
Specification tips and pitfalls
David Cok, Joe Kiniry, and Erik Poll

Eastman Kodak Company, University College Dublin,

and Radboud University Nijmegen

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.1/??

Specifications tips and pitfalls

1. Inherited specifications

2. Aliasing

3. Object invariants

4. Inconsistent assumptions

5. Exposed references

6. \old

7. How to write specs

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.2/??

#1: Specification inheritance
and behavioural subtyping

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.3/??

Inherited specifications

• Base class specifications apply to derived classes
• that is, ESC/Java2 enforces behavioral subtyping
• Specs from implemented interfaces also must hold

for implementing classes

• Be thoughtful about how strict the base class specs
should be

• Guard them with \typeof(this) == \type(...) if need be

• Restrictions on exceptions such as normal_behavior or
signals (E e) false; will apply to derived classes as well.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.4/??

Behavioural subtyping

Suppose Child extends Parent.

• Behavioural subtyping = objects from subclass Child
“behave like” objects from superclass Parent

• Principle of substitutivity [Liskov]:
code will behave “as expected” if we provide an Child
object where a Parent object was expected.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.5/??

Behavioural subtyping

Behavioural subtyping usually enforced by insisting that

• invariant in subclass is stronger than invariant in
superclass

• for every method,
• precondition in subclass is weaker (!) than

precondition is superclass
• postcondition in subclass is stronger than

postcondition is superclass

JML achieves behavioural subtyping by specification
inheritance : any child class inherits the specification of its
parent.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.6/??

Specification inheritance for invariants

Invariants are inherited in subclasses. Eg.
class Parent {

...

//@ invariant invParent;

... }

class Child extends Parent {

...

//@ invariant invChild;
... }

the invariant for Child is invChild && invParent

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.7/??

Specification inheritance for method specs

class Parent {

//@ requires i >= 0;

//@ ensures \result >= i;

int m(int i){ ... }

}

class Child extends Parent {

//@ also

//@ requires i <= 0

//@ ensures \result <= i;

int m(int i){ ... }
}

Keyword also indicates there are inherited specs.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.8/??

Specification inheritance for method specs

Method m in Child also has to meet the spec given in
Parent class. So the complete spec for Child is
class Child extends Parent {

/*@ requires i >= 0;

@ ensures \result >= i;

@ also

@ requires i <= 0

@ ensures \result <= i;

@*/

int m(int i){ ... }
}

What can result of m(0) be?

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.9/??

Specification inheritance for method specs

This spec for Child is equivalent with
class Child extends Parent {

/*@ requires i <= 0 || i >= 0;

@ ensures \old(i) >= 0 ==> \result >= i;

@ ensures \old(i) <= 0 ==> \result <= i;

@*/

int m(int i){ ... }
}

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.10/??

Inherited specifications: trick

Another example: two Objects that are == are always also
equals . But the converse is not necessarily true. But it is
true for objects whose dynamic type is Object.

public class Object {
//@ ensures (this == o) ==> \result;
/ * @ ensures \typeof(this) == \type(Object)

==> (\result == (this==o));
* /
public boolean equals(Object o);

}

True for all Objects
�
�
�
�
�
�
�
�
�
��

Not necessarily true for subtypes
B

B
B

B
B

BBM

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.11/??

#2: Aliasing

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.12/??

#2: Aliasing
A common but non-obvious problem that causes violated
invariants is aliasing.
public class Alias {

/ * @ non_null * / int[] a = new int[10];

boolean noneg = true;

/ * @ invariant noneg ==>

(\forall int i; 0<=i && i < a.length; a[i]>=0); * /

//@ requires 0<=i && i < a.length;

public void insert(int i, int v) {

a[i] = v;

if (v < 0) noneg = false;

}

}

produces
Alias.java:12: Warning: Possible violation of object inva riant (Invariant)

}

ˆ

Associated declaration is "Alias.java", line 5, col 6:

/ * @ invariant (\forall int i; 0<=i && i < a.length;

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.13/??

#2: Aliasing

A full counterexample context (-counterexample option)
produces, among lots of other information:

brokenObj%0 != this
(brokenObj%0).(a@pre:2.24) == tmp0!a:10.4
this.(a@pre:2.24) == tmp0!a:10.4

that is, this and some different object (brokenObj) share the
same a object.

int noneg
int[] a

int noneg
int[] a

this brokenObj

an int[] object

XXXXXXXXXXz

@
@@R

t t

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.14/??

#2: Aliasing

To fix this, declare that a is owned only by its parent object:
(owner is a ghost field of java.lang.Object)
public class Alias {

/ * @ non_null * / int[] a = new int[10];

boolean noneg = true;

/ * @ invariant (\forall int i; 0<=i && i < a.length;

noneg ==> (a[i]>=0)); * /

//@ invariant a.owner == this;

//@ requires 0<=i && i < a.length;

public void insert(int i, int v) {

a[i] = v;

if (v < 0) noneg = false;

}

public Alias() {

//@ set a.owner = this;

}

}

�
�

�
�

�
�

�
�

int noneg
int[] a

int noneg
int[] a

int[]
owner

int[]
owner

this brokenObj

an int[] object

an int[] object

A
A
A
A
A
AU

@
@@R

t t

t

t

@
@

@
@

@I

J
J

J
J

J
J

J
JJ]

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.15/??

#2: Aliasing
Another example. This one fails on the postcondition.
public class Alias2 {

/ * @ non_null * / Inner n = new Inner();

/ * @ non_null * / Inner nn = new Inner();

//@ invariant n.owner == this;

//@ invariant nn.owner == this;

//@ ensures n.i == \old(n.i + 1);

public void add() {

n.i++;

nn.i++;

}

Alias2();

}

class Inner {

public int i;

//@ ensures i == 0;

Inner();

}

�
�

�
�

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.16/??

#2: Aliasing

• The counterexample context shows

this.(nn:3.24) == tmp0!n:10.4
tmp2!nn:11.4 == tmp0!n:10.4

• These hint that n and nn are references to the same
object.

• If we add the invariant //@ invariant n != nn; to forbid
aliasing between these two fields, then all is well.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.17/??

#2: Aliasing

• Aliasing is a serious difficulty in verification

• Handling aliasing is an active area of research, related
to handling frame conditions

• It is all about knowing what is modified and what is not

• These owner fields or the equivalent create a form of
encapsulation that can be checked by ESC/Java to
control what might be modified by a given operation

• There is a proposal to add so-called universes to JML
to provide a more advanced form of alias control.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.18/??

#3: Write object invariants

• Be sure that class invariants are about the object at
hand.

• Statements about all objects of a class may indeed be
true, but they are difficult to prove, especially for
automated provers.

• For example, if a predicate P is supposed to hold for
objects of type T, then do not write

//@ invariant (\forall T t; P(t));

• Instead, write

//@ invariant P(this);

• The latter will make a more provable postcondition at
the end of a constructor.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.19/??

#4: Inconsistent assumptions

If you have inconsistent specifications you can prove
anything:

public class Inconsistent {

public void m() {

int a,b,c,d;

//@ assume a == b;

//@ assume b == c;

//@ assume a != c;

//@ assert a == d; // Passes, but inconsistent

//@ assert false; // Passes, but inconsistent

}

}

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.20/??

#4: Inconsistent assumptions

Another example:

public class Inconsistent2 {

public int a,b,c,d;

//@ invariant a == b;

//@ invariant b == c;

//@ invariant a != c;

public void m() {

//@ assert a == d; // Passes, but inconsistent

//@ assert false; // Passes, but inconsistent

}

}

We hope to put in checks for this someday!

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.21/??

#5: Exposed references
Problems can arise when a reference to an internal object is
exported from a class:

public class Exposed {

/ * @ non_null * / private int[] a = new int[10];

//@ invariant a.length > 0 && a[0] >= 0;

//@ ensures \result != null;

//@ ensures \result.length > 0;

//@ pure

public int[] getArray() { return a; }

}

class X {

void m(/ * @ non_null * / Exposed e) {

e.getArray()[0] = -1; // unchecked invariant violation

}

}

• ESC/Java does not check that every allocated object
still satisfies its invariants.

• Similar hidden problems can result if public fields are
modified directly.

�
�

�
�

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.22/??

#6: \old

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.23/??

#6: \old

\old is used to indicate evaluation in the pre-state in a
postcondition expression.

Consider specifying
public static native void arraycopy(Object[] src, int srcP os,

Object[] dest, int destPos, int length);

Try:
ensures (\forall int i; 0<=i && i<length; dest[destPos+i] = = src[srcPos+i]);

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.24/??

#6: \old

\old is used to indicate evaluation in the pre-state in a
postcondition expression.

Consider specifying
public static native void arraycopy(Object[] src, int srcP os,

Object[] dest, int destPos, int length);

Try:
ensures (\forall int i; 0<=i && i<length; dest[destPos+i] = = src[srcPos+i]);

Wrong!

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.25/??

#6: \old

\old is used to indicate evaluation in the pre-state in a
postcondition expression.

Consider specifying
public static native void arraycopy(Object[] src, int srcP os,

Object[] dest, int destPos, int length);

Try:
ensures (\forall int i; 0<=i && i<length; dest[destPos+i] = = src[srcPos+i]);

Wrong!

Besides exceptions and invalid arguments, don’t forget
aliasing - dest and src may be the same array:
ensures (\forall int i; 0<=i && i<length;

dest[destPos+i] == \old(src[srcPos+i]);

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.26/??

#6: \old

\old is used to indicate evaluation in the pre-state in a
postcondition expression.

Consider specifying
public static native void arraycopy(Object[] src, int srcP os,

Try:
ensures (\forall int i; 0<=i && i<length; dest[destPos+i] = = src[srcPos+i]);

Wrong!

Besides exceptions and invalid arguments, don’t forget
aliasing - dest and src may be the same array:
ensures (\forall int i; 0<=i && i<length;

dest[destPos+i] == \old(src[srcPos+i]);

And don’t forget the other elements:
ensures (\forall int i; (0<=i && i<destPos) ||

(destPos+length <= i && i < destPos.length);

dest[i] == \old(dest[i]);

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.27/??

#7: How to write specs

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.28/??

Getting started

• Start with foundation and library routines

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.29/??

Getting started

• Start with foundation and library routines

• For each field: is there an invariant for this field?

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.29/??

Getting started

• Start with foundation and library routines

• For each field: is there an invariant for this field?

• For each reference field: should it be non_null ?

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.29/??

Getting started

• Start with foundation and library routines

• For each field: is there an invariant for this field?

• For each reference field: should it be non_null ?

• For each reference field: should an owner field be set
for it?

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.29/??

Getting started

• Start with foundation and library routines

• For each field: is there an invariant for this field?

• For each reference field: should it be non_null ?

• For each reference field: should an owner field be set
for it?

• For each method: should it be pure ? Should the
arguments or the result be non_null ?

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.29/??

Getting started

• Start with foundation and library routines

• For each field: is there an invariant for this field?

• For each reference field: should it be non_null ?

• For each reference field: should an owner field be set
for it?

• For each method: should it be pure ? Should the
arguments or the result be non_null ?

• For each class: what invariant expresses the
self-consistency of the internal data?

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.29/??

Getting started

• Start with foundation and library routines

• For each field: is there an invariant for this field?

• For each reference field: should it be non_null ?

• For each reference field: should an owner field be set
for it?

• For each method: should it be pure ? Should the
arguments or the result be non_null ?

• For each class: what invariant expresses the
self-consistency of the internal data?

• Add pre- and post-conditions to limit the inputs and
outputs of each method.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.29/??

Getting started

• Start with foundation and library routines

• For each field: is there an invariant for this field?

• For each reference field: should it be non_null ?

• For each reference field: should an owner field be set
for it?

• For each method: should it be pure ? Should the
arguments or the result be non_null ?

• For each class: what invariant expresses the
self-consistency of the internal data?

• Add pre- and post-conditions to limit the inputs and
outputs of each method.

• Add possible unchecked exceptions to throws clauses.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.29/??

Getting started

• Start with foundation and library routines

• For each field: is there an invariant for this field?

• For each reference field: should it be non_null ?

• For each reference field: should an owner field be set
for it?

• For each method: should it be pure ? Should the
arguments or the result be non_null ?

• For each class: what invariant expresses the
self-consistency of the internal data?

• Add pre- and post-conditions to limit the inputs and
outputs of each method.

• Add possible unchecked exceptions to throws clauses.

• Start with simple specifications; proceed to complex
ones as they have value.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.29/??

Getting started

• Separate conjunctions to get information about which
conjunct is violated. Use

requires A;

requires B;

not

requires A && B;

• Use assert statements to find out what is going wrong.

• Use assume statements that you KNOW are correct to
help the prover along.

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.30/??

Finally

• Specification is tricky - getting it right is hard, even with
tools

• Try it - a substantial research gap is experience on
industrial-scale sets of code

• Communicate - we are willing to offer advice

• Share your experience - tools will get better and we will
all learn better techniques for successful specification
(use JML and ESC/Java mailing lists)

David Cok, Joe Kiniry & Erik Poll - ESC/Java2 & JML Tutorial – p.31/??

	Specifications tips and pitfalls
	{Large ed #1: Specification inheritance and behavioural subtyping }
	Inherited specifications
	Behavioural subtyping
	Behavioural subtyping
	$!!!$small Specification inheritance for invariants
	$!!!!!$small Specif-ication inheritance for method specs
	$!!!!!$small Specif-ication inheritance for method specs
	$!!!!!$small Specification inheritance for method specs
	Inherited specifications: trick
	{Large ed #2: Aliasing}
	#2: Aliasing
	#2: Aliasing
	#2: Aliasing
	#2: Aliasing
	#2: Aliasing
	#2: Aliasing
	#3: Write object invariants
	#4: Inconsistent assumptions
	#4: Inconsistent assumptions
	#5: Exposed references
	{Large ed #6: old }
	#6: old
	#6: old
	#6: old
	#6: old
	{Large ed #7: How to write specs }
	Getting started
	Getting started
		extit {Finally}

