
Adaptive Graph Transformation Rules⋆

Berthold Hoffmann1, Dirk Janssens2,
Mark Minas3, and Niels Van Eetvelde2 ⋆⋆

1 Universität Bremen, Germany
2 Universiteit Antwerpen, Belgium

3 Universität der Bundeswehr München, Germany

Abstract. The rule-based transformation of graphs has many applica-
tions in computer science and beyond. The adaptive graph transforma-
tion rules proposed in this paper contain variables as placeholders for
attribute values and subgraphs of varying number and shape. Replacing
these variables by concrete values derives sets of double pushout rules
that actually transform graphs. Even rather complex transformations oc-
curring in real-life applications, such as the Pull-Up-Method refactoring
operation, can be specified by a single adaptive rule.

1 Introduction

Many systems in computer science (and other parts of science) have structured
states that gradually evolve according to rules. Graphs and graph transforma-
tion are natural candidates for modeling states and behavior of such systems
in an axiomatic way. Unfortunately, the rules of classical formalisms are rather
restricted. E.g., double pushout (DPO) rules [8] just allow to remove a constant
subgraph from a host graph, and insert another constant graph for it. For de-
scribing the behavior of complex real-life systems, one needs a large number of
such rules, and may have to program their application with control structures. In
this paper we pursue another idea: we make rules adaptive by introducing vari-
ables as placeholders for values of different kinds. Every adaptive rule abstracts
from a set of simple rules, one for every assignment of values to its variables.
In [31, 19, 20] we proposed cardinality variables and a cloning concept that allows
to make copies of subgraphs, and graph variables that allow to expand nodes by
graphs of different shape. Now we add attributes by which computations can be
defined on labels, and refine the way how variables can be combined: Attribute
and graph variables may be cloned individually, yielding a set of different vari-
able names of the same type, or uniformly, yielding a set of identical names.
In an ongoing case study of using graph transformation for refactoring [22, 31,
32, 20],4 these concepts turned out to be useful: Even rather complex transfor-
mations occurring in real-life applications, like the Pull-Up-Method refactoring

⋆ Supported by SeGraVis (www.segravis.org), a European research training network.
⋆⋆ On leave to Universität Bremen on a SeGraVis grant (October 2005–January 2006).
4 Niels: Shall we cite your PhD thesis here, as “ongoing work”?

2 B. Hoffmann, D. Janssens, M. Minas, N. Van Eetvelde

operation, can be specified by a single adaptive rule. Other examples have shown
that graph variable expansion [18] or cloning [23] alone are useful for specifying
graph transformations.

The paper is structured as follows: The next section recalls a simple kind of
DPO graph transformation, and discusses how far it meets the needs to express
refactoring by examining the Pull Up Method refactoring operation. In Section 3,
we develop three adaptations of graph transformation rules—attribute evalua-
tion, expansion of nodes by graphs, cloning of subgraphs—and discuss their
interplay, in particular the individual cloning of graph and attribute variables.
Then adaptive graph transformation is defined, in Section 4. The conclusions in
Section 5 point out related and future work.

2 Graph Transformation

Refactoring prepares object-oriented software for evolution by improving its
structure without changing its behavior. Since software models—specifications in
Uml, or representations of program code—are often graph-like, graph transfor-
mation is a natural candidate for specifying refactorings. One of the refactoring
operations defined by Martin Fowler [13] will be our running example.

Example 1 (Pull-Up-Method). This refactoring applies to a method definition d
in a class c where all sibling classes define methods that have the same name
and parameter list, and bodies that are semantically equivalent. Note that this
does not imply that they have identical syntax trees. Pull-Up-Method moves d
to c’s superclass and removes the equivalent method definitions from the sibling
classes. However, checking semantical equivalence of all these method bodies
remains the programmer’s task, and is beyond the scope of our considerations
here.

For the case study, the structure of programs is represented by labeled graphs.

Definition 1 (Graph). Let Σ be a set of labels that may be infinite.
A graph G = 〈Ġ, Ḡ, sG, tG, ℓ̇G, ℓ̄G〉 (labeled with Σ) consists of disjoint finite

sets Ġ of nodes and Ḡ of edges, of two functions sG, tG : Ḡ → Ġ defining the
source and target nodes of its edges, and of two functions ℓ̇G : Ġ → Σ and
ℓ̄G : Ḡ → Σ that assign labels to its nodes and edges.

A morphism m : G → H from a graph G to a graph H consists of two
functions ṁ : Ġ → Ḣ and m̄ : Ḡ → H̄ that preserve sources, targets, and labels:

sH ◦ m̄ = ṁ ◦ sG, tH ◦ m̄ = ṁ ◦ tG, and ℓH ◦ m = ℓG

GΣ shall denote the class of graphs labeled with Σ. An edge in a graph is inci-
dent with its source and target nodes, and makes these nodes adjacent to each
other. We often do not distinguish between nodes and edges if a statement holds
analogously for both sets; then “g ∈ G” refers to the (graph) item “g ∈ Ġ∪ Ḡ ”.
A graph morphism m : G → H is injective (surjective) if its functions have the
respective property; an injective morphism m is an inclusion if m(g) = g for

Adaptive Graph Transformation Rules 3

every item g ∈ G; then we write G ⊆ H and call G a subgraph of H . An injec-
tive and surjective morphism m : G → H is an isomorphism; it makes G and H
isomorphic, written G ∼= H .

Example 2 (Program Graphs). Fig. 1 shows two program graphs, a language-
independent representation for object-oriented programs is introduced in [22].
Nodes (rounded boxes) represent program entities, and edges (arrows from their
sources to their targets) represent syntactical and contextual relations among
entities. Labels (which are inscribed to nodes, and ascribed to edges) classify
the types of entities and relations, and may contain attribute values (like the
name of an entity). The typing of program graphs is discussed in [22].

A simple notion of graph transformation will be used to perform refactorings.

Definition 2 (Transformation). A (graph transformation) rule r = L/R
consists of left hand side L and right hand side R that are graphs in GΣ sharing
a subset I = L̇ ∩ Ṙ of interface nodes.

Let G ∈ GΣ and r = L/R a rule. An injective morphism m : L → G is a
match of r in G if it satisfies the following dangling condition:

No node in ṁ(L̇ \ I) is incident with an edge in Ḡ \ m̄(L̄).

Then r transforms G (via the match m) to a graph H ∈ GΣ that is constructed
as follows:

1. Clip m(L) off G at the nodes ṁ(I) to obtain the context graph C.

2. Glue R to C by identifying ṁ(I) and I in the disjoint union C⊎R, and label
the node ṁ(v) with ℓR(v) for every v ∈ İ.

Then we write G ⇒m,r H or just G ⇒r H .

C
1

P

m

B

M: "m2"

i

fp

2 3

4

5 C

i

l l
m

6

7

B

C

m

B

C

i

V

8

9

C
1

P

B

i

fp

2 3

4

5

C

i

l

m

6

7

CC

i

8

9

A

Ca
E

Ca E
v

e

ap

e

ap

a

a

u

c

c

A2

A1

M: "get"M: "get"

E

l

M: "m2" V

e

Fig. 1. A concrete rule for Pull-Up-Method refactoring

4 B. Hoffmann, D. Janssens, M. Minas, N. Van Eetvelde

This notion of transformation corresponds to DPO graph transformation with
relabeling [16].5 The non-injective matches allowed in “classical” DPO transfor-
mation [8] can be simulated by taking quotients of rules as proposed in [15]:
If r = L/R is a rule, every rule r′ = L′/R′ obtained by identifying pairs of
nodes v, v′ ∈ I that satisfy ℓL(v) = ℓL(v′) and ℓR(v) = ℓR(v′) is a quotient
of r. Since r has finitely many quotients (as long as r is finite), the set Q(r) of
quotient rules can be used instead of just r. Moreover, unwanted elements may
be removed from Q(r) in order to control how parts of r may be identified in
transformations.

Example 3 (A Refactoring Rule). Fig. 1 shows a rule performing a Pull-Up-
Method refactoring on program graphs. (The interface nodes of the rule are
specified by annotating them with the same number in L and R.)

The C-nodes represent a class (3) with its superclass (1) and all its sibling
classes (2,8). A method signature (5) with one parameter (6) has overloaded
bodies (B-nodes) that are members of all sibling classes (2,8); both implemen-
tations make a call to another method m2 (7). One makes a call (Ca-node) to
m2 using the formal parameter of get as its actual parameter whereas the other
first assigns (A-node) this parameter to a variable (9) and then calls m2 with
this variable. The E-nodes represent expressions, which are accesses to variables
and parameters in this case. Obviously, these implementations have the same
semantics but differ syntactically.

On the right hand side of the rule, the implementations of get in the sibling
classes (2,8) are removed, and its body (4) is moved to the superclass (1). (The
expressions defining the body (4) need not be mentioned in the rule as they are
not changed by the refactoring.)

This rule does not define Pull-Up-Method in general, however, as it only
applies to particular situations:

– Here the class (3) has two sibling classes; the method has one parameter,
and its bodies access two names. In general, there can be any number of
sibling classes, parameters, and names.

– The syntactical structure of the method bodies may vary; a general rule
should apply to bodies of any form.

– This rule pulls up a method named get, but this name should not matter for
the general rule.

Note that a set of simple DPO rules would be needed in order to express the
general refactoring: Some for checking that the method is implemented in all
sibling classes, other ones for removing all but one implementation recursively,
and finally the one pulling up the remaining implementation. The applications
of these rules have to be controlled in a non-trivial way, and it will not be easy
to see that they do what they should, let alone to show it.

5 Actually, it corresponds to the special case where, in the DPO rule L ← I → R, I

is completely unlabeled and discrete, while L and R are totally labeled. Since edges
are not in the interface, they are never relabeled, but just removed and (re-) inserted
by a transformation step.

Adaptive Graph Transformation Rules 5

Therefore we propose to define this refactoring by a single general rule that
is then adapted with respect to attribute values, the form of certain subgraphs,
and the number of copies of certain subgraphs. The rest of the paper describes
these adaptations and their combination.

3 Graph Adaptation

The graphs occurring in adaptive rules shall be variable in the following sense:

– Their edges and nodes are labeled by terms that specify attribute values,
referring to values of other nodes and edges by attribute variables.

– They may contain graph variables which designate stars (nodes with their
incident edges and adjacent nodes) that may be expanded to varying graphs.

– They may contain nodes that may occur once, several times, or not at
all. Cardinality variables distinguish these clonable nodes and specify which
nodes shall have the same number of clones.

– Graph and attribute variables may be qualified as individual if they are con-
tained in a clonable node; clones of such variables get different fresh names
in each of their copies so that they can be substituted by different graphs
and attribute values, respectively. Other graph and attribute variables are
uniform, and keep the same name so that all clones of these variables will
have equal substitutions.

Attribute variables, graph variables, and cardinality variables trigger deriva-
tions of a graph, called attribute evaluation, expansion, and cloning.

3.1 Attribute Evaluation

Attribute evaluation needs a semantic basis that provides values and computa-
tions. We define this basis by the carrier sets and functions of a many-sorted
algebra. The evaluation of attributes is then specified by the interpretation of
terms that label nodes and edges of a graph, as in [25].

Definition 3 (Order-Sorted Algebra). Let S be a finite set of sorts wit a
subsort relation P ⊆ S × S, and let Ω = (Ωw,s)w∈S∗,s∈S

be a family of sets of

many-sorted operation symbols over S that are pairwise disjoint.6

An order-sorted algebra A (over S and Ω) consists of a family (As)s∈S of
non-empty carrier sets so that s̄ P s if and only if As̄ ⊆ As, and of functions
opA : As1

× · · ·×Ask
→ As for every operation symbol op ∈ Ωs1···sk,s. Elements

c ∈ Ωε,s are called constant symbols, and associated with values cA ∈ As.
Let X = (Xs)s∈S be an S-sorted family of variable names that are pairwise

disjoint and disjoint with every set in Ω. Then the terms (with variables X
over S and Ω) are the least family T = (Ts)s∈S of sets so that x ∈ Ts if x ∈ Xs,
and op t1 · · · tk ∈ Ts if op ∈ Ωs1···sk,s and ti ∈ Tsi

for 1 6 i 6 k, k > 0.

6 Bert: Order-sortedness probably requires another property here.

6 B. Hoffmann, D. Janssens, M. Minas, N. Van Eetvelde

The terms T induce a free term algebra where every operation symbol is
interpreted as a term-constructing function: opT (t1, . . . , tk) = op t1 · · · tk for all
op ∈ Ωs1···sk,s where ti ∈ Tsi

for 1 6 i 6 k, k > 0.

Assumption 1 (Semantic Basis). For our case study, we assume that the
many-sorted algebra contains the following sorts, carrier sets, and operations:

1. The sort Nat has the carrier set ANat = N and terms tn (without variables)
such that tnA = n for all n ∈ N.7

2. The sort String has the carrier set AString = C∗, i.e., words over a set C of
characters; it has a concatenation operator ++ ∈ ΩString String,String.

3. The sorts C, . . . are used as node labels without attributes, where Ax = {x}.
4. The sort M represents method signatures, with the carrier set AM = {M s |

s ∈ AString}.
5. The abstract sort N is a supersort of C, V, M, and P, with a carrier set AN

that is the (disjoint) union of the carrier sets of its subsorts.
6. The sorts i, m, . . . are used as edge labels with numbers as attributes, where

Ax = {x n | n ∈ N}.8

We assume that the labels of GΣ defined in Def. 1 are the carrier sets of an
algebra, and define term-labeled graphs and attribute evaluation.

Definition 4 (Attribute Evaluation). GT denotes the class of graphs that
are labeled with terms T .

An assignment α : X → A is a family of mappings αs : Xs → As that extends
to terms by defining α(op (t1 · · · tk)) = opA(α(t1) · · ·α(tk)) for all op ∈ Ωs1···sk,s

and ti ∈ Tsi
for 1 6 i 6 k.

The evaluation of a graph G ∈ GT according to an assignment α is the
graph Gα = 〈Ġ, Ḡ, sG, tG, α ◦ ℓ̇G, α ◦ ℓ̄G〉 that is obtained by applying α to all
terms labeling the items of G.

Example 4 (Attribute Evaluation). Fig. 2 shows how a term-labeled graph from
the Encapsulate-Field refactoring [32] is evaluated. The term-labeled graph on

0

B

B

B

B

B

@

1M: "get_"++

B

P

1M: "set_"++

C

V:

E

RA

E

BF

l

e u

l

afp

v

e

t

t

t

v a

F F

1

C

C

C

C

C

A

α

= 1M: "get_device"

B

P

1M: "set_device"

C

V:"device"

E

A

E

l

e u

l

afp

v

t

t

t

v a

R Be

Fig. 2. A graph and its evaluation

the left hand side contains a string variable F and string terms that concatenate
the names of getter and setter methods. This graph is evaluated according to an
assignment α mapping the variable F ∈ XString onto the string ”device”.

7 The interpretation tA of a term t without variables is defined by (op t1 · · · tk)A =
opA(t1,A, . . . , tk,A).

8 Bert: The description of the labels used in the running example has to be completed.

Adaptive Graph Transformation Rules 7

3.2 Expansion

Graphs are expanded by replacing variable nodes and their incident edges by
graphs. Variable nodes are labeled with graph variables Xn of distinguished
nonterminal sorts n ∈ N ⊆ S that has no operation symbols (i.e., Ωw,n = ∅
for all w ∈ S∗) so that Tn = Xn.9 The boxes of variables nodes are drawn with
sharp corners whereas those of constant nodes are rounded.

The expansion of variable nodes is specified by star replacement, a general-
ization of node replacement [11] and hyperedge replacement [14, 4].

Definition 5 (Star Replacement). In a graph H ∈ GT , a node v ∈ Ḣ is a
variable node if ℓH(v) = x ∈ Xn with n ∈ N . The subgraph G ⊆ H that contains
such a variable node v as a center, all edges incident with v as arms, and all
nodes adjacent to v as border nodes, is called an x-star, or just a variable star.
(We assume that all arms have their source in the center v and do not loop.)

A rule r = L/R specifies a replacement for a graph variable x ∈ Xn if L is
an x-star, and the interface I = L̇ ∩ Ṙ consists of the border nodes of L, which
have the same labels and cardinalities in L and in R.

If there is a transformation step G ⇒r H for graphs G, H ∈ GT via r, we
say that r expands G to H , and write G ⇒v,r H if v ∈ Ġ is the variable node
removed by the transformation step.

Star replacement steps of different variable nodes are parallel-independent,
as defined in [8] so that they can be performed in any order.

Lemma 1 (Star Replacement Commutes [5]). For G, H, H ′ ∈ GT and star
rules r and r′:

If H ′ ⇐=
v′,r′

G=⇒
v,r

H with v 6= v′, then H ′ =⇒
r

K ⇐=
r′

H for some K ∈ GT

Example 5 (Uniform Star Replacement). The star rule r in Fig. 3 expands the
variable nodes a and b in Fig. 4 in two steps. The variable nodes and the star
rule determine the result of the expansion steps uniquely (up to isomorphism).
However, this does not hold for every star replacement step: If both arms of the
variable nodes carried the same label, say 1 (both in the rule and in the graph),
the rule has two different matches. Then star replacement could yield the same
result as before, but also a graph with counter-parallel instead of parallel edges.
To avoid such a situation, we require that the arms of variable nodes carry
different labels.

Expansion shall do star replacement in a uniform way: all nodes labeled
with the same variable x ∈ X⊛ shall be transformed via the same star rule.
In general, these nodes (unlike a and b in Fig. 4) can have different numbers
of incident edges, also with different labels. We must thus restrict the form of
x-stars so that a single star rule applies to all of them.

9 The carrier set for ⊛ is never used since graph variables will never be evaluated like
attributes, but replaced, together with their nodes, before a rule is evaluated.

8 B. Hoffmann, D. Janssens, M. Minas, N. Van Eetvelde

r =

Y

1 2

A A

1 2

,

A A

1 2

Fig. 3. An expansion rule

Y

1 2

Y

1 2

A A

a

b

=⇒
b,r

Y

1 2

A A

a

=⇒
a,r

A A

Fig. 4. Expansion steps of a cloned variable

Definition 6 (Untangledness, Uniformity). A star G is untangled if its edge
labeling function ℓ̄G is injective. A pair of untangled x-stars G, H (where x ∈ Xn

and n ∈ N) is uniform if there is a bijection m̄ : Ḡ → H̄ such that ℓ̄H ◦ m̄ = ℓ̄G

and ℓ̇H ◦ sH ◦ m̄ = ℓ̇G ◦ sG.10

A graph G is untangled if it contains only untangled stars; it is uniform if
all pairs of x-stars in G are uniform, for all variables x ∈ Xn with n ∈ N . In
the following, we will silently assume that all graphs are untangled and uniform,
and denote the class of such graphs as G⊛

T .

Fact 1. For untangled graphs G ∈ G⊛

T , the node v and star rule r used in star
replacements G ⇒v,r H determine H uniquely up to isomorphism.

Proof. Let G ⇒v,r H for some star rule r = L/R. Then there must be a mor-
phism m : L → G mapping the center of r’s left hand side, say v̄, to v because the
border nodes in L are constant, and m preserves labels. Since v̄ is deleted by the
replacement step, every edge in G with source v must be in m̄(L̄); otherwise v
would violate the dangling condition stated in Def. 2. Since v is untangled, all
edges incident with v have different labels. Since m̄ preserves labels, v̄ is untan-
gled as well so that m̄ is uniquely defined. Then ṁ is uniquely defined for the
border nodes of L since the targets of all arms in L are distinct. ⊓⊔

Substitutions are sets of star rules that should apply to the variable nodes
occurring in a graph.

Definition 7 (Substitution). A set γ of variable replacement rules is a substi-
tution if it contains at most one rule for every x ∈ Xn with n ∈ N , and if no right
hand side in γ contains variable nodes. A substitution γ fits a graph G ∈ G⊛

T if
every star in G is uniform with the left hand side of a rule in γ.

Expansion of all graph variables applies the rules defined in a substitution in
arbitrary order.

Definition 8 (Expansion). Consider a graph G ∈ G⊛

T and a substitution γ
fitting G.

10 Niels: The border nodes may have different labels.

Adaptive Graph Transformation Rules 9

The graph H is a γ-expansion of G if there is a sequence of expansion steps

G = G0 ⇒r̃1
· · · ⇒r̃n

Gn
∼= H

where r̃i = Lαi

i /Rαi

i with ri = Li/Ri ∈ Q(γ), and the assignments αi : X → T
assign terms only to the variables in Li, for 1 6 i 6 n so that no expansion rule
in γ matches H .

Fact 2. For some G ∈ G⊛

T and some substitution γ fitting G:

1. The γ-expansion H is determined uniquely up to isomorphism.

2. H does not contain variable nodes.

Proof. 1. This follows from Facts 1 and Lemma 1.

2. If γ fits G, every star in G can be transformed by a star rule in γ. Since
the right hand sides of γ do not contain graph variables, Gγ does contain no
graph variable any more. ⊓⊔

From now on, for a fitting substitution γ, Gγ shall denote the unique γ-expansion
of a graph G ∈ G⊛

T .

The substitutions defined so far allow variable nodes to be expanded by
graphs G ∈ G⊛

T of arbitrary shape. Often, the substitution of a variable node
shall be of a particular shape that is specified in a certain way, for instance by
a graph grammar.

Definition 9 (Shaped Expansion). let Γ be some grammar that induces a
derivation relation ⇒Γ ⊆ G⊛

T × G⊛

T , with a reflexive-transitive closure denoted
by ⇒∗

Γ .

A substitution γ is shaped (according to Γ) if all star rules L/R ∈ γ satisfy
L ⇒∗

Γ R.

The expansion Gγ of some graph G ∈ G⊛

T according to a shaped substation
γ is called a shaped expansion.

Star grammars [5] are suited to define shaped substitutions in the following
way: Given a function sort : A → S that replaces values a ∈ As by their least
sort s ∈ S, i.e., such that there is no other sort s̄ ∈ S with s̄ P s and a ∈ As̄.
The sort graph sort(G) is obtained from a graph G over A or T by applying sort
to all its labels.

A star grammar Γ ∗ is defined over graphs GS , with star rules where the left
hand side is a nonterminal n ∈ N .11 A rule L/R in a substitution γ is shaped
according to Γ ∗ if sort(G) ⇒∗

Γ∗ sort(H). The variables Ai used in Figure 15 are
shaped according to the nonterminal Body of the star grammar defining program
graphs that is described in [30].

11 The symbols labeling the graphs are denoted by Σ instead of S in [5].

10 B. Hoffmann, D. Janssens, M. Minas, N. Van Eetvelde

3.3 Cloning

Often, a certain subgraph may appear repeatedly in a graph, or may be missing
altogether. In Progres [28], for instance, it can be specified that a node may
appear repeatedly, by drawing its circle or box with a “shade”. A so-called “set
node” v is a placeholder for n > 0 nodes v1, . . . , vn that have the same label
as v, and the same edges to the adjacent nodes of v, see Fig. 5.12

u v w u
...

...
...

v1

w

vm

Fig. 5. Multiple node

We call v a multiple node, and v1, . . . , vn its clones. Note that the cloning
of nodes implies that their incident edges are cloned as well. In contrast to
Progres, we allow that two multiple nodes u and v are adjacent and have m
and n clones, resp., m · n copies of the edges will be made between their clones,
as shown in Fig. 6.

u v

u1 v1

...
...

...

...

um vn

Fig. 6. Adjacent multiple nodes

Furthermore, we allow to specify that an entire subgraph can occur repeat-
edly. We introduce cardinality variables that are placeholders for arbitrary car-
dinality numbers n > 0, and write these variables into the shade of set nodes.
A multiple node annotated with the cardinality variable x is then called “x-
fold”. Multiple nodes that are annotated with the same cardinality variable x
belong to the same multiple subgraph, or “x-fold subgraph”, which is the graph
induced by all multiple nodes annotated with x and by their adjacent nodes,
which are called border nodes. Fig. 7 shows a multiple subgraph induced by the

12 In Progres, nodes may also be optional, i.e., have 0 or 1 clone, or may be required
to have n > 1 clones.

Adaptive Graph Transformation Rules 11

x x

u v

u1 v1

...
...

...
...

um vm

Fig. 7. Multiple subgraphs

x-fold nodes u and v. As with single multiple nodes (which correspond to multi-
ple nodes annotated with mutually different cardinality variables), the incident
edges of multiple nodes have as many clones as the nodes themselves.

Items of graphs can be labeled with attribute terms. If attribute variable
names occur in labels of multiple nodes, like U and V, and z in the graph of Fig. 8,
simple cloning just copies these variable names so that they are placeholders for
equal attribute values in the cloned graph. This is not the only way in which

x y

U

u z
V

v
U

u1 z
V

v1

...
...

...

...

z

z

U
um z

V
vn

Fig. 8. Multiple attribute variables

one may want to clone variables: There are situations where the clones shall be
different variable names (of the same sort) so that they may be placeholders for
different attribute values. To specify this, each of the n > 0 clones of an x-fold
subgraph gets an actual clone number 0 6 i 6 n that is denoted by an actual
clone variable of the form !x. (The cardinality variable x itself is a placeholder for
the total number n of clones.) By indexing attribute variables with these actual
clone variables, we may obtain clones with individual variable names. In Fig. 9,
U!x and V!y denote individual attribute variables of the x-fold node u and the
y-fold node v, respectively. Their clones are labeled with indexed variables Ui

for 1 6 i 6 m, and Vj for 1 6 j 6 n. In order to “individualize” the variable z on
the edge between these multiple nodes, we must index it with the actual clone
variables !x and !y of both nodes, in order to distinguish all the m · n clones of
the attribute variable. If we used the individual attribute variables z!x or z!y as
an edge label, either all outgoing edges of the nodes ui would carry the same
label zi (1 6 i 6 m), or all ingoing edges of the nodes vj would carry the same
label zj (1 6 j 6 n).

We may also want to clone the border nodes of variable nodes as in Fig. 10.
If the edge incident with the arm of such a border node is labeled by some

12 B. Hoffmann, D. Janssens, M. Minas, N. Van Eetvelde

x y

U!x

u1 z!x,!y

V!x

v1

U1

u1 z11

V1

v1

...
...

...

...

z1,n

zm,1

Um

um
zm,n

Vn

vn

Fig. 9. Individual multiple attribute variables

X

u a

y

v

X

u
a

...
...

v1

a

vn

Fig. 10. Variable nodes with multiple arms

X

u (a, !y)

y

v

X

u
(a, 1)

...
...

v1

(a, n)
vn

Fig. 11. Variable nodes with untangled multiple arms

y

X

u a v
X

u1

a

X

u1

a

...
...

v

Fig. 12. Multiple variable nodes

Adaptive Graph Transformation Rules 13

constant, the variable node will be tangled in the cloned graph as soon as more
than one clone is made. Again, we may use actual clone variables in order to
preserve untangledness, as shown in Fig. 11. Here we label the arm of the multiple
border node with a pair consisting of the “immutable” label a and the actual
clone variable !x. Then the clones of the edges carry different labels (a, i) for
1 6 i 6 n, and the variable node is untangled as it was before.

y

X!y

u a v

X1

u1

a

Xn

u1

a

...
...

v

Fig. 13. Individual multiple variable nodes

Finally, variable nodes may themselves be multiple, as shown in Fig. 12.
Simple cloning as in this figure yields clones with uniform graph variable names
that are placeholders for isomorphic subgraphs, to be determined by expansion.
As in the case of attribute variables, on may want to have different variable
names in the clones on the multiple variable node. This can again be achieved
by using the actual clone variable !x to index the name of the variable node, see
Fig. 13. Multiple variables with multiple arms are also possible (and useful!), as
can be seen in Fig. 14. 13

We now define cloning precisely. We assume that the set S of sorts contains
a sort Nat with the carrier set ANat = N and number terms tn ∈ TNat denoting
the numbers tnA = n ∈ N, for n > 0.14 The variables of sort Nat will be used to
annotate multiple nodes.

Definition 10 (Cardinalities). A pair 〈G,⊗〉, consisting of a graph G ∈ G⊛

T

and a partial cardinality function ⊗ : Ġ 99K XNat is called a template. We shall
often denote such a template just by its graph component G, and refer to its
cardinality function as ⊗G. A node v ∈ Ġ with ⊗G(v) = x ∈ XNat is called
x-fold, or just multiple; otherwise, if ⊗G(v) is undefined, v is called singular. In
figures, an x-fold node v is drawn by inscribing x to a circle or box that is a
“shade” of the circle or box depicting v. We denote the class of templates as G⊛⊗

T .
(Note that the templates with totally undefined cardinality functions coincide
with G⊛

T .)

13 All: Long live the power user of graph transformation! Only he will be patient enough
to read this completely!

14 In examples, we denote tn just by n, i.e., the number, written in sans serif font.
In finite operator domains, ta is usually represented by a term of the form “sn 0”,
where the constant 0 ∈ Ωε,Nat represents the number zero, and the unary function
s ∈ ΩNat,Nat is the successor operation.

14 B. Hoffmann, D. Janssens, M. Minas, N. Van Eetvelde

Definition 11 (Multiple Subgraph). Consider a template 〈G,⊗〉 ∈ G⊛⊗
T with

a cardinality variable x ∈ ⊗(Ġ).
The x-fold subgraph Gx ⊆ G is induced by the x-fold nodes in Ġ and their

adjacent nodes. The nodes of v ∈ Ġx with ⊗(v) 6= x are called border nodes of
Gx; all other items of Gx are called internal.

Assumption 2 (Variables in Templates and Graphs). In the graph G
underlying 〈G,⊗〉, a cardinality variable y ∈ ⊗(Ġ) may occur in two forms:
Its plain name y is a placeholder for the overall cardinality, i.e., the natural
number of clones that will be made of Gy; it may occur in every term used as
a label in G. In the terms labeling internal items of a multiple subgraph Gy,
an actual clone variable of the form !y ∈ XNat may occur, as a placeholder
for the number of the actual copy of Gy. Furthermore, the set Xs shall contain,
besides plain names like x to be used as uniform variables, names of the form x!y

and x!y,!z as individual variables for some actual clone variables !y, !z ∈ XNat

and for all sorts s in S. Like the actual clone variables themselves, individual
variables may only be used in the terms labeling internal nodes or edges of
multiple subgraphs Gy or Gz. In particular, individual variables of the form x!y,!z

may only occur in terms labeling edges that connect y-fold and z-fold nodes, as
illustrated in Fig. 9, because such edges are the only internal items that may
occur in the intersection of two multiple subgraphs. In a graph G ∈ G⊛

T , actual
clone variables will be substituted by terms representing numbers, so that the
individual variables are substituted as well, yielding indexed variables of the
form xti or xti,tj for cardinality terms ti, tj ∈ TNat. (Fig. 8 and Fig. 10–12 show
uniform attribute variables U, V, z and graph variables X, respectively. Fig. 9
and Fig. 13 show individual variables in the templates on the left hand side, and
indexed variables in the graphs on the right hand side, respectively.)

To avoid confusion by the use of different forms of variable names in a graph
G, we assume that a plain name x either occurs only as a uniform variable, or
only as the base name of an individual variable, or only in indexed variables.

Definition 12 (Clone). For some i > 0, the i-th clone Gx,i of a multiple
subgraph Gx is obtained by replacing all occurrences of !x in all labels of Gx by
ti ∈ TNat.

The k-fold x-clone Gx
k

of G is obtained by gluing G with k > 0 clones Gx,1

to Gx,k in the corresponding border nodes of Gx, removing the inner items of
Gx, and by substituting all occurrences of the cardinality variable x by the term
tk ∈ TNat, in all terms labeling the resulting graph.

Lemma 2 (Cloning is Commutative [20]). For some G ∈ G⊛⊗
T containing

cardinality variables x, y ∈ X⊗ with x 6= y, Gx
k

y
m

∼= G y
m

x
k

for arbitrary numbers
k, m > 0.

Sketch of Proof. If Gx and Gy overlap in border nodes (at most), their cloning,
seen as graph transformation steps, are parallel-independent so that there are
commuting cloning steps joining Gx

k
and G y

m
to a common template (Gk

x)m
y =

(Gm
y)k

x.

Adaptive Graph Transformation Rules 15

Otherwise, Gx and Gy overlap in edges between x-fold and y-fold nodes. . . .
⊓⊔

Lemma 2 allows to define a cloning operation.

Definition 13 (Cloning). Consider a graph G ∈ G⊛⊗
T containing cardinality

variables {x1, . . . , xn} ⊆ X⊗, and a multiplicity assignment µ : X⊗ → N.
Then the µ-clone of G is the graph Gµ obtained by a cloning sequence

G x1

µ(x1)
· · · xn

µ(xn)

Definition 14 (Boundness). All occurrences of an actual clone variable !x ∈
X⊗ in labels of the x-fold subgraph Gx of a graph G are bound.

Fact 3. If all occurrences of individual variables in a graph G ∈ G⊛⊗
T are bound,

then every clone Gµ contains no individual variables.

Proof. Every occurrence of a cardinality index variable !x within an x-fold sub-
graph Gx of G is replaced by in index. Since all individual graph or attribute
variables of the form y!x are required to occur in Gx, all of them are replaced by
indexed variables of the form yi. ⊓⊔

4 Adaptive Graph Transformation

Now, knowing how graphs can be adapted, we define the transformation of
graphs by rules that are derived by adaptation, and describe how transforma-
tions can be constructed in practice.

4.1 Rule Derivation

Adaptive rules shall be cloned, then expanded, and finally be evaluated. They
must thus satisfy conditions guaranteeing that all variables can really be instan-
tiated.

Definition 15 (Adaptive Rule). A rule r = L/R with L, R ∈ G⊛⊗
T is adaptive

if the following conditions hold:

1. Every interface node v ∈ I has the same cardinality in L and R.
2. No interface node is a variable node in L or R.
3. All clones Lµ and Rµ of L and R under some multiplicity function µ are

untangled.

Condition 3 is necessary since cloning does not always preserve untangledness,
as can be seen in Figs. 10, 11.

Definition 16 (Rule Derivation). Let r = L/R be an adaptive rule,
µ : X⊗ → N a multiplicity function, γ a substitution fitting Lµ and Rµ, and
α : X → A an assignment. Then r′ = ((Lµ)γ)α/((Rµ)γ)α is a derived rule of r
the interface I ′ of which contains the nodes of I and their clones. Dr denotes
the set of derived rules of r.

16 B. Hoffmann, D. Janssens, M. Minas, N. Van Eetvelde

We define a partial order in order to capture the property of maximal cloning
and expansion in transformations.

Definition 17 (Saturated Transformation). We define a partial order ⊑ on
multiplicity functions, expansions, graphs, rules, and matches as follows:

1. For two multiplicity functions µ, µ̃, µ ⊑ µ̃ if µ(x) 6 µ̃(x) for all x ∈ X⊗.
2. Two star rules r, r̃ satisfy G ⊑ G̃ if the rule graph of r is included in that

of r̃.
3. For two substitutions γ, γ̃, γ ⊑ γ̃ if γ(x) ⊑ γ̃(x) for all x ∈ X⊛.
4. For two matches m, m̃ : L → G, m ⊑ m̃ if L ⊑ L̃ and m is the restriction

of m̃ to L.

Let r be an adapted rule as above and let G ∈ GA. Then r transforms G
to a graph H , written G ⇒m,r,µ,γ,α H if G ⇒m,rµγα H , and there is no bigger
match m̃ ⊒ m and no bigger multiplicity µ̃ ⊒ µ or substitution γ̃ ⊒ γ so that
G ⇒m̃,rµ̃,γ̃,α H .

Derivations of adaptive rules replace all variables, and yield rules.

Lemma 3. Every derived rule r′ ∈ Dr of an adaptive rule r is a rule according
to Def. 2.

Proof. Let r, µ, γ, and α be given as in Def. 15.
By definition of G⊛⊗

T and Fact 3, cloning with µ removes all multiple nodes
from L and R, and replaces all individual variables by indexed variables. Def. 15.3
assures that Lµ and Rµ are untangled. Then expansion of Lµ and Rµ removes
all graph variables (by Fact 2), and the evaluation of (Lµ)γ and (Rµ)γ according
to α as in Def. 4 yields graphs in GA.

Finally, ((Lµ)γ)α and ((Rµ)γ)α can be chosen so that they have common
interface nodes as required, since the interface nodes I in r have the same car-
dinalities in L and R by Def. 15.1. ⊓⊔

C

kC

1

kB

nP

m

B

zN!z

i

fp

2 3

4

5 C

i

l l m

b

m

67

kA!k

C
1

B

i

fp

2 3

4

5 C

i

l

m

67

(r, !z)

M: X M: X

kC

nPzN!z
(p, !n)

Fig. 14. The adaptive rule for the Pull-Up-Method refactoring

Adaptive Graph Transformation Rules 17

C
1

m

B

i

fp

2 3

4

5
C

i

l
l m

m

6

7

(r, 2
)

(p, 1)

m

i

b

m

A1 (r, 2)

(p, 1)b

(r, 1
)

(r, 1
)

8

9

C
1

P

B

i

fp

2 3

4

5
C

i

l
m

6

7

i

8

9

C

B

C

B

P

C C

P

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

N1
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

N2
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

N1
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx
xxxxxxx

N2

M: X

A2

M: X

l

Fig. 15. The adaptive rule in Fig. 14 after cloning

Example 6 (An Adaptive Rule for Refactoring). The general Pull-Up-Method
rule can now be described as in Figure 14. The rule applies to a class (3) with
its superclass (1), and k other subclasses (2); the method signature (5) has
n parameters (6), and is implemented by bodies that may refer to z names (7).

γ =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

N1

m

(r, 2
)

b

B M: X

P

B

A
Ca

E

(p, 1)(r
, 1

)

M: X

e

e

N2 N1 PN2

ap

c
a

u

A1

E

v

a

,

mb

B B

Ca

E

P P

(r, 2
)

(p, 1)

(r
, 1

)

N1 N2 N1 N2

ap

c
a

e

M: X M: X

A2

9

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

;

Fig. 16. A substitution γ fitting the cloned rule in Fig. 15

The k-fold variable node (labeled with A!k) represents the bodies to be re-
moved. Note that the number of (possibly different) bodies equals the number of
removed B-nodes and the number of classes they are removed from; thus these
multiple nodes have the same cardinality variable k. The node (4) is the root of
the method body that will be moved to its superclass (1). No variable is needed
for the body itself, because only its membership (the m-edge) is changed.15

The method body in the sibling classes (2) is represented by the individual
graph variable A!k as the method bodies may be different; the variable node has
arms to the signature (5), the parameters (6), and referred names (7), because
these nodes may be accessed in the syntax trees of the bodies. The individual
attribute variable N!z stand for different types of the entities referenced in the

15 Bert: Justify that this rule is complete.

18 B. Hoffmann, D. Janssens, M. Minas, N. Van Eetvelde

bodies. Note that the labels r and p of two arms must be paired with a clone
number (!z) in order to preserve untangledness under cloning.

In the right hand side of the refactoring rule, the graph variables, and thus
the complete syntax trees are deleted together with their root node labeled B.
The other nodes remain untouched, because they are not part of the actual
syntax tree and can all be used by other entities in the program.

A cloned rule of the Pull-Up-Method refactoring in Fig. 14 is shown in Fig. 15;
it uses the multiplicity assignment µ with µ(k) = µ(z) = 2 and µ(n) = 1. Thereby
the individual graph variable is replaced by two indexed variables A1 and A2,
and the clones of the z-fold individual attribute variable N!z are two indexed
variables N1 and N2.

The set γ of expansion rules in Fig. 16 fits the cloned rule in Fig. 15. Together
with the assignment α with α(X) = get, α(N1) = V, and α(N2) = (M, ”m2”), it
expands this rule to the rule in Fig. 1.

4.2 Adaptation

Def. 16 does not tell how the transformation of a graph G ∈ GA with an adaptive
rule r = L/R can actually be performed. We cannot just derive Dr, and then
choose one r′ ∈ Dr to match and transform G, because Dr is infinite in general.
Rather, a goal-oriented process must construct a derivation of L that matches G,
by finding the constant items, and substitutions for the variables of L in an
incremental and interleaved fashion. If this succeeds, the substitution found for L
is used to adapt R, and G is transformed accordingly. We discuss this process
for our running example first.

Example 7 (Applying the Pull-Up-Method Refactoring Rule). The left hand side
L f the rule shown in Fig. 14 can be matched by binding its variables to values,
and constructing a morphism to a host graph G as follows:

1. Match the B-node 4. (This node will probably be indicated in G by the user
of the refactoring operation.)

2. Match the outgoing m-edge of node 4. (Due to shape rules, this cannot fail.)
3. Match the target of that m-edge, the C-node 3.
4. Match the outgoing i-edge of node 3. This may fail if this node has no

superclass node; then the match of L fails as well. (We may try with other
matches of node 4, however.)

5. Match the target of that i-edge, the C-node 1.
6. Match the ingoing l-edge of node 4. (Due to shape rules, this cannot fail.)
7. Match the source of that edge, the node 5.
8. Bind the attribute variable X in the label of node 5 to the string constant

”get”.
9. Determine the set l̈ ⊆ Ġ of outgoing l-edges of node ṁ(5).

10. Determine the set n̈ ⊆ Ġ of all nodes that match a variable of type N.16

Define µ(z) = |n̈| and bind the indexed variables Ni to the attribute values
of the corresponding node in n̈.

16 Bert: Clarify the meaning of the abstract sort N.

Adaptive Graph Transformation Rules 19

11. If there is an i-edge with target node ṁ(1) in G then do the following steps:
(a) Increase µ(k) by 1 and let j = µ(k).
(b) Glue the j-th clone Lk,j to L.
(c) Match the i-edge in Lk,j to the i-edge with target 2j in ṁ(1) in G.
(d) Match the source node 2j in Lk,j .

(e) Determine the set m̈ ⊆ Ġ of ingoing m-edges of node ṁ(2j).

(f) If the node sets m̈ and l̈ have a node in common, say b ∈ Ġ, match the
B-node to b; if the intersection is empty, the match of the clone Lk,j fails;
undo the actions 11a to 11e; goto step 12.
(The shape rules do not allow that two method bodies with the same
method signature exist within a single class so that the intersection may
not contain more than one node.)

(g) Determine the set p̈ ⊆ Ġ of outgoing fp-edges of node ṁ(5).
(h) Clone Ln |p̈| times.
(i) If |p̄| > 0, match the clones 61 to 6|p̄| with the target nodes in p̄.
(j) Find a subgraph Gi of G that may have b, the nodes in p̄, and n̈ as

border nodes, i.e., as nodes that are incident with edges outside Gi. We
include as many items in Gi as possible.

(k) Go back to step 11.
12. Delete Lk.
13. Then, all variables in L are bound to values, and the match m : Lµγα → G

is complete.
14. Remove all nodes which are derived by cloning or expanding from nodes that

are not in the interface, to obtain the context graph C.
15. Construct the instance Rµγα.
16. Glue the instance Rµγα to C, yielding the transformed graph H .

In order to derive the left hand side of the rule in Fig. 1, step 11 succeeds twice,
and expands the variable nodes labeled A1 and A2 by the respective bodies of
the methods, the inner items of which are shaded in Fig. 1.

When constructing an application for the example rule, we used several nice
properties of this particular rule that made the construction easier:

1. The left hand side is not a star. If this had been the case, the rule would
could be expanded to an arbitrary graph. Furthermore, if then the right
hand side contained the graph variable again, applications of this rule would
never terminate.

2. All graph and attribute variables on the rule’s left hand side have different
names (X, A!k, and N!z). Since all multiple nodes are labeled with individual
variables this holds for every clone of the left hand side as well (not only for
the clone shown in Fig. 15). Otherwise, the attribute values of different oc-
currences of a variable name had to be compared to each other. This property
is known as left-linearity; it is not required for the cardinality variables.

3. After cloning, every graph variable Ai is adjacent to a single clone of the
k-fold B-node that is already matched in the host graph. We call this node
the anchor of these graph variables. Expansion of the variables can then

20 B. Hoffmann, D. Janssens, M. Minas, N. Van Eetvelde

start from the anchor’s matching node in the host graph. If a graph variable
would have only multiple border nodes (with a multiplicity different to the
variable node itself), it would be hard to find the node where the expansion
should start.

4. In the cloned left hand side of the rule, the anchors of graph variables are
mutually distinct. This property is called apartness in [20]. If two graph
variables would share their anchor node, the items connected (directly or
indirectly) to the match of this node could be expansions of either variable.
This would lead to a combinatorial explosion of the possibilities to define
the expansion of these variables.

5. The terms used as labels on the left hand side of the adaptive rule are
either constant, like C, or variable, like Nz and M X. An attribute variable
matches every attribute value in the host graph (binding the variable to
that value), while a constant label can just be compared to that value. For a
more general term, like M X ++Y, there may be many attribute assignments
making the term match an actual value like M ”get”: Any split of ”get” into
two substrings gives a matching assignment for X and Y.

6. All variables of the rule’s right hand side appear already on its left hand side.
This property (often called closedness in the literature) makes the instanti-
ation of the right hand side in step 15 unique. Otherwise, some attribute or
graph or cardinality variables would not be bound by the match of the left
hand side, and their values had to be “guessed” in order to construct the
instance.

We require that adaptive rules satisfy the following conditions supporting the
rule application process.

Definition 18 (Well-Formedness). An adaptive rule r = L/R is well-formed
if each of the following conditions are satisfied:

1. The left hand side of r is not a star.
2. The left hand side L is linear, i.e., every attribute or graph variable x ∈

X \ {X⊗} occurs at most once in L, and in the terms labeling the multiple
nodes v ∈ L̇, all variables are individual (and bound, by the requirements of
adaptiveness in Def. 15).

3. Every variable node v has a distinguished anchor arm to a border node b,
called its anchor node, so that v and b have the same cardinality (i.e., are
either both single, or have the same cardinality variable attached).

4. On the left hand side of r, the anchor nodes of all variable nodes are distinct
from each other.

5. All labels occurring in the left hand side L are either variables, or constant
terms; if they are tuples, each of their components is either a variable or
constant.

6. The right hand side R is closed, i.e., it contains only variable names that
occur already on the left hand side L.17

17 All: Should we add connectedness of the left hand side as a further well-formedness
criteria?

Adaptive Graph Transformation Rules 21

The adaptive rule for Pull-Up-Method in Fig. 14 is well-formed.
We define an algorithm for matching an adaptive rule in a host graph.

Algorithm 1 (Matching of Well-formed Adaptive Rules).

Input : 1. A totally labeled host graph G ∈ GA over attribute values A.
2. A well-formed and adaptive rule r = L/R.

Result : 1. A multiplicity assignment µ : X⊗ → N.
2. A graph substitution γ fitting the cloned adaptive rule rµ.
3. A family of assignments αs : Xs → A , for s ∈ S \ {⊗, ⊛}.
4. A match of r in G, i.e., a morphism m : Lµγα → G that satisfies the

dangling condition wrt. the derived interface inclusion Iµγα → Lµγα.
(We define µ, γ, and αs just for the variable names occurring in L, and Lµ,
respectively.)

The algorithm starts with a multiplicity µ0, a graph substitution γ0, an assign-
ment α0, and a pair m0 = 〈ṁ, m̄〉 of mappings ṁ0 : L̇ → Ġ and m̄0 : L̄ → Ḡ that
are all totally undefined; it performs the following steps:

1. The node v is a y-fold node with label l: search for a set of nodes v1, v2, . . . , vk

in G with the same label l and connected to n with the same edge type as
in L. Then s is cloned according to the multiplicity k for y, and for every
v1, v2, . . . , vk the corresponding nodes in L and the connecting edges to nodes
that are already in s are added to s and m.

2. The node n is labeled with a graph variable x; the algorithm analyses G to
determine the part of it that is the expanded version of this variable. Again
the variable is expanded in s by the resulting subgraph and the items are
added to s and m.

3. The node is a single node n and the edges connecting it to already existing
nodes in G are added to s and m.

4. . . .
5. . . . 18

Ideas for the algorithm:

1. The pattern (left hand side) L is a gluing of following parts:
(a) A subgraph induced by the single and constant nodes, given as a set of

connected components K1, . . . , Km. A component Ki is simple if it con-
sists of a singleton node. (For the rule in Fig. 14, this is the graph induced
by the nodes 1, 3, 4, 5 consisting of a single connected component.)

(b) A set of multiple subgraphs Lx1 , . . . , Lxn for all cardinality variables
xi ∈ X⊗ occurring in L. A multiple subgraph is called star-like if it
has a single multiple node. (In rule in Fig. 14, Lk is not star-like, and
connected while Lz and Ln are star-like.)

18 Mark: We should come up with a rather sketchy algorithm that can be shown to
be correct, without being optimized towards efficiency? I think this needs more time
and thoughts than I want to spend on this issue at the moment.

22 B. Hoffmann, D. Janssens, M. Minas, N. Van Eetvelde

(c) A set of single variable stars S1, . . . , Sk. (The rule in Fig. 14 contains no
single variable star. However, every new clone Li of Lk inserts a single
constant subgraph induced by the clone of node 2 and its adjacent B-
node, plus a single variable star.)

2. We may assume that a set of nodes is designated as the start points of match-
ing. (This may be the nodes indicated by a user invoking a rule interactively,
or nodes adjacent to a predicate node in a “program”.)

3. The algorithm performs one of the following steps:
(a) Match a constant single subgraph.
(b) Try to match the expansion of a single variable node according to some

star rule with lazy cloning [5]. If the star rules for the variable are tried in
descending size of their right hand sides, this gives maximal expansions.

(c) Make another clone for some multiple subgraph. Every new clone con-
tains further constant single subgraphs or single variable nodes that can
be matched according to 3a or to 3b, respectively.

4. We may be able to drop some of the WF conditions above, and also may
wish to add new ones (forever, or just for convenience), like:
(a) L is connected.
(b) Every multiple subgraph Li is connected.
(c) . . .

5. The order in which these steps are taken can be determined heuristically
so that failure is detected as soon as possible, and that nondeterministic
matching actions (yielding a set of possible matches) are done as late as
possible (for instance).

6. Left linearity can be dropped if we modify matching as follows: After binding
the first occurrence of a variable, all other occurrences of that variable are
substituted by this binding.

Theorem 1 (Correctness of Algorithm 1).

1. Algorithm 1 terminates.
2. Algorithm 1 is correct: Every result defines a saturated transformation

G ⇒m,r,µ,γ,α H.

Proof. . . . ⊓⊔

– Nondeterminism and failability of adaptation [7].
– Restricting the use of variables to make matching easier [7].

5 Conclusions

The derivation of adaptive rules by cloning, expansion, and attribute evaluation
makes graph transformation more expressive. This is indispensable to specify
transformations in real-life applications, like a refactoring operation, with a single
rule. Such a specification is still declarative; this is not the case if simple rules
are combined using control structures.

Adaptive Graph Transformation Rules 23

Numerous authors have used rules with placeholders in order to make rule
systems more concise. Often, this is done on the “meta level” when talking about
transformation rules. Our definition of attribution follows [25]. Considering at-
tributes as labels is much simpler than the model proposed in [9], where every
graph is burdened with an infinite set of nodes that represents all values of the
algebra A, and cluttered up with edges that point from nodes to their actual
attribute values. Our version of cloning extends embedding instructions of node
replacement [11]; the notation is similar to the set nodes in Progres [27]. Other
graph transformation languages, like FuJaba [12] and GReAT [21], to mention
just a few, support an Uml-like way of expressing multiplicities of nodes. In all
these cases, only single nodes may be cloned. In the model transformation lan-
guage Gmorph [29], a more general notion of cloning is provided that uses nested
collection containers that correspond to the multiple subgraph of a cloning vari-
able. Graph variables have been first devised for substitutive transformation [24].
Here, as in [20], expansion is more general as it allows to replace nodes with a
varying number of arms.

This work can be extended in several directions. Typing according to a type
graph [9] or graph schema [27] can be added to our concepts in an orthogonal
way, including subtyping and cardinality constraints. Then cloning can also be
specified to produce l to u copies of a subgraph, for u > l > 0. Some refac-
toring operations call for nested cloning, where subgraphs of a cloned subgraph
are cloned again. Attribution could be extended to allow nondeterministic com-
putations. Then graphs could be attribute domains, and graph transformation
rules could specify operations, as in hierarchical graph transformation [18]. For
practical reasons, the expansions of graph variables should be restricted to graph
languages. The star grammars defined in a companion paper [5] are suitable for
such a “shaped expansion”. Last but not least, control is needed even for most
expressive rules, if only for efficiency. We shall use transformation predicates [18]
for this purpose since they do not only control which rule is applied, but also
where it is applied.

We are convinced that the transformation concepts described in this paper
are not only useful to specify refactorings, but will lead to our ultimate goal:
to implement them in Diaplan. A restricted implementation of graph expansion
exists already [6].

References

1. A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors. 1st Int’l Con-
ference on Graph Transformation (ICGT’02), number 2505 in Lecture Notes in
Computer Science. Springer, 2002.

2. A. Corradini, H. Ehrig, U. Montanari, and J. Padberg. The category of typed
graph grammars and its adjunction with categories of derivations. In Cuny et al.
[3], pages 56–74.

3. J. E. Cuny, H. Ehrig, G. Engels, and G. Rozenberg, editors. Graph Grammars
and Their Application to Computer Science, number 1073 in Lecture Notes in
Computer Science. Springer, 1996.

24 B. Hoffmann, D. Janssens, M. Minas, N. Van Eetvelde

4. F. Drewes, A. Habel, and H.-J. Kreowski. Hyperedge replacement graph grammars.
In Rozenberg [26], chapter 2, pages 95–162.

5. F. Drewes, B. Hoffmann, D. Janssens, M. Minas, and N. Van Eetvelde. Adaptive
star grammars. In A. Corradini, H. Ehrig, G. Engels, L. Ribeiro, and G. Rozenberg,
editors, 3rd Int’l Conference on Graph Transformation (ICGT’06), Lecture Notes
in Computer Science. Springer, 2006. To appear.

6. F. Drewes, B. Hoffmann, R. Klein, and M. Minas. Rule-based programming with
diaplan. Electronic Notes in Theoretical Computer Science, 127(1):15–26, 2005.

7. F. Drewes, B. Hoffmann, and M. Minas. Constructing shapely nested graph trans-
formations. In H.-J. Kreowski and P. Knirsch, editors, Proc. Int’l Workshop on
Applied Graph Transformation (AGT’02), 2002. 107–118.

8. H. Ehrig. Introduction to the algebraic theory of graph grammars. In V. Claus,
H. Ehrig, and G. Rozenberg, editors, Graph Grammars and Their Application to
Computer Science and Biology, number 73 in Lecture Notes in Computer Science,
pages 1–69. Springer, 1979.

9. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, 2006.

10. H. Ehrig, G. Engels, F. Parisi-Presicce, and G. Rozenberg, editors. 2nd Int’l Con-
ference on Graph Transformation (ICGT’04), number 3256 in Lecture Notes in
Computer Science. Springer, 2004.

11. J. Engelfriet and G. Rozenberg. Node replacement graph grammars. In Rozenberg
[26], chapter 1, pages 1–94.

12. T. Fischer, J. Niere, L. Turunski, and A. Zündorf. Story diagrams: A new graph
grammar language based on the Unified Modelling Language and Java. In H. Ehrig,
G. Engels, H.-J. Kreowski, and G. Rozenberg, editors, Theory and Application of
Graph Transformation (TAGT’98), Selected Papers, number 1764 in Lecture Notes
in Computer Science, pages 296–309. Springer, 2000.

13. M. Fowler. Refactoring—Improving the Design of Existing Code. Object Technol-
ogy Series. Addison-Wesley, Reading, MA, 1999.

14. A. Habel. Hyperedge Replacement: Grammars and Languages. Number 643 in
Lecture Notes in Computer Science. Springer, 1992.

15. A. Habel, J. Müller, and D. Plump. Double-pushout graph transformation revis-
ited. Mathematical Structures in Computer Science, 11(5):637–688, 2001.

16. A. Habel and D. Plump. Relabelling in graph transformation. In Corradini et al.
[1], pages 135–147.

17. B. Hoffmann. Shapely hierarchical graph transformation. In Proc. IEEE Symposia
on Human-Centric Computing Languages and Environments, pages 30–37. IEEE
Computer Press, 2001.

18. B. Hoffmann. Abstraction and control for shapely nested graph transformation.
Fundamenta Informaticae, 58(1):39–56, 2003.

19. B. Hoffmann. Graph transformation with variables. In H.-J. Kreowski et al.,
editors, Formal Methods in Software and System Modeling, volume 3393 of Lecture
Notes in Computer Science, pages 101–115. Springer, 2005.

20. B. Hoffmann, D. Janssens, and N. Van Eetvelde. Cloning and expanding graph
transformation rules for refactoring. Electronic Notes in Theoretical Computer
Science, 2006. Proc. Graph and Model Transformation Workshop (GraMoT’05),
to appear.

21. G. Karsai, A. Agrawal, F. Shi, and J. Sprinkle. On the use of graph transformation
in the formal specification of model interpreters. Journal of Universal Computer
Science, 9(11):1296–1321, Nov. 2003.

Adaptive Graph Transformation Rules 25

22. T. Mens, S. Demeyer, and D. Janssens. Formalising behaviour-preserving trans-
formation. In Corradini et al. [1], pages 286–301.

23. M. Minas and B. Hoffmann. An example of cloning graph transformation rules for
programming. Electronic Notes in Theoretical Computer Science, 2006. To appear.

24. D. Plump and A. Habel. Graph unification and matching. In Cuny et al. [3], pages
75–89.

25. D. Plump and S. Steinert. Towards graph programs for graph algorithms. In Ehrig
et al. [10], pages 128–143.

26. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. I: Foundations. World Scientific, Singapore, 1997.

27. A. Schürr. Programmed graph replacement systems. In Rozenberg [26], chapter 7,
pages 479–546.

28. A. Schürr, A. Winter, and A. Zündorf. The Progres approach: Language and
environment. In G. Engels, H. Ehrig, H.-J. ¡ Kreowski, and G. Rozenberg, editors,
Handbook of Graph Grammars and Computing by Graph Transformation. Vol. II:
Applications, Languages, and Tools, chapter 13, pages 487–550. World Scientific,
Singapore, 1999.

29. S. Sendall. Combining generative and graph transformation techniques
for model transformation: An effective alliance? In Proc. OOPSLA’03-
Workshop on Generative Techniques in the Context of MDA, 2003. URL:
www.softmetaware.com/oopsla2003/mda-workshop.html.

30. N. Van Eetvelde and B. Hoffmann. A graph grammar for program graphs. Report,
Universeiteit Antwerpen, 2006.

31. N. Van Eetvelde and D. Janssens. Extending graph rewriting for refactoring. In
Ehrig et al. [10], pages 399–415.

32. N. Van Eetvelde and D. Janssens. Refactorings as graph transformations. Technical
report, University of Antwerp, February 2005. UA WIS/INF 2005/04.

A Weaknesses of the Paper

This appendix discusses major weak points of the paper. These are parts that
are not quite right (to avoid the word “wrong”), some are technically too com-
plicated, to restricted, or hard to motivate on the one hand, or missing on the
other hand so that the usefulness of the concepts is limited.

A.1 Problems

1. Pull-Up-Method rule (Ex. 3 on page 4).
The transformation rule does not quite implement the refactoring described
in Example 1: Since the M: ”get”- node and all C-nodes belong to the inter-
face, the rule may remove some implementations of the method from some
of the sibling classes, leaving other sibling classes (with or without an im-
plementation of ”get”) as they are.
Niels proposes to apply maximal cloning in rule applications. To avoid max-
imal cloning, we could remove the M-node 5 from the interface if we add a
y-fold R-node to the interface with a c-edge to node 5 that represents all
“external” calls to X. However, both attempts would only make sure that all

26 B. Hoffmann, D. Janssens, M. Minas, N. Van Eetvelde

other subclasses with a body for the method are matched; it is still allowed
that some subclasses exist that have no body for the method. (I think we
need a kind of negative application condition for this situation.)
And, if we use maximal cloning, we should use maximal expansion for graph
variables as well.
Done, see Def. 17 on page 16.
By the way: When playing with this examples, I did not understand why
there is an m-edge between the k-fold individual variable A!k and the signa-
ture node labeled with M. This edge is used to allow recursive calls to the
method from its body, isn’t it? Then it should be labeled with r? (Or with
(r, !z+1), for untangledness?) Or, node 5 is already contained the the set of
N-nodes, and the m-edge could be omitted. This would have the additional
advantage that the rule becomes apart (see condition 18.4).

2. Star replacement on term-labeled graphs (Def. 5 on page 7).
We have to clarify a point in star replacement:
(a) Star rules should have border nodes that are labeled with mutually dis-

tinct variables.
(b) Star replacement instantiates star rules by substituting the variable la-

bels of border nodes by terms as they occur in the expanded graph.
(c) Every occurrence of a graph variable may be replaced according to a

different (“individual”) substitution.
(d) If we consider shaped expansion of graph variables, where every vari-

able is expanded by a graph derived according to a star grammar, the
non-border nodes on the right hand sides of the rules of that grammar
are also instantiated according to some substitution. (This modifies star
replacement according to [5]. However, this may also also help to remove
hook 1 below, if we consider order-sorted terms instead of many-sorted
terms, i.e., allow subtyping on the attributes.)

Done.

A.2 Hooks

1. DPO with relabeling (Def. 2 on page 3).
Do we actually need rules that relabel a node without removing it? It is not
needed in Example 14 on page 16. What about the other refactorings Niels
et al. have investigated so far?
Removing relabeling has the following consequences
⊖ Less practical expressiveness for rules
⊕ Purely standard DPO transformation for rule instances.

Niels believes that this is needed for renaming refactorings.
(If these are just global renamings, it probably not worth it, however.)
We keep relabeling.

2. DPO with injective matches (Def. 2 on page 3).
The definition of identification (with quotients) is not very elegant.
Do we need non-injective matches as the standard case? It seems that it
does not matter for our Example 14 on page 16, because there may be no

Adaptive Graph Transformation Rules 27

identification of nodes, due to the the shape of program graphs.
Or do we have situations where we want to exclude certain identifications?
In the latter case, we should stay with injective matches.

3. Adaption of labels to more special labels (Def. 5 on page 7).
In the expansion of graph variables, it should be possible to have different
labels on corresponding border nodes of x-stars, even if this is not needed in
our example.
Star rules could either be allowed to have unlabeled border nodes (they come
for free if we still use DPO with relabeling), or introduce another (minor)
adaption of rules: The sorts S are equipped with a subtype relation P (a
partial order) so that s′ P s implies Ts′ ⊆ Ts. A graph G (and a rule r) can
be specialized by replacing a term t ∈ Ts with a term t′ ∈ Ts′ provided that
s′ P s.
Pros and cons:
⊕ Increases expressiveness.
⊖ Requires some extra definitions (and space); adds yet another concept.
⊖ May be in conflict with shaped expansion, as star grammars derive

graphs with particular labels that cannot be specialized.
Niels finds that this matter is not that urgent. Order-sorted term algebras
do the job, if we define an “abstract sort” like N as the sum of concrete types
C, M string etc. See Assumption 1 on page 6.

4. Complicated definition of terms.
Many forms of terms exist in rules, finds Niels. I rather think that their
explication is too short and bad.
– According to Def. 4 on page 6, the graphs after attribution are labeled

with values from a many-sorted algebra, and those before attribution
(and after expansion) are labeled with many-sorted terms.
(a) Labels without proper attribute values, like B, are represented by a

sort of that name (B) with a unique constant operator of the same
name and XB = ∅, so that TB = {B} and AB = {B}: then attribute
evaluation leaves them as they are.

(b) Labels with attribute values (of type String in our examples), like V,
are represented by a sort of that name (V) with a unique “constructor
operation” V : String → V with XV = ∅ so that TV = {Vs | s ∈ TString}
and AV = {V s | a ∈ AString}.

This explains the notation in Ex. 4 on page 6 (if we remove the “:” in
the attributed labels like “M : ”get”++ F”).

– According to the first paragraph of Subsection 3.2 on page 7, the graph
variables occurring in the graphs and rules after cloning (and before
expansion) are terms of the “graph variable sort” ⊛ ∈ S without any
operations so that T⊛ = X⊛. The carrier set A⊛ is irrelevant since graph
variables do not survive the expansion.
(If we use shaped expansion, we have a family (⊛n)n∈N of graph variable
sorts for all nonterminals of the star grammar.)

– According to Def. 10 on page 13, labels of multiple nodes are pairs (t, x)
where t is the “base label” and x ∈ X⊗ a cardinality variable. This fits

28 B. Hoffmann, D. Janssens, M. Minas, N. Van Eetvelde

into the model if we say that we have a multiple sort s⊗ for every base
sort s so that the terms of multiple sorts are pairs: Ts⊗ = {(t, x) | t ∈
Ts, x ∈ X⊗}. (Maybe we should have denoted these terms by something
like “t⊗x”.) Again, the carrier sets As⊗ are useless because the terms
Ts⊗ do not survive cloning.
Terms of sort ⊗ do survive cloning, however, since index variables !x
of that sort may be used to individualize variables (which then do not
survive expansion or attribute evaluation) or to untangle edge labels.
That is why the carrier sort A⊗ = N is needed.

With a better explanation, and slightly different notation in figures, this
should be not too complicated.
Niels proposes to model multiple nodes with a partial cardinality function
on nodes, as in the Tallinn paper.
Bert has done this; cardinality variables are now of sort Nat so that they (or
rather: their substitutions determined by cloning) can be used in attribute
computations.

5. Untangledness is difficult (Def. 6 on page 8).
However, I find expansion of tangled graphs difficult to understand (if the
reader is able to see that expansion is no longer unique, that is). I propose to
keep this notion, even if it requires a motivating example (Ex. 5 on page 7)
and sophisticated use of indexed cardinality variables to untangle edge labels
during cloning.
Niels agrees to keep untangledness.

6. The form of variables is difficult to understand (Ass. 2 on page 14).
Unfortunately I see no way to avoid these different kinds of variables:
– We certainly need individually cloned variable names, if seldom for

graphs (like in our example), so more often for attribute variables (as in
our example).

– If we need untangledness, we also need indexed cardinality variables of
the form “!x” to preserve untangledness under cloning.

– The idea was that these variables are “just” attribute variables that can
be used to compute with their values. (This was mentioned explicitly in
an early draft, but canceled later because it is not used in our example,
and also not easily explained.)

Niels sees no simpler way to define variables – all of them are needed.
Bert has introduced a two page discussion with 9 figures that should moti-
vate individual and indexed variables and the actual clone variables.

7. Boundness is badly explained (Def. 14 on page 15).
I think is now better placed, directly before the fact stating its purpose.
Boundness, as well as untangledness und uniformity, are conditions guaran-
teeing that adaption works as intended.
We might try to find better explanations for it.
Niels thinks it is OK now.

8. Well-formedness conditions for adaptive rules are not well motivated (Def. 15
on page 15).
Conditions 18.1, 18.2, and 18.6 correspond to conditions on term rewrite

Adaptive Graph Transformation Rules 29

rules. Reference to that fact should be motivation enough. Conditions 18.3,
18.4, and 18.5 should be made consistent with the algorithm and its correct-
ness proof.
In progress. See Alg. 1 on page 21 and Thm. 1 on page 22.

A.3 Holes

The following concepts are missing; some of them have been removed to reduce
space and/or technical complexity:

1. Proofs of facts.
I will prepare proof sketches for the facts. If they seem to be useful for
every reader, they go into the paper; otherwise they go into the appendix
(to convince the reviewers).
Done (up to lemma 2 on page 14).

2. Construction of transformation steps (before Def. 18 on page 20).
This has to be added. I propose to sketch the “primitive actions” of such a
construction:
– Match a constant node and the edges connecting it to constant nodes.
– Match one more clone of a multiple subgraph (or of its constant sub-

graph).
– Expand one graph variable according to a star rule.
– Match an attribute variable to an attribute value.

Then I would talk informally about strategies how to order primitive steps.
I hope this is sufficient to convince the reader that this gives an effective
procedure.
Maybe We could also discuss the degree of nondeterminism involved in the
procedure.

3. Type morphisms (Def. 1 on page 2).
In the present version, types occur only implicitly, by the many-sortedness
of the labels (terms and attribute values, resp.). Typed graphs as in [2] are
“standard”.
Type morphisms have the following pros and cons:
⊕ A standard definition.
⊖ Require some extra definitions (and space).
⊖ Are not really the typing one wants: no overloaded labels (nodes/edges

in the type graph).
⊖ Are not really needed for this paper.
⊖ When considering shaped graphs (star grammar languages), a more flex-

ible typing can be induced by the star grammar, by the way how edges
and node labels are used in the rules.

Niels would like to have type morphisms, but agrees that they are not
urgently needed.
Bert proposes to assume a function type: S → 2S×S and to require that
for every edge e with ℓ̄(e) ∈ Ts, (ℓ̇(s(e)), ℓ̇(t(e)) ∈ type(s). (This also allows
“overloaded” edge sorts.) The type function can be deduced from the shape
rules, however.

30 B. Hoffmann, D. Janssens, M. Minas, N. Van Eetvelde

4. Shaped expansion (Def. 5 on page 7).
If we refine expansion to replace variables by graphs derived from a star
grammar, we clarify the relation of this paper to the ICGT-paper. This also
helps to construct transformation steps (see next point). However, it requires
some more space, and introduces some more notions (star grammars, their
language, . . .
One could even define the transformation of languages à la [17] (where CF
hypergraph languages were used): The graphs being transformed belong to
a star language, and the graphs L and R of a shaped rule r = L/R are
are sentential forms of a nonterminal (after replacing graph variables by the
nonterminal defining their possible expansions). Then one can easily show
that this kind of transformations preserves language membership.
However, this makes only sense if all refactorings you (Niels) have considered
are of such a form, or can be brought into such a form.

A.4 Tasks for Niels

1. Give a stable definition of the program graph grammar (PGG).
2. Give a stable definition of the refactoring rules, as adaptive graph transfor-

mation rules.
3. verify that the star language of program graphs is closed under the refactor-

ing rules.
4. Check the following questions for the refactoring rules and the PGG:

(a) Can all refactorings be defined with adaptive rules?
(b) Are all refactoring rules correct if one assumes maximal cloning and

expansion? (I.e., “saturated transformation”?)
(c) Is there a refactoring rule needing relabeling of interface nodes?
(d) Which refactoring needs “subtyping” of labels?
(e) Are all expansions of graph variables shaped according to Def. 9 on

page 9?
(f) Are the let and right hand sides of refactoring rules sentential forms of

the PGG?
(g) Are all nonterminals of the PGG anchored? Are all star rules of the PGG

anchored? See Def. 18 on page 20.

A.5 Tasks for Bert

1. Prove lemma 2 on page 14.
2. Define “shapely adaptive rules”.
3. Complete definition of Algorithm 1 on page 21 and prove Theorem. 1 on

page 22.

(Version 1.09 of July 6, 2006)

