
3.2 Linear-time temporal logic 175

Temporal logics have a dynamic aspect to them, since the truth of a
formula is not fixed in a model, as it is in predicate or propositional logic,
but depends on the time-point inside the model. In this chapter, we study
a logic where time is linear, called Linear-time Temporal Logic (LTL), and
another where time is branching, namely Computation Tree Logic (CTL).
These logics have proven to be extremely fruitful in verifying hardware and
communication protocols; and people are beginning to apply them to the
verification of software. Model checking is the process of computing an answer
to the question of whether M, s � φ holds, where φ is a formula of one of
these logics, M is an appropriate model of the system under consideration,
s is a state of that model and � is the underlying satisfaction relation.

Models like M should not be confused with an actual physical system.
Models are abstractions that omit lots of real features of a physical system,
which are irrelevant to the checking of φ. This is similar to the abstractions
that one does in calculus or mechanics. There we talk about straight lines,
perfect circles, or an experiment without friction. These abstractions are
very powerful, for they allow us to focus on the essentials of our particular
concern.

3.2 Linear-time temporal logic

Linear-time temporal logic, or LTL for short, is a temporal logic, with con-
nectives that allow us to refer to the future. It models time as a sequence of
states, extending infinitely into the future. This sequence of states is some-
times called a computation path, or simply a path. In general, the future is
not determined, so we consider several paths, representing different possible
futures, any one of which might be the ‘actual’ path that is realised.

We work with a fixed set Atoms of atomic formulas (such as p, q, r, . . . , or
p1, p2, . . .). These atoms stand for atomic facts which may hold of a system,
like ‘Printer Q5 is busy,’ or ‘Process 3259 is suspended,’ or ‘The content of
register R1 is the integer value 6.’ The choice of atomic descriptions obvi-
ously depends on our particular interest in a system at hand.

3.2.1 Syntax of LTL

Definition 3.1 Linear-time temporal logic (LTL) has the following syntax
given in Backus Naur form:

φ ::= � | ⊥ | p | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ)

| (Xφ) | (Fφ) | (Gφ) | (φ U φ) | (φ W φ) | (φ R φ) (3.1)

where p is any propositional atom from some set Atoms.

176 3 Verification by model checking

→

r

∨

F

p G q

¬

U

p

Figure 3.1. The parse tree of (F (p→ G r) ∨ ((¬q) U p)).

Thus, the symbols � and ⊥ are LTL formulas, as are all atoms from Atoms;
and ¬φ is an LTL formula if φ is one, etc. The connectives X, F, G, U, R,
and W are called temporal connectives. X means ‘neXt state,’ F means ‘some
Future state,’ and G means ‘all future states (Globally).’ The next three, U,
R and W are called ‘Until,’ ‘Release’ and ‘Weak-until’ respectively. We will
look at the precise meaning of all these connectives in the next section; for
now, we concentrate on their syntax.

Here are some examples of LTL formulas:

� (((F p) ∧ (G q)) → (p W r))
� (F (p→ (G r)) ∨ ((¬q) U p)), the parse tree of this formula is illustrated in

Figure 3.1.
� (p W (q W r))
� ((G (F p)) → (F (q ∨ s))).

It’s boring to write all those brackets, and makes the formulas hard to read.
Many of them can be omitted without introducing ambiguities; for example,
(p→ (F q)) could be written p→ F q without ambiguity. Others, however,
are required to resolve ambiguities. In order to omit some of those, we assume
similar binding priorities for the LTL connectives to those we assumed for
propositional and predicate logic.

178 3 Verification by model checking

Definition 3.3 A subformula of an LTL formula φ is any formula ψ whose
parse tree is a subtree of φ’s parse tree.

The subformulas of p W (q U r), e.g., are p, q, r, q U r and p W (q U r).

3.2.2 Semantics of LTL

The kinds of systems we are interested in verifying using LTL may be
modelled as transition systems. A transition system models a system by
means of states (static structure) and transitions (dynamic structure). More
formally:

Definition 3.4 A transition system M = (S,→, L) is a set of states S

endowed with a transition relation → (a binary relation on S), such
that every s ∈ S has some s′ ∈ S with s→ s′, and a labelling function
L : S → P(Atoms).

Transition systems are also simply called models in this chapter. So a model
has a collection of states S, a relation →, saying how the system can move
from state to state, and, associated with each state s, one has the set of
atomic propositions L(s) which are true at that particular state. We write
P(Atoms) for the power set of Atoms, a collection of atomic descriptions.
For example, the power set of {p, q} is {∅, {p}, {q}, {p, q}}. A good way of
thinking about L is that it is just an assignment of truth values to all the
propositional atoms, as it was the case for propositional logic (we called
that a valuation). The difference now is that we have more than one state,
so this assignment depends on which state s the system is in: L(s) contains
all atoms which are true in state s.

We may conveniently express all the information about a (finite) tran-
sition system M using directed graphs whose nodes (which we call states)
contain all propositional atoms that are true in that state. For example, if
our system has only three states s0, s1 and s2; if the only possible transi-
tions between states are s0 → s1, s0 → s2, s1 → s0, s1 → s2 and s2 → s2;
and if L(s0) = {p, q}, L(s1) = {q, r} and L(s2) = {r}, then we can condense
all this information into Figure 3.3. We prefer to present models by means
of such pictures whenever that is feasible.

The requirement in Definition 3.4 that for every s ∈ S there is at least
one s′ ∈ S such that s→ s′ means that no state of the system can ‘dead-
lock.’ This is a technical convenience, and in fact it does not represent any
real restriction on the systems we can model. If a system did deadlock, we
could always add an extra state sd representing deadlock, together with new

3.2 Linear-time temporal logic 179

s0
p, q

s1

q, r
s2

r

Figure 3.3. A concise representation of a transition system M =
(S,→ ,L) as a directed graph. We label state s with l iff l ∈ L(s).

s1

s3

s0

s2

s4

s1

s3

s0

s2

s4

sd

Figure 3.4. On the left, we have a system with a state s4 that does not

have any further transitions. On the right, we expand that system with a

‘deadlock’ state sd such that no state can deadlock; of course, it is then

our understanding that reaching the ‘deadlock’ state sd corresponds to

deadlock in the original system.

transitions s→ sd for each s which was a deadlock in the old system, as well
as sd → sd. See Figure 3.4 for such an example.

Definition 3.5 A path in a model M = (S,→, L) is an infinite sequence of
states s1, s2, s3, . . . in S such that, for each i ≥ 1, si → si+1. We write the
path as s1 → s2 →

Consider the path π = s1 → s2 → It represents a possible future of
our system: first it is in state s1, then it is in state s2, and so on. We write
πi for the suffix starting at si, e.g., π3 is s3 → s4 →

3.2 Linear-time temporal logic 179

s0
p, q

s1

q, r
s2

r

Figure 3.3. A concise representation of a transition system M =
(S,→ ,L) as a directed graph. We label state s with l iff l ∈ L(s).

s1

s3

s0

s2

s4

s1

s3

s0

s2

s4

sd

Figure 3.4. On the left, we have a system with a state s4 that does not

have any further transitions. On the right, we expand that system with a

‘deadlock’ state sd such that no state can deadlock; of course, it is then

our understanding that reaching the ‘deadlock’ state sd corresponds to

deadlock in the original system.

transitions s→ sd for each s which was a deadlock in the old system, as well
as sd → sd. See Figure 3.4 for such an example.

Definition 3.5 A path in a model M = (S,→, L) is an infinite sequence of
states s1, s2, s3, . . . in S such that, for each i ≥ 1, si → si+1. We write the
path as s1 → s2 →

Consider the path π = s1 → s2 → It represents a possible future of
our system: first it is in state s1, then it is in state s2, and so on. We write
πi for the suffix starting at si, e.g., π3 is s3 → s4 →

180 3 Verification by model checking

p, q

rr

rq, r

p, q

q, r

s0

s2

s2

s2

s0

s1

s1

r

s2

r
s2

Figure 3.5. Unwinding the system of Figure 3.3 as an infinite tree of

all computation paths beginning in a particular state.

It is useful to visualise all possible computation paths from a given state
s by unwinding the transition system to obtain an infinite computation tree.
For example, if we unwind the state graph of Figure 3.3 for the designated
starting state s0, then we get the infinite tree in Figure 3.5. The execu-
tion paths of a model M are explicitly represented in the tree obtained by
unwinding the model.

Definition 3.6 Let M = (S,→, L) be a model and π = s1 → . . . be a path
in M. Whether π satisfies an LTL formula is defined by the satisfaction
relation � as follows:

1. π � �
2. π
� ⊥
3. π � p iff p ∈ L(s1)
4. π � ¬φ iff π
� φ
5. π � φ1 ∧ φ2 iff π � φ1 and π � φ2

6. π � φ1 ∨ φ2 iff π � φ1 or π � φ2

7. π � φ1 → φ2 iff π � φ2 whenever π � φ1

8. π � Xφ iff π2 � φ
9. π � Gφ iff, for all i ≥ 1, πi � φ

180 3 Verification by model checking

p, q

rr

rq, r

p, q

q, r

s0

s2

s2

s2

s0

s1

s1

r

s2

r
s2

Figure 3.5. Unwinding the system of Figure 3.3 as an infinite tree of

all computation paths beginning in a particular state.

It is useful to visualise all possible computation paths from a given state
s by unwinding the transition system to obtain an infinite computation tree.
For example, if we unwind the state graph of Figure 3.3 for the designated
starting state s0, then we get the infinite tree in Figure 3.5. The execu-
tion paths of a model M are explicitly represented in the tree obtained by
unwinding the model.

Definition 3.6 Let M = (S,→, L) be a model and π = s1 → . . . be a path
in M. Whether π satisfies an LTL formula is defined by the satisfaction
relation � as follows:

1. π � �
2. π
� ⊥
3. π � p iff p ∈ L(s1)
4. π � ¬φ iff π
� φ
5. π � φ1 ∧ φ2 iff π � φ1 and π � φ2

6. π � φ1 ∨ φ2 iff π � φ1 or π � φ2

7. π � φ1 → φ2 iff π � φ2 whenever π � φ1

8. π � Xφ iff π2 � φ
9. π � Gφ iff, for all i ≥ 1, πi � φ

3.2 Linear-time temporal logic 181

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

︸ ︷︷ ︸
p q

. . .

Figure 3.6. An illustration of the meaning of Until in the semantics of

LTL. Suppose p is satisfied at (and only at) s3, s4, s5, s6, s7, s8 and q is

satisfied at (and only at) s9. Only the states s3 to s9 each satisfy p U q
along the path shown.

10. π � Fφ iff there is some i ≥ 1 such that πi � φ
11. π � φ U ψ iff there is some i ≥ 1 such that πi � ψ and for all j = 1, . . . , i− 1

we have πj � φ
12. π � φ W ψ iff either there is some i ≥ 1 such that πi � ψ and for all j =

1, . . . , i− 1 we have πj � φ; or for all k ≥ 1 we have πk � φ
13. π � φ R ψ iff either there is some i ≥ 1 such that πi � φ and for all j = 1, . . . , i

we have πj � ψ, or for all k ≥ 1 we have πk � ψ.

Clauses 1 and 2 reflect the facts that � is always true, and ⊥ is always false.
Clauses 3–7 are similar to the corresponding clauses we saw in propositional
logic. Clause 8 removes the first state from the path, in order to create a
path starting at the ‘next’ (second) state.

Notice that clause 3 means that atoms are evaluated in the first state along
the path in consideration. However, that doesn’t mean that all the atoms
occuring in an LTL formula refer to the first state of the path; if they are in
the scope of a temporal connective, e.g., in G (p→ X q), then the calculation
of satisfaction involves taking suffices of the path in consideration, and the
atoms refer to the first state of those suffices.

Let’s now look at clauses 11–13, which deal with the binary temporal
connectives. U, which stands for ‘Until,’ is the most commonly encountered
one of these. The formula φ1 U φ2 holds on a path if it is the case that φ1

holds continuously until φ2 holds. Moreover, φ1 U φ2 actually demands that
φ2 does hold in some future state. See Figure 3.6 for illustration: each of the
states s3 to s9 satisfies p U q along the path shown, but s0 to s2 don’t.

The other binary connectives are W, standing for ‘Weak-until,’ and R,
standing for ‘Release.’ Weak-until is just like U, except that φ W ψ does not
require that ψ is eventually satisfied along the path in question, which is
required by φ U ψ. Release R is the dual of U; that is, φ R ψ is equivalent to
¬(¬φ U ¬ψ). It is called ‘Release’ because clause 11 determines that ψ must
remain true up to and including the moment when φ becomes true (if there
is one); φ ‘releases’ ψ. R and W are actually quite similar; the differences
are that they swap the roles of φ and ψ, and the clause for W has an i− 1

