
Introduction to JML
David Cok, Joe Kiniry, and Erik Poll

Eastman Kodak Company, University College Dublin,
and Radboud University Nijmegen

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.1/??

Outline of this tutorial

First

• introduction to JML

• overview of tool support for JML, esp. runtime
assertion checking (using jmlrac) and extended static
checking ESC/Java2

Then

• ESC/Java2: Use and Features

• ESC/Java2: Warnings

• Specification tips and pitfalls

• Advanced JML: more tips and pitfalls

interspersed with demos.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.2/??

The Java Modeling Language
JML

www.jmlspecs.org

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.3/??

JML by Gary Leavens et al.

Formal specification language for Java

• to specify behaviour of Java classes

• to record design &implementation decisions

by adding assertions to Java source code, eg

• preconditions

• postconditions

• invariants

as in Eiffel (Design by Contract), but more expressive.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.4/??

JML by Gary Leavens et al.

Formal specification language for Java

• to specify behaviour of Java classes

• to record design &implementation decisions

by adding assertions to Java source code, eg

• preconditions

• postconditions

• invariants

as in Eiffel (Design by Contract), but more expressive.

Goal: JML should be easy to use for any Java programmer.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.4/??

JML
To make JML easy to use:

• JML assertions are added as comments in .java file,
between /*@ . . .@*/, or after //@,

• Properties are specified as Java boolean expressions,
extended with a few operators (\old, \forall, \result,
. . .).

• using a few keywords (requires, ensures,
signals, assignable, pure, invariant,
non null, . . .)

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.5/??

requires, ensures

Pre- and post-conditions for method can be specified.

/*@ requires amount >= 0;

ensures balance == \old(balance-amount) &&

\result == balance;

@*/

public int debit(int amount) {

...

}

Here \old(balance) refers to the value of balance
before execution of the method.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.6/??

requires, ensures

JML specs can be as strong or as weak as you want.

/*@ requires amount >= 0;

ensures true;

@*/

public int debit(int amount) {

...

}

This default postcondition “ ensures true” can be
omitted.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.7/??

Design-by-Contract

Pre- and postconditions define a contract between a class
and its clients:

• Client must ensure precondition and may assume
postcondition

• Method may assume precondition and must ensure
postcondition

Eg, in the example specs for debit, it is the obligation of
the client to ensure that amount is positive. The requires
clause makes this explicit .

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.8/??

signals

Exceptional postconditions can also be specified.

/*@ requires amount >= 0;

ensures true;

signals (BankException e)

amount > balance &&

balance == \old(balance) &&

e.getReason().equals("Amount too big");

@*/

public int debit(int amount) throws BankException

...

}

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.9/??

signals

Exceptions mentioned in throws clause are allowed by
default, i.e. the default signals clause is
signals (Exception) true;

To rule them out, add an explicit

signals (Exception) false;

or use the keyword normal_behavior

/*@ normal behavior

requires ...

ensures ...

@*/

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.10/??

invariant
Invariants (aka class invariants) are properties that must be
maintained by all methods, e.g.,

public class Wallet {

public static final short MAX_BAL = 1000;

private short balance;

/*@ invariant 0 <= balance &&

balance <= MAX_BAL;

@*/
...

Invariants are implicitly included in all pre- and
postconditions.

Invariants must also be preserved if exception is thrown!

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.11/??

invariant
Invariants document design decisions, e.g.,

public class Directory {

private File[] files;

/*@ invariant

files != null

&&

(\forall int i; 0 <= i && i < files.length;

; files[i] != null &&

files[i].getParent() == this);
@*/

Making them explicit helps in understanding the code.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.12/??

non_null

Many invariants, pre- and postconditions are about
references not being null. non_null is a convenient
short-hand for these.

public class Directory {

private /*@ non null @*/ File[] files;

void createSubdir(/*@ non null @*/ String name){

...

Directory /*@ non null @*/ getParent(){

...

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.13/??

assert
An assert clause specifies a property that should hold at
some point in the code, e.g.,

if (i <= 0 || j < 0) {

...

} else if (j < 5) {

//@ assert i > 0 && 0 < j && j < 5;

...

} else {

//@ assert i > 0 && j > 5;

...
}

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.14/??

assert
JML keyword assert now also in Java (since Java 1.4).

Still, assert in JML is more expressive, for example in

...

for (n = 0; n < a.length; n++)

if (a[n]==null) break;

/*@ assert (\forall int i; 0 <= i && i < n;

a[i] != null);
@*/

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.15/??

assignable

Frame properties limit possible side-effects of methods.

/*@ requires amount >= 0;

assignable balance;

ensures balance == \old(balance)-amount;

@*/

public int debit(int amount) { }

...

E.g., debit can only assign to the field balance.
NB this does not follow from the post-condition.

Default assignable clause: assignable \everything.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.16/??

pure

A method without side-effects is called pure .

public /*@ pure @*/ int getBalance(){...

Directory /*@ pure non null @*/ getParent(){...}

Pure method are implicitly assignable \nothing.

Pure methods, and only pure methods, can be used in
specifications, eg.

//@ invariant 0<=getBalance() && getBalance()<=MAX_BALANCE;

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.17/??

JML recap

The JML keywords discussed so far:

• requires

• ensures

• signals

• assignable

• normal behavior

• invariant

• non null

• pure

• \old, \forall, \exists, \result

This is all you need to know to get started!

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.18/??

Tools for JML

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.19/??

tools for JML

• parsing and typechecking

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.20/??

tools for JML

• parsing and typechecking

• runtime assertion checking :
test for violations of assertions during execution
jmlrac

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.20/??

tools for JML

• parsing and typechecking

• runtime assertion checking :
test for violations of assertions during execution
jmlrac

• extended static checking ie. automated program
verification:
prove that contracts are never violated at compile-time
ESC/Java2
This is program verification, not just testing.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.20/??

runtime assertion checking

jmlrac compiler by Gary Leavens, Yoonsik Cheon, et al. at
Iowa State Univ.

• translates JML assertions into runtime checks :
during execution, all assertions are tested and
any violation of an assertion produces an
Error.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.21/??

runtime assertion checking

jmlrac compiler by Gary Leavens, Yoonsik Cheon, et al. at
Iowa State Univ.

• translates JML assertions into runtime checks :
during execution, all assertions are tested and
any violation of an assertion produces an
Error.

• cheap & easy to do as part of existing testing practice

• better testing and better feedback , because more
properties are tested, at more places in the code

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.21/??

runtime assertion checking

jmlrac compiler by Gary Leavens, Yoonsik Cheon, et al. at
Iowa State Univ.

• translates JML assertions into runtime checks :
during execution, all assertions are tested and
any violation of an assertion produces an
Error.

• cheap & easy to do as part of existing testing practice

• better testing and better feedback , because more
properties are tested, at more places in the code
Eg, “Invariant violated in line 8000” after 1 minute instead of
“NullPointerException in line 2000” after 4 minutes

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.21/??

runtime assertion checking

jmlrac compiler by Gary Leavens, Yoonsik Cheon, et al. at
Iowa State Univ.

• translates JML assertions into runtime checks :
during execution, all assertions are tested and
any violation of an assertion produces an
Error.

• cheap & easy to do as part of existing testing practice

• better testing and better feedback , because more
properties are tested, at more places in the code
Eg, “Invariant violated in line 8000” after 1 minute instead of
“NullPointerException in line 2000” after 4 minutes

Of course, an assertion violation can be an error in code or
an error in specification .

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.21/??

runtime assertion checking

jmlrac compiler by Gary Leavens, Yoonsik Cheon, et al. at
Iowa State Univ.

• translates JML assertions into runtime checks :
during execution, all assertions are tested and
any violation of an assertion produces an
Error.

• cheap & easy to do as part of existing testing practice

• better testing and better feedback , because more
properties are tested, at more places in the code
Eg, “Invariant violated in line 8000” after 1 minute instead of
“NullPointerException in line 2000” after 4 minutes

Of course, an assertion violation can be an error in code or
an error in specification .

The jmlunit tool combines jmlrac and unit testing .
David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.21/??

runtime assertion checking

jmlrac can generate complicated test-code for free. E.g., for

/*@ ...

signals (Exception)

balance == \old(balance);

@*/

public int debit(int amount) { ... }

it will test that if debit throws an exception, the balance
hasn’t changed, and all invariants still hold .

jmlrac even checks \forall if the domain of quantification is
finite.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.22/??

extended static checking

ESC/Java(2)

• extended static checking = fully automated program
verification, with some compromises to achieve full
automation

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.23/??

extended static checking

ESC/Java(2)

• extended static checking = fully automated program
verification, with some compromises to achieve full
automation

• tries to prove correctness of specifications,
at compile-time, fully automatically

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.23/??

extended static checking

ESC/Java(2)

• extended static checking = fully automated program
verification, with some compromises to achieve full
automation

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound : ESC/Java may miss an error that is actually
present

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.23/??

extended static checking

ESC/Java(2)

• extended static checking = fully automated program
verification, with some compromises to achieve full
automation

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound : ESC/Java may miss an error that is actually
present

• not complete : ESC/Java may warn of errors that are
impossible

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.23/??

extended static checking

ESC/Java(2)

• extended static checking = fully automated program
verification, with some compromises to achieve full
automation

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound : ESC/Java may miss an error that is actually
present

• not complete : ESC/Java may warn of errors that are
impossible

• but finds lots of potential bugs quickly

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.23/??

extended static checking

ESC/Java(2)

• extended static checking = fully automated program
verification, with some compromises to achieve full
automation

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound : ESC/Java may miss an error that is actually
present

• not complete : ESC/Java may warn of errors that are
impossible

• but finds lots of potential bugs quickly

• good at proving absence of runtime exceptions (eg
Null-, ArrayIndexOutOfBounds-, ClassCast-) and verifying
relatively simple properties.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.23/??

ESC/Java(2) credits

• ESC/Java originally developed at DEC SRC – later
Compaq, and now HP Research – by Rustan Leino,
Cormac Flanagan, Mark Lillibridge, Greg Nelson,
Raymie Stata, and James Saxe.

• ESC/Java2, extension that supports more of JML,
developed by David Cok and Joe Kiniry.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.24/??

static checking vs runtime checking

One of the assertions below is wrong:

if (i <= 0 || j < 0) {

...

} else if (j < 5) {

//@ assert i > 0 && 0 < j && j < 5;

...

} else {

//@ assert i > 0 && j > 5;

...

}

Runtime assertion checking may detect this with a
comprehensive test suite.
ESC/Java2 will detect this at compile-time.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.25/??

static checking vs runtime checking

Important differences:

• ESC/Java2 checks specs at compile-time ,
jmlrac checks specs at run-time

• ESC/Java2 proves correctness of specs,
jml only tests correctness of specs.
Hence

• ESC/Java2 independent of any test suite,
results of runtime testing only as good as the test
suite,

• ESC/Java2 provides higher degree of confidence.

The price for this: you have to specify all pre- and
postconditions of methods (incl. API methods) and
invariants needed for modular verification

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.26/??

more JML tools
• javadoc-style documentation : jmldoc

• Eclipse plugin

• Other red verification tools:
• LOOP tool + PVS (Nijmegen)
• JACK (Gemplus/INRIA)
• Krakatoa tool + Coq (INRIA)

These tools also allow interactive verification (whereas
ESC/Java2 only aims at fully automatic verification)
and can therefore handle more complex properties.

• runtime detection of invariants : Daikon (Michael Ernst,
MIT)

• model-checking multi-threaded programs: Bogor
(Kansas State)

See www.jmlspecs.org
David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.27/??

Related Work
• jContract tool for Java by Parasoft

• Spec# for C# by Microsoft

• SparkAda for subset of Ada by Praxis Critical Systems
Ltd.

• OCL specification language for UML

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.28/??

Acknowledgements

Many people and groups have contributed to JML and
related tools.

• Gary Leavens leads the JML effort at Iowa St. Contributors
include Albert Baker, Clyde Ruby, Curtis Clifton, Yoonsik
Cheon, Anand Ganapathy, Abhay Bhorkar, Arun Raghavan,
Kristina Boysen, David Behroozi. Katie Becker, Elisabeth
Seagren, Brandon Shilling, Katie Becker, Ajani Thomas, and
Arthur Thomas.

• The ESC project at SRC included Rustan Leino, Cormac
Flanagan, Mark Lillibridge, Greg Nelson, Raymie Stata, and
James Saxe.

• More people at many different places are contributing to
JML

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.29/??

More information
These websites and mailing lists can provide more
information (and have links to even more):

• JML: www.jmlspecs.org

• mailing lists: jmlspecs-interest@lists.sourceforge.net
jmlspecs-developers@lists.sourceforge.net

• ESC/Java2:
http://secure.ucd.ie/products/opensource/ESCJava2/

• ESC/Java: http://www.research.compaq.com/SRC/esc/

• mailing list: jmlspecs-escjava@lists.sourceforge.net

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.30/??

	Outline of this tutorial
	{Large
ed The Java Modeling Language \ JML \ [2ex] {large �lack 	exttt {www.jmlspecs.org}}}
	JML {�ootnotesize {�lack by Gary Leavens et al.}}
	JML
	requires, ensures
	requires, ensures
	Design-by-Contract
	signals
	signals
	invariant
	invariant
	non_null
	assert
	assert
	assignable
	pure
	JML recap
	{Large
ed Tools for JML}
	tools for JML
	runtime assertion checking
	runtime assertion checking
	extended static checking
	ESC/Java(2)
credits
	static checking vs runtime checking
	static checking vs runtime checking
	more JML tools
	Related Work
	Acknowledgements
	More information

