed by
the remainder of thejth right-hand side of i in all possible ways and has a null
net effect. Consequently the block itself satisfies the assumptions made for the
"match remainder" statement. It follows that the whole matching algorithm
may be expressed in a simple way by a recursive procedure. The whole
computing process is described by the following class declaration.

HIERARCHICAL PROGRAM STRUCTURES

class phrase (i, left); integer i; ref (phrase) left;

begin integer j; ref (phrase) sub;

procedure match (k); integer k;

begin integer g; g "= G[i, j, k];

if g = "3_" then begin good: = true; detach end

else ff g = symbol then

begin move right; match (k + 1); move left end

else if meta (g) then

begin s u b : - new phrase (g, sub);

while good do

begin match (k + 1); call(sub)end;

sub: - sub. left

end

end of match;

for j: = 1 step 1 until jm[i] do match (1);

good: = false

end of phrase

A master program could have the following structure

ref (phrase) tree;

201

e o . , . I . . • o , •

t ree : - new phrase (start, none);

while good do begin found: ; call(tree)end;

where "start" represents the start symbol of the grammar. At the]abe]
"found" a sentence has been identified and the variable "tree" refers to its
syntax tree represented as described above. For each node its associated
meta-symbol (i), the rhs alternative number (j), and the links to other nodes
(sub, left) are available through remote identification, for example

tree. i, tree. sub.j, tree.sub, left. left. sub.

We must expect in general that the strings matched by different successful
trials may be of unequal lengths, starting at the same location of the tape.
This may be avoided by defining the language in such a way that no initial
segment of a valid text is also valid. Alternatively, the whole text should be

202 OLE-JOHAN DAHL AND C. A. R. HOARE

followed by some symbol outside the alphabet, say "_1_", and the master
program might have the following structure

ref(phrase)parse; Boolean good;

p a r s e : - new phrase (start, none);

while good do

begin if symbol = "_/_" then inspect successful parse;

call(parse)

end

It is a remarkable feature of the phrase class that the result it yields on
each call is a tree whose nodes consist in phrase objects which have been
activated reeursively and not yet terminated. Each of these phrase objects
plays a dual role, both as a part of the syntactic tree which is to be inspected
by the master program, and as the set of local variables for the recursive
activations of other phrase objects. It is this close association of data and
procedure which permits the algorithm to be so simply and concisely
formulated.

Notice that each phrase object is the nucleus of a separate stack of recursive
activations of its local "match" procedure. At the time when a detach is
issued on behalf of an object, signalling a successful (sub-) parse, its stack
has attained a temporary maximum depth, one level for each symbol in the
current right-hand side, plus one level corresponding to the rhs terminator _l_,
which issued the detach.

Thus the whole dynamic context of a successful parse is preserved. When an
object is called to produce an alternative parse a backtracking process takes
place, during which the "match" stack of the object is reduced. At a level
corresponding to a meta-symbol in the rhs the match procedure calls on the
corresponding phrase object to produce an alternative sub-parse (line 8) and
so on. (cf. the row of officers in Chaplin's Great Dictator).

6. PROGRAM CONCATENATION

In the preceding sections we have seen how the class mechanism is capable of
modelling certain simple concepts, by specifying data structures and defining
operations over them. In this section, we develop a method by which more
elaborate concepts can be constructed on the basis of simpler ones. This will
establish potential hierarchies of concepts, with complex concepts sub-
ordinate to the more simple ones in terms of which they are defined. The
structuring technique gives a new method of composing a program from its
constituent parts, and is known as concatenation.

HIERARCHICAL PROGRAM STRUCTURES 203

Concatenation is an operation defined between two classes A and B, or a
class A and a block C, and results in formation of a new class or block.
Concatenation consists in a merging of the attributes of both components,
and the composition of their actions. The formal parameters of the con-
catenated object consist of the formal parameters of the first component
followed by formal parameters of the second component; and the same for
specification parts, declarations and statements (if any).

A concatenated class B is defined by prefixing the name of a first com-
ponent A to the declaration of B:

A class B(bl , b2, • • .); . . • specification of b's;

b e g i n . . , attributes of B . . . ; . . . actions of B . . . end

Suppose the class A has been defined:

class A(al , a2, . . .) ; . . .specification of a ' s . . . ;

begin . . , attributes of A . . . ; . . . actions of A . . . end.

According to the concatenation rules, the effect of the prefixed declaration
for class B is the same as if B had been declared without a prefix thus:

class B(a 1, az b 1, b2); . . . specification of a ' s . . .

specifications of b ' s . . . ;

begin . . , attributes of A . . . ; . . . attributes of B . . . ;

. . . statements of A . . . ; . . . statements of B . . . end;

Note. If any local identifiers of A are the same as local identifiers of B,
the collision of names is resolved by systematic change of B's identifiers.
A block also may be prefixed by a class identifier:

A begin . . , declarat ions . . . ; . . . statements end,

and the effect is similar to that described above, except that the result of the
concatenation is a block, not a class. (If the class A has parameters, the
prefix must include an actual parameter part 1). The effect of prefixing a
block is to make available within that block the library of procedures and
related data (including even classes) declared within the class declaration
for A.

A single class may be used as prefix to several different concatenated
classes. For example, suppose a program requires to deal with trucks, buses,
and private cars. These are three separate classes, and each has its own
attributes. But there are certain attributes (for example license number)
which are common to all of them, by virtue of the fact that they are all vehicles.
The concept of vehicle is a more general one, and could be declared as a
separate concept;

i

204 OLE-JOHAN DAHL AND C. A. R. HOARE

class vehicle (license no); integer license no; . . . ;
This Class can now be used as a prefix in the remaining class declarations.

vehicle class truck (load); real load; . . . ;

vehicle class bus (seating); integer seating; . . . ;

vehicle class car; . . . ;

An object belonging to a prefixed class is a compound object, which has
certain attributes and operations in addition to those defined in the prefix
part. Thus a truck object has a license no and a load, and a bus object has a
license no and a seating. It is reasonable to regard "truck" and "bus" and
"car" as subclasses of the vehicle class; any object of a subclass also belongs
to the prefix class "vehicle".

A reference variable may be qualified as belonging to a prefix class or to a
concatenated class. If it belongs to the prefix class it may point to objects of
any of the subclasses, and may be used in a remote identifier to access any of
the attributes of the prefix class but not to access any attributes of the sub-
classes. A reference qualified by a subclass may point only to objects of the
subclass, but may be used in a remote identifier to access all its attributes.
Thus given the reference variables:

ref (vehicle) V; ref (bus) B;

the following are valid remote identifiers:

V.license no, B.license no, B. seating,

but V.seating is not valid.

Thus the subclass notion provides a useful flexibility of object referencing. A
"weak" qualification permits a wide range of objects referencing, at the cost
of inability to make remote access to attributes declared in a subclass.

Assignment of a subclass reference to a prefix class reference variable
(e.g. V : - B) is always valid, and can be recognised as such at compile time.
But assignment in the other direction (e.g. B: - V) may give rise to an error
(detected only at run time), if the object referenced does not in fact belong
to the expected subclass (bus).

6.1. BINARY SEARCH TREE

Suppose it is desired to set up a binary search tree to hold information about
stock items in an inventory. Each node of the tree should contain not only a
val (indicating the stock number of the item) but also certain other information
about quantity on hand, price, reorder point, etc. The simplest way of achiev-
ing the required effect is to prefix the class "stock item" by the class tree,
and then declare the additional attributes required, for example:

HIERARCHICAL PROGRAM STRUCTURES 205

tree class stock item;

begin integer qoh, price, reorder point;

Boolean ordered;

procedure reduce;

beg|n if qoh = reorder point & -1 ordered then

issue reorder;

qoh:= q o h - 1

end of remove;

end of stock item;

6.2. TWO WAY LIST

Taking advantage of the concatenation technique, it is possible to design
classes which are intended solely or primarily to act as prefixes to other classes
or to blocks. In this section we give an example of a class TWLIST, which is
intended to be used as a prefix to a block, and to make available within that
block the concept of two-way chained cyclic lists. Such a list consists of a
list head, which contains two pointers, one to the first element of the chain and
one to the last. Each link in the chain must also contain two pointers, suc
which points to the successor in the list (or the list head if there is none),
and pred which points to the predecessor in the list (or the list head if there is
none). In an empty list, the two pointers from the list head point to the list
head itself.

Each pointer in the system must be capable of pointing either to another
link in the list or to a list head. Therefore these pointers must be qualified by a
class which embraces both links and heads, i.e. a class "l inkage" of which
they are both subclasses. Since both list heads and links require two reference
attributes, suc and pred can be declared as attributes of the prefix class
linkage.

The single concept of a two-way list is represented by the triple of classes
linkage, link, and list head. In order to indicate that they are to be considered
in conjunction as a single concept, the declarations for all three classes are
grouped together in a single class declaration TWLIST, which is to be used as a
prefix to any block which requires to use the concept. Within such a block
the "l ink" class is intended to be used as a prefix to other classes specifying
the nature of the items; for example, if stock items were to be held in a two-
way list instead of in a binary search tree, the declaration would be:

link class stock; . . . as be fore . . . ;

206 OLE-JOHAN DAHL AND C. A. R. HOARE

It is now necessary to decide on a basic set of operations on lists and links.
A link I should be removable from its list by a procedure statement

/ . ou t ;

and it should be capable of being reinserted in a list just before link J by a
procedure statement:

I. precede (J);

Since a link can belong to at most one list, this operation should also remove
I from any list it happens to belong to before. Finally a link should be insert-
able as the last item of a list with head H by a procedure statement"

I. into (H);

For a list head H, it seems useful to define the following functions

H. empty,

which tests whether the list is empty,

H. first

which yields H's first item, if any; otherwise none, and

H. last

which yields H's last item, if any; otherwise none.

The declaration of the class TWLIST can now be given"

1. class TWLIST;

2. begin $lass linkage; begin ref (linkage) suc, pred; end;
- , ' o

.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

linkage class link;

begin procedure out;

if suc = / = none then

begin suc. pred: - pred; pred. suc: - suc;

suc: - pred: - none

end of out;

procedure precede (x); ref (linkage) x;

begin out; s u c : - x; p r e d : - x .pred;

suc. pred: - pred. suc: - this link

end of precede;

procedure into (L); ref (list) L;

precede (L);
comment suc and pred of a link object should have the
standard initial value none indicating no list membership;

end of link;

16.

17.

18.

19.

20.

21.

22.

23.

24.

HIERARCHICAL PROGRAM STRUCTURES 207

linkage class list;

begin ref (link) procedure first;

f i r s t ' - if empty then none else suc;

ref (link) procedure last;

l a s t ' - if empty then none else pred;

Boolean procedure empty;

e m p t y ' = suc = = this list;

s u c ' - p r e d ' - this list

comment suc and pred of a list head should be
initialized to indicate an empty list;

end of list;

25. end of T W L I S T ;

Let P be an arbitrary block instance prefixed by TWLIST, which, outside
its prefix part, contains no explicit reference assignment to any variable suc
or pred of any linkage object. Then the assertions (1) and (2) below are valid
th roughou t the lifetime of P (at times when control is textually outside the
body of TWLIST) .

(1) Any linkage object x in P is either an object with no list membership ,
in which case x. suc - = x. pred = = none and x ~ list, or x. suc. pred - -
x. pred. suc - = x.

It follows that all lists conta ined in P are circular. Fu r the rmore :

(2) Each circular list in P contains exactly one list head, which is an
object of the class "list".

The assertions are e s t ab l i shed by observing that each of the operat ions
below preserves their validity, and that P contains no linkage object initially.

new link (or new C, C ~ linkage-list) generates a link object, which is not
a list member (its suc and pred are automatical ly initialised to none).

new list (or new C, C ~ list) generates an " e m p t y " circular list containing
the generated list head and initially nothing else.

In the following we assume x ~ link, y, z ~ linkage, and L E list. x ~ y is an
abbreviat ion for x. suc = = y & x = = y. pred.

x. out If z ~-~ x ~ y the result is z ~ y and x is not a list member . (Notice
that (2) together with x ~ link implies x = / = y, z.) If x was not a list member ,
the result is to do nothing.

x.precede (y), where x ---/= y A z ~ y. The result is x ~ y (and z ~ x if
x = / - - z). If x was a list member , x is first removed f rom that list.

208 OLE-JOHAN DAHL AND C. A. R. HOARE

x. into(L), where z ~ L. The result is z ~ x ~ L, which implies x = = L. last.
If x was a list member, x is first removed from that list.

Any use of out, precede, or into not satisfying the above assumptions, is
either textually illegal or leads immediately to a run time error and program
termination caused by an invalid remote identifier. E.g. the operation
x.precede (y) sets x .p red to none if x = = y or y is not a list member.
Consequently the remote identifier pred. suc in the body of precede is invalid.
Notice that x . in to (L) is a "safer" operation, since x s link, L e list implies
that x = / = L and L. pred = / = none.

The assertions (1) and (2) provide a guarantee that our lists are well
behaved, provided that no explicit assignment to any variable suc or pred
occurs. The construction TWLIST is thus a reliable "mental platform,"
which in a certain sense cannot break down, whatever programming errors
are made. When programming on top of TWLIST one is entitled to ignore
the list processing details involved in manipulating the circular two-way lists.
Each list object may be regarded as representing an ordered set of link
objects, with the proviso that a link object may be member of at most one
such set at a time. The last fact is reflected in the design of the procedures
into and precede. Explicit use of the attributes suc and pred, e.g. for scanning
through a list, may, however, require the user to be conscious of the fact
that the "last" member has a successor and the "first" member a predecessor,
which are both identical to the list object itself. A design alternative is to
suppress this fact by declaring the following procedures as attributes to link.

ref (link) procedure successor;

inspect suc when list do s u c c e s s o r ' - none

otherwise successor" - s u c ;

ref (link) procedure predecessor;

inspect pred when list do predecessor' - none

otherwise predecessor" - pred;

Note the construction

inspect r when C d o . . .

enables the programmer to test whether the object referenced by r belongs
to one of its possible subclasses C.

7. CONCEPT HIERARCHIES

At the outset of a programming project there is a problem, more or less
precisely defined and understood in terms of certain problem oriented con-
cepts, and a programming language, perhaps a general purpose one, providing
some (machine oriented) basic concepts, hopefully precisely defined and com-

HIERARCHICAL PROGRAM STRUCTURES 209

pletely understood. There is a conceptual distance between the two, which
must be bridged by our piece of program. We may picture that distance as a
vertical one, the given programming language being the ground level.

Our difficulty in bridging such gaps is the fact that we have to work
sequentially on one simple part problem at a time, not always knowing in
advance whether they are the right problems.

In order to better overcome such difficulties we may build pyramids.
Unlike the Egyptian ones ours are either standing on their heads (bottom-up
construction) or hanging in the air (top-down construction). The construction
principle involved is best called abstraction; we concentrate on features
common to many phenomena, and we abstract away features too far removed
from the conceptual level at which we are working. Thereby we have a
better chance of formulating concepts which are indeed useful at a later stage.

In the bottom-up case we start at the basic language level and construct
abstract concepts capable of capturing a variety of phenomena in some
problem area. In the top-down case [8, 9] we formulate the solution to a given
problem in terms of concepts, which are capable of being implemented (and
interpreted) in many ways, and which are perhaps not yet fully understood.
In either case system construction may consist of adding new layers of
pyramids (above or below) until the conceptual gap has finally been bridged.
Each such layer will correspond to a conceptual level of understanding.

For instance, given some problem which involves queueing phenomena,
we could take TWLIST of the preceding section as the first step of a bottom-up
construction. Then, for the remainder of the construction we are free to think
and express ourselves in terms of dynamic manipulation of ordered sets of
objects.

Layers of conceptual levels may be represented as a prefix sequence of
class declarations. For example, it is possible to construct a series of class
declarations, each one using the previous class as prefix

class C i ; ;

C1 class C 2 ; ;

° ° o • •

C . _ x class C . ; ;

The list C i, C 2 , . . . , C,_ ~ is known as the prefix sequence for C,. The
outermost prefix C~ is built at the ground level. Every other level rests on
the one(s) below, in that it may take advantage of all attributes of its entire
prefix sequence. Making use of this language mechanism, bottom-up con-
struction of a program is to plan and write the classes of a prefix sequence
one by one in the stated order. The program itself is finally written as a
prefixed block on top of the whole sequence.

C. begin ~ end

210 OLE-JOHAN DAHL AND C. A. R. HOARE

The top-down strategy would correspond to constructing the members of
the prefix sequence, including the prefixed block, in the reverse order.
(SIMULA 67 contains additional mechanisms, not considered here, for
facilitating top-down and mixed mode construction.)

A well-formed coaceptual level (bottom-up) is a set of well-defined inter-
related concepts, which may be combined to make more elaborate concepts.
It may serve for further construction as a mental platform, raised above
ground towards some application area, i.e. as an "application language". A
preconstructed application language may serve to shorten the conceptual
gap that has to be bridged for many problems in the area. The usefulness of'
such a platform is closely related to its ruggedness, that is with the way in
which it tolerates or even forestalls misuse. As we saw in the last section
TWLIST supplies an exceptionally rugged mental platform; and in this
section we shall build on it a small but useful application language, which
may in its turn be used as a platform for the solution of realistic problems.

7.1. DISCRETE EVENT SIMULATION

Simulation is a method for studying the behaviour of Iarge systems of'
interacting objects, and evaluating the effect of making changes which would
be too expensive to make on an experimental basis in real life. The object of a
simulation model could be a production line, a tramc system, a computer
system (hardware and software), a social system composed of interacting
individuals, etc. The following notions are common to most such systems.

(1) Processes taking place in parallel, giving rise to discrete events at
irregular intervals of time.

(2) Queueing phenomena, arising when an object has to wait for service
from a currently busy server.

In order to represent processes occurring in parallel, it is not necessary
that the corresponding program components should be multiprogrammed in
the computer; but it is necessary that the programs should be able to suspend
themselves temporarily, and be resumed later from where they left off. Thus
the active objects or "processes" in a simulation will be represented by
(semi-)coroutines, operating in pseudo-parallel under control of a scheduling
mechanism.

For example, in a job shop simulation, an incoming order gives rise to a
sequence of events on the shop floor, to satisfy the order. Each order may be
regarded as a process whose activity is to proceed from one machine to the
next, requesting and obtaining service from it. The sequence of requests is
determined by the nature of the order. If the requested machine is free, the
order is served immediately, and the machine goes busy for a period equal
to the length of the service. Otherwise, the order joins a queue of orders
waiting for the machine to become free.

HIERARCHICAL PROGRAM STRUCTURES 211

In the implementation of the concept of simulated time, the first require-
ment is that each process have access to a variable "time" which holds
the current time, and which is incremented on appropriate occasions by the
time-control mechanism. Note that the updating of this variable must be
entirely independent of the passage of computing time during the simulation,
since actions which take a long time on a computer might take only a short
time in the real world, and vice versa. As far as simulated time is concerned,
the active phases of the processes must be instantaneous; "time" does not
move until all the participating processes are passive.

Thus in order to simulate the passing of time, a process simulating an
active system component must relinquish control for a stated interval T of
simulated time; and it must be reactivated again when the time variable has
been incremented by T. This will be accomplished by the process calling the
procedure

hold (T).

For example, an order which has found its required machine ready to serve it
needs to indicate how long this service will take, by the statement

hold (service interval);

The order will now become inactive until all other orders which were due to
be reactivated before time + service interval have been reactivated, and have
relinquished control again. At this point, the given order will be reactivated,
and will find that its time has been appropriately incremented.

While a process is held, it will be necessary to record its reactivation
time as one of its attributes. It is convenient therefore to use the time
attribute of the process itself for this purpose.

The method of holding for a specified interval is possible only if the
process knows how long it has to wait before the next "event" in its life. But
sometimes it may require to wait until the occurrence of some event in the life
of some other process. For example, an order, on finding its required machine
busy, must join a queue and wait until the machine is free; and an order on
releasing a machine must activate the first other order in the queue (if not
empty). Thus two additional procedures are required:

wait (Q),

and activate (X),

where Q refers to the queue (two-way list) on which the calling process is to
wait while it is passive, and X refers to some passive process, which is to be
removed from its queue and allowed to proceed.

Finally, a means must be provided of starting and stopping the simulation.
This may be accomplished by a procedure statement

simulate (start, finish),

212 OLE-JOHAN DAHL AND C. A. R. HOARE

where start refers to the process with which the simulation starts, and finish
gives the time limit for the simulation. Any process requesting to be held
beyond this limit may be ignored. Presumably, the start process will activate
other processes to participate in the simulation.

We now proceed to implement the mechanism described above. It will be
implemented as a class MINISIM, which is intended to be used as a prefix
to a simulation main program. In order to take advantage of the two-way list
mechanism, the MINISIM class must be prefixed by TWLIST. This ensures
that TWLIST is also available in any simulation program which is prefixed
by MINISIM.

A class of objects which are to be capable of participating in a simulation
should be declared as a subclass of the "process" class. This will make
available to it the necessary time control and queueing mechanisms. Each
process must have the capability of inserting itself into a two-way list;
therefore the process class itself must be declared as a subclass of the class of
links.

Processes waiting for the elapse of their holding interval are held on a
unique two-way list known as the sequencing set (SQS). The processes are
ordered in accordance with decreasing reactivation times. A specially created
finish process is always the first link in SQS, and the last link is always the
one that is currently active. Its time represents the current time of the
system. When it goes inactive, its predecessor in the SQS will (usually)
become the last, and its local time has already been updated to the time at
which that process was due to be reactivated.

We are now in a position to give the general structure of MINISIM,
omitting for the time being the procedure bodies.

TWLIST class MINISIM

begin ref (list) SQS;
ref (process) procedure current;

current: -- SQS. last;

link class process;

begin real time;

procedure hold (T); real T;

• , • • • ~

procedure wait (Q); ref (list) Q;

. . . . o ;

procedure activate (X); ref (process) X;

• • • • • ~

detach; comment a new process doesn't actually

HIERARCHICAL PROGRAM STRUCTURES

do anything until it is activated

end of process;

procedure simulate (start, finish);

ref (process) start; real finish;

" ° ' ' ' 7

end of MINISIM.

We shall give the bodies of the procedures in reverse order.

simulate: begin SQS:- new list;

new process.into (SQS); current.time: = finish;

if start, time < finish then start, into (SQS);

while --7 SQS. empty do

begin call (current);

213

current, out;

comment this ensures that a terminated

or detached process leaves the SQS;

end

end of simulate

wait:begin into (Q); resume (current) end;

The active process inserts itself into the queue, and thereby leaves the SQS.
It also resumes the process on the SQS which is next due to be reactivated.
Notice that the standard sequencing mechanism of the simulate procedure
must be bypassed, since the old active process already is out of the SQS.

activate:begin X. into (SQS); comment as its last and current member;

X. time: = time; comment i.e. now;

resume (current);

end of activate.

The calling process places X ahead of itself in SQS, but with the same time.
Since the calling and the activated process X have the same time, it does not
matter to the timing mechanism in what order they are placed; our choice
implies that an active phase of X is invoked immediately in real time. Control
returns to the calling one at the same moment of simulated time, but after the
completion of the active phase of X.

214 OLE-JOHAN DAHL AND C. A. R. HOARE

hold:

begin ref (process) P;

P : - pred;

comment the holding process is necessarily active, and

therefore also the last member of SQS. Since the

finish process never holds, there will always be a

second-to-last process on SQS

if T > 0 then t i m e ' = time + T;

comment set local reactivation time,

time should never decrease;

if time f> P. time then

begin comment this process must be moved in SQS;

out; comment of SQS, now P is current;

P: - SQS. first; comment the finish process;

if time < P. time then

begin comment reactivation time is

within the time limit;

while time < P. time do P" - P. suc;

comment terminates since

time f> current, time;

precede (P)

end; comment ignore a process that would

exceed the limit;

resume (current)

end;

end of hold;

Notice that a process object is allowed to relinquish control simply by
saying detach or by passage through its end. In both cases control returns to
the standard sequencing mechanism of the simulate procedure. The basic
activation instructions call and resume, however, should not be explicitly
applied to process objects; that would illegally bypass the timing mechanism.

7.2. THE LEE ALGORITHM

As a simple but unexpected example of the use of simulated time, we take
the Lee algorithm for finding the shortest path between a city A and a city B
connected by a network of one-way roads. The algorithm may be envisaged

HIERARCHICAL PROGRAM STRUCTURES 215

as the propagation of a pulse from the destination city B at equal speed along
all roads leading into it. Each time a pulse reaches a city not reached by a
previous pulse, it records the road it has come along, and then sends pulses
outward along all roads leading into the city. When a pulse reaches a city
which has already been reached by another pulse, it dies. When a pulse
reaches the city A, the task is completed.

Cities and roads may be represented by classes.

class city; begin ref (road) roadsin, wayout; end

class road; begin real length; ref (road) nextin;

ref (city) source, destination; . .. end

The variable wayout holds the recommended wayout from the city towards B.
For an unvisited city, its value is none.

The class representing a pulse takes as parameter the road along which
it is first to pass.

process class pulse (rd); ref (road) rd;

begin ref (city) c; c: - rd. source;

hold (rd . length);

if c. wayout = / = none then

begin c. wayout: - rd;

if c = = A then go to done;

comment stops the simulation by

going to a non-local label;

rd" - c . roadsin;

while rd = / = none do

begin activate (new pulse (rd));

r d : - rd.nextin

end propagation of pulses

end

end of pulse

The algorithm will be invoked by calling a procedure with parameters
indicating the starting and final cities, and an upper limit L on the length of
the path that is to be printed. It is assumed that the wayout of every city is
initially none. The time and process concepts are made available by the
prefix MINISIM to the procedure body.

216 OLE-JOHAN DAHL AND C. A. R. HOARE

procedure Lee (A, B, L); ref (city) A, B; real L;

MINISIM begin process class pulse (rd); ref (road) rd;

. .. as before . . . ;

process class starter;

begin ref (road) rd;

r d : - B . roadsin;

while r d = / = none do

begin activate (new pulse (rd));

rd: = rd.nextin

end

end of starter;

simulate (new starter, L);

done: end of Lee;

After a procedure statement such as

Lee (Oslo, Belfast, 1000);

where ref (city) Oslo, Belfast; the required route may be printed out, provided
that it exists.

if Oslo. wayout = / = none then

begin ref (city) c; procedure print ; ;

prin$ (Oslo. wayout); c" - Oslo. wayout, destination;

while c = / = Belfast do

begin print (c); print (c. wayout);

c: - c. wayout, destination

end

end else outtext ('no road connection within limit);

It is assumed for the print procedure that cities and roads are objects
belonging to a common class, by having the same prefix to the two classes.
The prefix part of an object might contain the necessary identifying text,
such as 'London' or 'MI ' as data.

7.3. A JOB SHOP MODEL

As a second application of MINISIM we shall design a model of a simple
job shop system. The model may be used to evaluate the capacity of the shop
in relation to a given order load. The line numbers below refer to the
program on page 218.

HIERARCHICAL PROGRAM STRUCTURES 217

The system consists of machine groups (lines 3-10), numbered from 1 to
nmg (lines l, 11), and order objects (lines 12-22). The machines of a group are
identical and therefore need not be represented individually; however, their
number is specified initially by the value of the attribute nm (line 3).
Associated with the group is also a queue of orders waiting to be processed,
which is empty initially (lines 4, 9), and procedures to request a machine
for processing (lines 5-6) and to release it when finished (lines 7-8).

The variable nm is used to represent the number of available machines,
say m, as well as the number of orders, say w, waiting in the queue, as
described by the following assertion.

i f n m > 0 t h e n m = n m A w = 0

else m = 0 A W = abs(nm)

The assertion is valid for each machine group (outside the procedure bodies
request and release).

When a machine is requested and m = 0, the caller must enter the queue
and wait for its turn (line 6). When a machine is released and w # 0, one of
the waiting processes should proceed. The first member of the queue is
activated and thereby leaves the queue. The queueing discipline is thus first
come first served.

The orders are process objects, each of which generates its successor,
(line 18) and which goes from one machine group to the next (lines 20-21)
according to an individually defined schedule. For a given order the schedule
has n steps, and for each step s(s = l, 2 , n) a machine group number
(mg[s]) and an associated processing time (pt[s]) are given. Thus the order
should spend the time pt[s] in being processed at machine group number
rag[s] (line 21, hold). Notice that the request statement of line 21 will require
some additional amount of simulated time for its completion, if the group
regroup [mg[s]] currently has no available machine.

The model is driven by input data. In particular, each order object during
its first active phase reads in its own schedule, consisting of length of
schedule (line 18) arrival time (inreal, line 15), and the values of mg and p t

(lines 16-17). The main program sets up machine groups of specified sizes
(lines 24, 25) and generates the first order at time zero. (The procedures inint,
inreal, and lastitem are procedures associated with a standard input file,
which is part of the program environment).

It is assumed that the input file starts with the following data:

nmg, timelimit, nm ~, nm 2 , nmnmo,

defining the structure of the job shop; and this is followed by an occurrence
of

n, T, mg ~, pt~, mg2, pt2, • • . , mg . , p t . ,

218 OLE-JOHAN DAHL AND C. A. R. HOARE

for each order to be generated. Each value T defines the arrival time of the
order. It is assumed that the T values are in a non-decreasing sequence.

The JOB SHOP goes as follows.

1. begin integer n m g ; n m g : = inint;

2. MINISIM begin

3. class machine group (nm); integer nm;

4. begin ref (list) Q;

5. procedure request;

6. begin nm: -- n m - 1; if nm < 0 then current, wait (Q) end;

7. procedure release;

8. begin nm: -- nm + 1 ; if nm ~ 0 then current, activate (Q. first) end;

9. Q: - new list

10. end of machine group;

11. ref (machine group) array regroup [1 :nmg];

12. process class order (n); integer n;

13. begin integer array rag[1 : n]; array pt[1 :n]; integer s;

14. ref (machine group) M;

15. hold (inreal- t ime); comment arrival time is now;

16. for s : = 1 step 1 until n do

17. begin regis]: = inint; pt[s]: = inreal end;

18. if --7 lastitem then activate (new order (inint)):

19. comment generate next order, if any;

20. for s ' = 1 step 1 until n do

21. begin M : - m g r o u p [mg[s]]; M.request; hold (pt[s]);

M. release end

22. end of order;

23. integer k; real lim; lim' = inreal;

24. for k: = 1 step 1 until n m g do regroup [k]: - new machine group (inint);

25. simulate (new order (inint), lira);

26. comment initial time is zero by default;

27. end of program;

HIERARCHICAL PROGRAM STRUCTURES 219

The model above should be augmented by mechanisms for observing its
performance. We may for instance very easily include a "reporter" process,
which will operate in "parallel" with the model components and give output
of relevant state information at regular simulated time intervals.

process class reporter (dr); real dr;

while true do

begin hold (d t) ;

give output, e.g. of

regroup [k].nm v (k = 1, 2, . . . , n m g)

end of reporter;

The first order could generate a reporter object and set it going at system
time zero.

activate (new reporter (inreal))

Output will then be given at system time t, 2t, 3t, . . . , where t is the actual
parameter value.

As a further example we may wish to accumulate for each machine group a
histogram of waiting times of orders at the group. Then define the following
subclass of machine group, redefining the operation "request".

machine group class Machine Group;

begin ref (histogram) H;

procedure request;

begin real T;

T: = time; n m : = n m - 1;

if n m < 0 then wait (Q);

H.tabulate (time - T)

end of new request;

H : - new histogram (X, N)

end of Machine Group;

It is assumed that "histogram" is the class defined in section 3.1, and
that array X[1 :N] and integer N are nonlocal quantities. Now replace the
lower case initials by upper case in the class identifier of lines 11, 14, and 24.
Then all machine groups will be objects extended as above, and since the
qualification of the reference variable M is strengthened, the "request" of
line 21 refers to the new procedure. Thus a histogram of waiting times will be
accumulated for each group.

Finally it should be mentioned that the "machine group" concept might
have considerable utility as a general purpose synchronisation mechanism for

220 OLE-JOHAN DAHL AND C. A. R. HOARE

pseudo-parallel processes. It might be useful to phrase it in more abstract
terminology and possibly include it as part of a "third floor', platform for
"resource oriented" simulation. In fact well known special purpose languages
[10, 11] have elaborations of this concept ("facility", "store") as fundamental
mechanisms. The analogy to the semaphore mechanism [12] for the synchroni-
sation of truly parallel processes should be noted. The procedures request
and release correspond to the P and V operations, respectively.

REFERENCES

(1) Naur, P. (ed.) (•962/63). Revised Report on the Algorithmic Language.
ALGOL 60. Comp. J., 5, pp. 349-367.

(2) Dahl, O.-J., Myhrhaug, B., Nygaard, K. (1968). The Simular 67 Common
Base Language. Norwegian Computing Centre, Forskningsveien 1B, Oslo 3.

(3) Wang, A., Dahl, O.-J. (1971). Coroutine Sequencing in a Block Structured
Environment. BIT 11, 4, pp. 425-449.

(4) Dahl, O.-J., Nygaard (1966). Simula~an Algol-Based Simulation Language.
Comm. A.C.M. 9, 9, pp. 671-678.

(5) Dahl, O.-J. (1968). Discrete Event Simulation Languages. "Programming
Languages" (ed. Genuys, F.). pp. 349-395. Academic Press, London.

(6) Hoare, C. A. R. (1968). Record Handling. "Programming Languages" (ed.
Genuys, F.). pp. 291-347. Academic Press, London.

(7) Conway, M. E. (1963). Design of a Separable Transition---Diagram Compiler.
Comm. AJ.C.M. 6, 7, pp. 396-408.

(8) Naur, P. (1969). Programming by Actions Clusters. BIT 9, 3, pp. 250-258.

(9) Dijkstra, E. W. (1972). Notes on Structured Programming. "Structured
Programming". pp. 1-82. Academic Press, London.

(10) Knuth, D. E., McNeley, J. L. (1964). SOL~A Symbolic Language for
General-Purpose Systems Simulation. IEEE Trans. E.C.

(11) IBM, General Purpose Systems Simulator.

(12) Dijkstra, E. W. (1968). Co-operating Sequential Processes. "Programming
Languages". pp. 43-112. Academic Press, London.

