SIGPLAN Neotices 28 1973 February

CLOBAL VARIABLE CONSIDERED HARMFUL
W, Wulf, Mary Shaw
Carnegie-Mellon University
Pittsburgh, Pa.

In 1968 £. W. Dijkstra wrote a letter to the editor of the CACM [1] proposing that
the goto statement be abolished from all "higher level” programming languages.
Although this suggestion has not met with universal acceptance, we would like to
nominate another weli-known language construct as a candidate for abolition: the
non-local variable.

We claim that the non-local variable is a major contributing factor in programs
which are difficult to understand. For the moment we wish to keep the phrase "non-
local variable" somewhat vague. Roughly, however, we mean any variable which is
accessed, and particulariy modified, over a relatively large span of program text.
More specifically, we mean any variable referenced in a segment of program, S, such
that not all uses of that variable are contained in S. We always intend conceptual
locality, rather than textual locality; it may be the case that a single conceptual unit,
(e.g., control of a loop) has elements that are separated by a number of lines of other
text, but that the interspersed text can be treated as a single element and "collapsed”
for purposes of understanding the surrounding unit. If the text is properly displayed
(e.g. with proper indentation), the physical distance between such elements need not
interfere with their (conceptual) locality.

Since the rationale behind this suggestion is similar to that for banishing the goto,
we will begin by briefly paraphrasing the arguments against the goto. We must admit
certain limitations on our intellectual powers - in particular, that we are better able
to cope with static relations among objects than dynamically evolving ones. Since the
text of a program is static but its execution is dynamic, anything which destroys or
obscures the mapping hetwecn textual relations (largely concatenation) and execution
relations (the "next" instruction) magnifies the difficulty of doing that which we are
least equippcd to do. While all forms of control transfer are indicted by this argument
to some extent, control constructs such as if-then-clse, for, case, etc,, are reaconably
acceptable because of the syntactic cues they provide. When a program is written
using these exphiat, well-structured control commands, it s reésowbly easy to
determine the antecedents of any given command, and hence to deduce the
assumptions in effect at that point in the prozram. When goto’s are permitted, this
task is difficult because the predecessors of a point in the program are hard to
locate. Arguments for and acainst the golo may be found in [2-4]; the extensive
bibtiography in [2] should be helpful to anyone interested in further reading on the
subject.

Note that this argument does not condemn every use of the goto; it is certainly
possible. to find programs which use the goto and are not difficult to understand -

particularly if the programs are small, the targets of the goto’s are close to the jump
points, and the control paths established by the goto’s are standard ones. The
argument below concerning the non-local variable is similar in that it asserls -that
nonlocal variables may be misused - not that every use obscures program structure.



SIGPLAN Notices 29 1973 February

Consider what it means to "understand” a program. Suppose we are presented
with a piece of program text logether with the domain of ils input parameters. When
the program is applied {o a particular set of input values {(executed), a particular
sequence of stales {3 sel of variable values) results. Generally, different state
sequences will resull depending upon the choice of input parameters; we can thus
speak of the class of all possible computations performed by a program as the set of
all executions produced by the program under all valid combinations of input
parameters. There is clearly a correspondence between the text of a program and
the executions it produces, although the correspondence may not be obvious. It is a
knowledge of this correspondence that is crucial to "understanding” a program.

Since the class of all possible computations of most programs is large,
"understanding” directly in this sense is not within the range of our mental
capabilities. We employ instead various devices to abstract from the specific actions
of a program to the effects of those actions. Abstraction is often achieved by
selectively ignoring information and modelling only the effects which we believe are
relevant to succeeding stages of the computation. A program may have many effects
other than the outputs of interest, but we do not regard an understanding of these
effects as crucial o understanding the program.

We can formalize the notion of abstraction. Suppose S is a segment of program
text and P and P’ are logical propositions such that if P is true prior to the execution
of S, then P’ will be true after its execution. Then the transformation S:P-P’is a
characterization of the effect of executing S, i.e. an abstraction of S.

It is clear that in the abstraction S:P-P’, the proposition P must contain
components describing the state of all variables used in S but not local to S. Further,
P’ must contain components describing the effect on all non-local variables modified
in S. P and P’ should not mention non-local variables which are not used is S; the
inclusion, and particularly the checking, of such variables will increase the complexity
of understanding S beyond all reasonable bounds. Thus the complexity of the
abstraction is directly related to the number of non-local variables used, and we
should expect the mental effort necesary to form an abstraction to increase with the
number of non-local variables.

Note that the variables whose states are described by the logical propositions P
and P’ associated with any given segment of text S will not in general be the same
variables described by the propostions associated with adjacent segments of text. In

. order to check the correctness, or even the plausibility, of a program, it is necessary
to ensure that the proposition P is valid - that the variables in P actually have the
values claimed for them. In a straight-line program this would present no problem: it
would be sufficient to scan backward through the program until a proposition
involving each of the variables in question was found. However, straight-line
programs are rare (except in languages such as APL where much of the control is

implicit), so it is necessary to check backward along all possible control paths until an
assertion about each variable of interest is found in every path. The complexity of
this task increases exponentially with the distance of the last previous use of each
variable along each control path. Just as well-structured control operators help to
identify which assumptions are in effect al any point in a program, appropriate scope
rules (naming operators) will aid in locating the relevant values of variables.



SIGPLAN Notices 30 1873 February

We might consider minimizing the number of non-local variables being considered
al any instant by choosing a smaller segment of text - thereby hoping to minimize the
complexity of the absiraction. This scheme is of limited use, since after a point the
combinatorial complexity of heeping track of the remaining non-local variables along
various control paths leading to S may again increase the complexity of P,

It is not possible to avoid these issues by making global stalements about global
variables. Statements of intent certainly help the reader to understand a program,
but they are not sufficient. in programming languages that do not permit
simultaneous assignments, any global statement describing a relationship between two
variables will be momentarily false each time the variables are altered. Consider, for
example:

integer i,j;
comment j is 2x;

i := <sO0me value>;

comment the assertion is false at this point;
j o= 2%

comment the assertion is true again;

Since programming errors may arise in the course of maintaining the asserted
correspondence, the global statements alone are not sufficient,

To illustrate the problems created by the non-local variable, we suggest the
following exercise. We give below an un-commented Algol procedure which
implements a simple numerical tecihinique. The procedure is small and purports to be
"well-structured”. We suggest that you study it to determine precisely how it works.

As you do so, ask yourself what it is about the procedure that makes the
understanding task more difficult than the size of the program seems to warrant,

real procedure q(f,ab,,el,e2)
value a,b,,el,e?;
real procedure f;
real ab,i,el,e?;
begin
real cf,nfs,il,x;
cf « fla)y, o « (f(a-1) - cf)/i;il ~ 13 Q « O
for x « a step i until b-i do
begin
nf « f(x+i);
if abs (cf + s%i - nf)/nf > el
then begin x « x-3#i/2; il « i/2 end
else begin
if abs (cf + sxi - nf)/nf < e2 thenil « i22;
Q « Q + ixlct + nf)/2;
s & (nf - cf)/fi;

cf « nf
, end;
te il
end;
q«Q

end;



SIGPLAN Notices 31 1973 February

Examples and Relsled Issues Concerning Block Struclure

The most familiar mechanism through which the non-local variable is implemented
is Algoi-like block structure. Although this technique for defining scopes is superior
to none at all, in this section we would like to point out some limitations and problems
of both the non-local variable and Algol-like scope rules.

Not all the problems posed by these examples are direct consequences of the
jocality of names. We believe that the entire issue of programmer control over the
naming environment is important, and we would like to see available a variety of
techniques for controlling the scope of names. Algol-like block structure is one such
technique (but not the only one) and certain problems arise as a consequence of this
particular scope rule. We therefore give examples directed at deficiencies of block
structure as well as at the perils of non-locality.

Side effects: The problems assaciated with a procedure’s making changes in the
values of non-local variables are well known. See, for example, [5]. Untold confusion
can result when the consequences of executing a procedure cannot be determined at
the site of the procedure call.

Indiscriminant Access: Block-structured scope rules do not permit a programmer to
restrict the use of a variable to a subset of the code at the block level where the
variable is declared. Suppose that we want to implement a stack, sharing a vector
STACK and a pointer STKPTR among several procedures which operate on the stack.
The natural implementation is:

begin
real array STACK [1:100]; integer STKPTR;
procedure initialize; STKPTR « O;
procedure push (x); real x;
begin STKPTR « STKPTR + I;
STACK[STKPTR] « x end;
real procedure pop;
begin pop « STACK[STKPTR];
STKPTR « STKPTR - 1 end;
boolean procedure empty; empty « STKPTR = O;

<calls on initialize, push, pop, empty, etc.>

end

In this implementation the variables STACK and STKPTR are accessible to the rest of
the program. They cannot be protected by adding block structure, for that would
also protect the procedure names.

Vulnerability: When the scope rules permit many nested levels of locality, any
program segment which did not actually declare its variables has lost all contro! over
the assumptions under which it executes; the programmer can interpose (perhaps
inadvertently) new definitions of the non-local variables Consider:



SIGPLAN Notices 32 1973 February
A: begin integer x;

8: begin
<use of x>
and;

end

where B is possibly deeply nested within A and uses of x are "rare”. It is entirely
plausible that a programmer might discover at some block level that he needs a new
temporary variable and create:

A: begin integer x;

C: begin real x;

B: begin
<use of x>
end;

end

end

thereby destroying the binding of the inner x. If a programmer wishes to introduce at
some level a variable which will be used at some (possibly deeply nested) inner level,
he must be aware of the names used at all intervening levels.

The problems of indiscriminant access and vulnerability are complementary: the
former reflects the fact that the declaror has no control over who uses his variables;
the latter refiects the fact that the program ifself has no control over which variables
it operates on. Both problems force upon the programmer the need for a detailed
global knowledge of the program which is not consistent with his human limitations.

No overlapping definitions: In some calculations, each program segment depends
only on the output values of its immediate predecessor. These variables may be
large arrays of various shapes. In such cases, variables should be accessable to only
the two program segments concerne and inaccessible or invisible to others.
Unfortunately, the block siructure discipline provides no way to describe such
overlapping definitions, and global strategies make the variables too vulnerable.

Other anomalies of block structure produce situations where the interpretation of
the use of a variable is hard to understand. One such difficulty is the "hole-in-the-
scope"” problem described by Knuth [6}



SIGPLAN Notices 33 1973 February

Whatl Then?

Having condemned the non-local variable in general and Algol-like scope rules in
particular, it behooves us 1o examine the alternatives. In the case of the goto the
primitive notion of "transfer of control” is not condemed as such. The argument is
rather that the textual representations (syntax) which indicate that such transfers are
fo occur must enforce lextual locality of the transfers. A similar assertion applies to
the issues we are raising about scopes of names. We do not condemn the primitive
notion of controlled access to a name. Rather we argue that the textual
representation of such control should be explicit and localized.

As with the goto proposal, the present proposal should not be construed as a
trivial quibble over syntactic facilities. Rather, we are attempting to extend the
analysis of what constitutes well-structured programming. Issues of whether specific
syntactic features should or should not be in a language in order to promote good
program structure are of lesser importance. In the case of Algol we have exhibited
both features which permit the construction of ill-structured programs and the lack of
features which would allow weli-structured access patterns to be expressed.
Although this appears to call for a change in the scoping syntax of languages, our
concern is with the semantics of languages and programs written in those languages
-- not with syntax.

Unlike the goto situation, the scope problem does not have 1) a single offending
construct whose elimination will correct the problem and 2) a collection of familiar
constructs which are (almost) adequate to capture the essential uses of the
underlying primitive concept. We do not have a specific proposal for a set of

constructs to replace or augment conventional scope rules. We can, however,
enumerate some of the attributes that a suitable alternative would have:

- The default should not be to extend the scope of a name to inner blocks.

- The right to access a name should be by mutual agreement between creator and
accessor.

- Access rights to a structure and to its sub-structures should be decoupled.
- It should be possible to distinguish different types of access.
- Declaration of definition, name access, and allocation should be decoupled.

We would like to submit the question of what constitutes appropriate alternative rules
to the language community.

We also believe the foliowing questions should be addressed:

~ Are there criteria, other than those listed above, which should be used to judge
a scoping mechanism?

- In what sense is a set of scope rules "complete"?

- What classes of algorithms are precluded by Algol-like (or other) scope rules?



SIGPLAN Notices 34 1973 February

- The discussion above is framed soley in terms of scope. To what degree does
"extent” interact with these considerations? In particular, what about
- implicit vs. explicit aliocation
- relention vs. deletion

-~ Many of the objeclions raised above have been addressed in the context of
proteclion within operating systems. ls the analogy to languages stronger or
weaker than apparent?

References

[1] Dijkstra, E.W., "Goto statement considered harmful,“ letter to the editor, CACM, 11,
3, March 1968.

(2] Leavenworth, B, "Programming With[out] the Goto," Proceedings ACM National
Conference, August 1972,

[3] Hopkins, M, "A Case for the Goto,” Proceedings ACM National Conference, August
1972. ‘

[4] Wulf, W, "A Case Against the Goto," Proceedings ACM National Conference, August
1972.

(5] Knuth, Donald E. "The Remaining Trouble Spots in Algol 60." CACM 10,10 Oct.
1967, pp. 611-618.

[6] Knuth, Donald E. "Aigol 60 Confidential." CACM 4,6 June 1961, pp. 268-272.



