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Outline of this tutorial

First

• introduction to JML

• overview of tool support for JML, esp. runtime
assertion checking (using jmlrac ) and extended static
checking ESC/Java2

Then

• ESC/Java2: Use and Features

• ESC/Java2: Warnings

• Specification tips and pitfalls

• Advanced JML: more tips and pitfalls

interspersed with demos.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.2/??



The Java Modeling Language
JML

www.jmlspecs.org
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JML by Gary Leavens et al.

Formal specification language for Java

• to specify behaviour of Java classes

• to record design &implementation decisions

by adding assertions to Java source code, eg

• preconditions

• postconditions

• invariants

as in Eiffel (Design by Contract), but more expressive.
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JML by Gary Leavens et al.

Formal specification language for Java

• to specify behaviour of Java classes

• to record design &implementation decisions

by adding assertions to Java source code, eg

• preconditions

• postconditions

• invariants

as in Eiffel (Design by Contract), but more expressive.

Goal: JML should be easy to use for any Java programmer.
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JML
To make JML easy to use:

• JML assertions are added as comments in .java file,
between /*@ . . .@*/, or after //@,

• Properties are specified as Java boolean expressions,
extended with a few operators ( \old, \forall, \result,
. . . ).

• using a few keywords ( requires, ensures,
signals, assignable, pure, invariant,
non null, . . . )
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requires, ensures

Pre- and post-conditions for method can be specified.

/*@ requires amount >= 0;

ensures balance == \old(balance-amount) &&

\result == balance;

@*/

public int debit(int amount) {

...

}

Here \old(balance) refers to the value of balance
before execution of the method.
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requires, ensures

JML specs can be as strong or as weak as you want.

/*@ requires amount >= 0;

ensures true;

@*/

public int debit(int amount) {

...

}

This default postcondition “ ensures true” can be
omitted.
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Design-by-Contract

Pre- and postconditions define a contract between a class
and its clients:

• Client must ensure precondition and may assume
postcondition

• Method may assume precondition and must ensure
postcondition

Eg, in the example specs for debit, it is the obligation of
the client to ensure that amount is positive. The requires
clause makes this explicit .
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signals

Exceptional postconditions can also be specified.

/*@ requires amount >= 0;

ensures true;

signals (BankException e)

amount > balance &&

balance == \old(balance) &&

e.getReason().equals("Amount too big");

@*/

public int debit(int amount) throws BankException

...

}
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signals

Exceptions mentioned in throws clause are allowed by
default, i.e. the default signals clause is
signals (Exception) true;

To rule them out, add an explicit

signals (Exception) false;

or use the keyword normal_behavior

/*@ normal behavior

requires ...

ensures ...

@*/
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invariant
Invariants (aka class invariants) are properties that must be
maintained by all methods, e.g.,

public class Wallet {

public static final short MAX_BAL = 1000;

private short balance;

/*@ invariant 0 <= balance &&

balance <= MAX_BAL;

@*/
...

Invariants are implicitly included in all pre- and
postconditions.

Invariants must also be preserved if exception is thrown!
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invariant
Invariants document design decisions, e.g.,

public class Directory {

private File[] files;

/*@ invariant

files != null

&&

(\forall int i; 0 <= i && i < files.length;

; files[i] != null &&

files[i].getParent() == this);
@*/

Making them explicit helps in understanding the code.
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non_null

Many invariants, pre- and postconditions are about
references not being null. non_null is a convenient
short-hand for these.

public class Directory {

private /*@ non null @*/ File[] files;

void createSubdir(/*@ non null @*/ String name){

...

Directory /*@ non null @*/ getParent(){

...
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assert
An assert clause specifies a property that should hold at
some point in the code, e.g.,

if (i <= 0 || j < 0) {

...

} else if (j < 5) {

//@ assert i > 0 && 0 < j && j < 5;

...

} else {

//@ assert i > 0 && j > 5;

...
}
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assert
JML keyword assert now also in Java (since Java 1.4).

Still, assert in JML is more expressive, for example in

...

for (n = 0; n < a.length; n++)

if (a[n]==null) break;

/*@ assert (\forall int i; 0 <= i && i < n;

a[i] != null);
@*/
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assignable

Frame properties limit possible side-effects of methods.

/*@ requires amount >= 0;

assignable balance;

ensures balance == \old(balance)-amount;

@*/

public int debit(int amount) { }

...

E.g., debit can only assign to the field balance.
NB this does not follow from the post-condition.

Default assignable clause: assignable \everything.
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pure

A method without side-effects is called pure .

public /*@ pure @*/ int getBalance(){...

Directory /*@ pure non null @*/ getParent(){...}

Pure method are implicitly assignable \nothing.

Pure methods, and only pure methods, can be used in
specifications, eg.

//@ invariant 0<=getBalance() && getBalance()<=MAX_BALANCE;
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JML recap

The JML keywords discussed so far:

• requires

• ensures

• signals

• assignable

• normal behavior

• invariant

• non null

• pure

• \old, \forall, \exists, \result

This is all you need to know to get started!
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Tools for JML
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tools for JML

• parsing and typechecking
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tools for JML

• parsing and typechecking

• runtime assertion checking :
test for violations of assertions during execution
jmlrac
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tools for JML

• parsing and typechecking

• runtime assertion checking :
test for violations of assertions during execution
jmlrac

• extended static checking ie. automated program
verification:
prove that contracts are never violated at compile-time
ESC/Java2
This is program verification, not just testing.
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runtime assertion checking

jmlrac compiler by Gary Leavens, Yoonsik Cheon, et al. at
Iowa State Univ.

• translates JML assertions into runtime checks :
during execution, all assertions are tested and
any violation of an assertion produces an
Error.
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runtime assertion checking

jmlrac compiler by Gary Leavens, Yoonsik Cheon, et al. at
Iowa State Univ.

• translates JML assertions into runtime checks :
during execution, all assertions are tested and
any violation of an assertion produces an
Error.

• cheap & easy to do as part of existing testing practice

• better testing and better feedback , because more
properties are tested, at more places in the code
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runtime assertion checking

jmlrac compiler by Gary Leavens, Yoonsik Cheon, et al. at
Iowa State Univ.

• translates JML assertions into runtime checks :
during execution, all assertions are tested and
any violation of an assertion produces an
Error.

• cheap & easy to do as part of existing testing practice

• better testing and better feedback , because more
properties are tested, at more places in the code
Eg, “Invariant violated in line 8000” after 1 minute instead of
“NullPointerException in line 2000” after 4 minutes
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runtime assertion checking

jmlrac compiler by Gary Leavens, Yoonsik Cheon, et al. at
Iowa State Univ.

• translates JML assertions into runtime checks :
during execution, all assertions are tested and
any violation of an assertion produces an
Error.

• cheap & easy to do as part of existing testing practice

• better testing and better feedback , because more
properties are tested, at more places in the code
Eg, “Invariant violated in line 8000” after 1 minute instead of
“NullPointerException in line 2000” after 4 minutes

Of course, an assertion violation can be an error in code or
an error in specification .
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runtime assertion checking

jmlrac compiler by Gary Leavens, Yoonsik Cheon, et al. at
Iowa State Univ.

• translates JML assertions into runtime checks :
during execution, all assertions are tested and
any violation of an assertion produces an
Error.

• cheap & easy to do as part of existing testing practice

• better testing and better feedback , because more
properties are tested, at more places in the code
Eg, “Invariant violated in line 8000” after 1 minute instead of
“NullPointerException in line 2000” after 4 minutes

Of course, an assertion violation can be an error in code or
an error in specification .

The jmlunit tool combines jmlrac and unit testing .
David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.21/??



runtime assertion checking

jmlrac can generate complicated test-code for free. E.g., for

/*@ ...

signals (Exception)

balance == \old(balance);

@*/

public int debit(int amount) { ... }

it will test that if debit throws an exception, the balance
hasn’t changed, and all invariants still hold .

jmlrac even checks \forall if the domain of quantification is
finite.
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extended static checking

ESC/Java(2)

• extended static checking = fully automated program
verification, with some compromises to achieve full
automation

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.23/??



extended static checking

ESC/Java(2)

• extended static checking = fully automated program
verification, with some compromises to achieve full
automation

• tries to prove correctness of specifications,
at compile-time, fully automatically
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extended static checking

ESC/Java(2)

• extended static checking = fully automated program
verification, with some compromises to achieve full
automation

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound : ESC/Java may miss an error that is actually
present
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• extended static checking = fully automated program
verification, with some compromises to achieve full
automation

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound : ESC/Java may miss an error that is actually
present

• not complete : ESC/Java may warn of errors that are
impossible
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extended static checking

ESC/Java(2)

• extended static checking = fully automated program
verification, with some compromises to achieve full
automation

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound : ESC/Java may miss an error that is actually
present

• not complete : ESC/Java may warn of errors that are
impossible

• but finds lots of potential bugs quickly
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extended static checking

ESC/Java(2)

• extended static checking = fully automated program
verification, with some compromises to achieve full
automation

• tries to prove correctness of specifications,
at compile-time, fully automatically

• not sound : ESC/Java may miss an error that is actually
present

• not complete : ESC/Java may warn of errors that are
impossible

• but finds lots of potential bugs quickly

• good at proving absence of runtime exceptions (eg
Null-, ArrayIndexOutOfBounds-, ClassCast-) and verifying
relatively simple properties.
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ESC/Java(2) credits

• ESC/Java originally developed at DEC SRC – later
Compaq, and now HP Research – by Rustan Leino,
Cormac Flanagan, Mark Lillibridge, Greg Nelson,
Raymie Stata, and James Saxe.

• ESC/Java2, extension that supports more of JML,
developed by David Cok and Joe Kiniry.
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static checking vs runtime checking

One of the assertions below is wrong:

if (i <= 0 || j < 0) {

...

} else if (j < 5) {

//@ assert i > 0 && 0 < j && j < 5;

...

} else {

//@ assert i > 0 && j > 5;

...

}

Runtime assertion checking may detect this with a
comprehensive test suite.
ESC/Java2 will detect this at compile-time.
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static checking vs runtime checking

Important differences:

• ESC/Java2 checks specs at compile-time ,
jmlrac checks specs at run-time

• ESC/Java2 proves correctness of specs,
jml only tests correctness of specs.
Hence

• ESC/Java2 independent of any test suite,
results of runtime testing only as good as the test
suite,

• ESC/Java2 provides higher degree of confidence.

The price for this: you have to specify all pre- and
postconditions of methods (incl. API methods) and
invariants needed for modular verification
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more JML tools
• javadoc-style documentation : jmldoc

• Eclipse plugin

• Other red verification tools:
• LOOP tool + PVS (Nijmegen)
• JACK (Gemplus/INRIA)
• Krakatoa tool + Coq (INRIA)

These tools also allow interactive verification (whereas
ESC/Java2 only aims at fully automatic verification)
and can therefore handle more complex properties.

• runtime detection of invariants : Daikon (Michael Ernst,
MIT)

• model-checking multi-threaded programs: Bogor
(Kansas State)

See www.jmlspecs.org
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Related Work
• jContract tool for Java by Parasoft

• Spec# for C# by Microsoft

• SparkAda for subset of Ada by Praxis Critical Systems
Ltd.

• OCL specification language for UML
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More information
These websites and mailing lists can provide more
information (and have links to even more):

• JML: www.jmlspecs.org

• mailing lists: jmlspecs-interest@lists.sourceforge.net
jmlspecs-developers@lists.sourceforge.net

• ESC/Java2:
http://secure.ucd.ie/products/opensource/ESCJava2/

• ESC/Java: http://www.research.compaq.com/SRC/esc/

• mailing list: jmlspecs-escjava@lists.sourceforge.net
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