Definition 3.1 Linear-time temporal logic (LTL) has the following syntax

given in Backus Naur form:

$\phi ::= \top \mid \perp \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \to \phi)$ $\mid (\mathbf{X}\phi) \mid (\mathbf{F}\phi) \mid (\mathbf{G}\phi) \mid (\phi \lor \phi) \mid (\phi \lor \phi) \mid (\phi \lor \phi) \mid (\phi \lor \phi)$ (3.1)

where p is any propositional atom from some set Atoms.

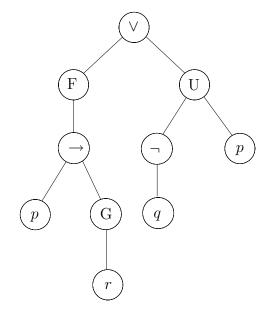


Figure 3.1. The parse tree of $(F(p \rightarrow Gr) \lor ((\neg q) \sqcup p))$.

3.2.2 Semantics of LTL

The kinds of systems we are interested in verifying using LTL may be modelled as transition systems. A transition system models a system by means of *states* (static structure) and *transitions* (dynamic structure). More formally:

Definition 3.4 A transition system $\mathcal{M} = (S, \rightarrow, L)$ is a set of states S endowed with a transition relation \rightarrow (a binary relation on S), such that every $s \in S$ has some $s' \in S$ with $s \rightarrow s'$, and a labelling function $L: S \rightarrow \mathcal{P}(\texttt{Atoms})$.

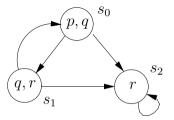
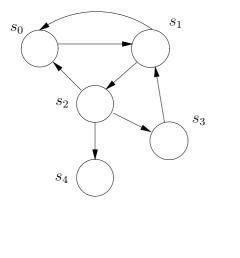


Figure 3.3. A concise representation of a transition system $\mathcal{M} = (S, \rightarrow, L)$ as a directed graph. We label state *s* with *l* iff $l \in L(s)$.



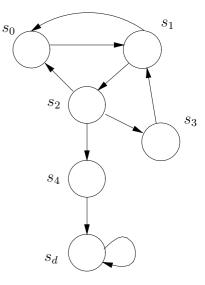


Figure 3.4. On the left, we have a system with a state s_4 that does not have any further transitions. On the right, we expand that system with a 'deadlock' state s_d such that no state can deadlock; of course, it is then our understanding that reaching the 'deadlock' state s_d corresponds to deadlock in the original system.

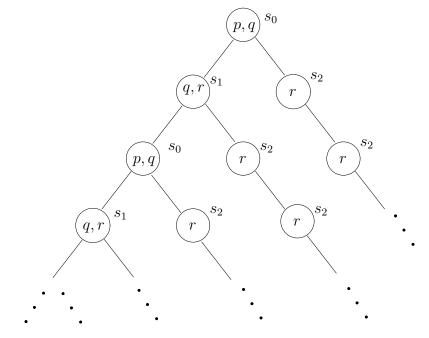


Figure 3.5. Unwinding the system of Figure 3.3 as an infinite tree of all computation paths beginning in a particular state.

Definition 3.6 Let $\mathcal{M} = (S, \rightarrow, L)$ be a model and $\pi = s_1 \rightarrow \ldots$ be a path in \mathcal{M} . Whether π satisfies an LTL formula is defined by the satisfaction relation \vDash as follows:

1. $\pi \models \top$ 2. $\pi \not\models \bot$ 3. $\pi \models p$ iff $p \in L(s_1)$ 4. $\pi \models \neg \phi$ iff $\pi \not\models \phi$ 5. $\pi \models \phi_1 \land \phi_2$ iff $\pi \models \phi_1$ and $\pi \models \phi_2$ 6. $\pi \models \phi_1 \lor \phi_2$ iff $\pi \models \phi_1$ or $\pi \models \phi_2$ 7. $\pi \models \phi_1 \rightarrow \phi_2$ iff $\pi \models \phi_2$ whenever $\pi \models \phi_1$ 8. $\pi \models \mathbf{X} \phi$ iff $\pi^2 \models \phi$ 9. $\pi \models \mathbf{G}\phi$ iff, for all i > 1, $\pi^i \models \phi$

10. $\pi \models \mathbf{F} \phi$ iff there is some i > 1 such that $\pi^i \models \phi$ 11. $\pi \models \phi \cup \psi$ iff there is some $i \ge 1$ such that $\pi^i \models \psi$ and for all $j = 1, \ldots, i-1$ we have $\pi^j \models \phi$ 12. $\pi \vDash \phi \le \psi$ iff either there is some i > 1 such that $\pi^i \vDash \psi$ and for all j = 1 $1, \ldots, i-1$ we have $\pi^j \vDash \phi$; or for all k > 1 we have $\pi^k \vDash \phi$ 13. $\pi \vDash \phi \ \mathbf{R} \ \psi$ iff either there is some $i \ge 1$ such that $\pi^i \vDash \phi$ and for all $i = 1, \ldots, i$

we have $\pi^{j} \models \psi$, or for all $k \ge 1$ we have $\pi^{k} \models \psi$.