
188 3 Verification by model checking

n1n2

t1n2

c1n2 t1t2

n1t2

n1c2

t1c2c1t2

s0

s1

s2

s4

s3

s5

s6

s7

Figure 3.7. A first-attempt model for mutual exclusion.

This safety property is not enough, since a protocol which permanently
excluded every process from its critical section would be safe, but not very
useful. Therefore, we should also require:

Liveness: Whenever any process requests to enter its critical section, it
will eventually be permitted to do so.

Non-blocking: A process can always request to enter its critical section.

Some rather crude protocols might work on the basis that they cycle through
the processes, making each one in turn enter its critical section. Since it
might be naturally the case that some of them request access to the shared
resource more often than others, we should make sure our protocol has the
property:

No strict sequencing: Processes need not enter their critical section in
strict sequence.

The first modelling attempt We will model two processes, each of
which is in its non-critical state (n), or trying to enter its critical state (t),
or in its critical state (c). Each individual process undergoes transitions in
the cycle n→ t→ c→ n→ . . . , but the two processes interleave with each
other. Consider the protocol given by the transition system M in Figure 3.7.
(As usual, we write p1p2 . . . pm in a node s to denote that p1, p2, . . . , pm
are the only propositional atoms true at s.) The two processes start off in
their non-critical sections (global state s0). State s0 is the only initial state,
indicated by the incoming edge with no source. Either of them may now

3.3 Model checking: systems, tools, properties 191

s0 n1n2

s1

s2

s4

s3

t1n2

c1n2

c1t2

s5

n1c2

s7

n1t2

t1c2

t1t2t1t2

s9 s6

Figure 3.8. A second-attempt model for mutual exclusion. There are

now two states representing t1t2, namely s3 and s9.

3.3.2 The NuSMV model checker

So far, this chapter has been quite theoretical; and the sections after this
one continue in this vein. However, one of the exciting things about model
checking is that it is also a practical subject, for there are several efficient
implementations which can check large systems in realistic time. In this
section, we look at the NuSMV model-checking system. NuSMV stands for
‘New Symbolic Model Verifier.’ NuSMV is an Open Source product, is ac-
tively supported and has a substantial user community. For details on how
to obtain it, see the bibliographic notes at the end of the chapter.

NuSMV (sometimes called simply SMV) provides a language for describ-
ing the models we have been drawing as diagrams and it directly checks the
validity of LTL (and also CTL) formulas on those models. SMV takes as
input a text consisting of a program describing a model and some specifica-
tions (temporal logic formulas). It produces as output either the word ‘true’
if the specifications hold, or a trace showing why the specification is false
for the model represented by our program.

SMV programs consist of one or more modules. As in the programming
language C, or Java, one of the modules must be called main. Modules can
declare variables and assign to them. Assignments usually give the initial
value of a variable and its next value as an expression in terms of the current
values of variables. This expression can be non-deterministic (denoted by
several expressions in braces, or no assignment at all). Non-determinism is
used to model the environment and for abstraction.

192 3 Verification by model checking

The following input to SMV:

MODULE main
VAR
request : boolean;
status : {ready,busy};

ASSIGN
init(status) := ready;
next(status) := case

request : busy;
1 : {ready,busy};

esac;
LTLSPEC
G(request -> F status=busy)

consists of a program and a specification. The program has two variables,
request of type boolean and status of enumeration type {ready, busy}:
0 denotes ‘false’ and 1 represents ‘true.’ The initial and subsequent values
of variable request are not determined within this program; this conserva-
tively models that these values are determined by an external environment.
This under-specification of request implies that the value of variable status
is partially determined: initially, it is ready; and it becomes busy whenever
request is true. If request is false, the next value of status is not deter-
mined.

Note that the case 1: signifies the default case, and that case statements
are evaluated from the top down: if several expressions to the left of a ‘:’ are
true, then the command corresponding to the first, top-most true expression
will be executed. The program therefore denotes the transition system shown
in Figure 3.9; there are four states, each one corresponding to a possible value
of the two binary variables. Note that we wrote ‘busy’ as a shorthand for
‘status=busy’ and ‘req’ for ‘request is true.’

It takes a while to get used to the syntax of SMV and its meaning. Since
variable request functions as a genuine environment in this model, the
program and the transition system are non-deterministic: i.e., the ‘next
state’ is not uniquely defined. Any state transition based on the behaviour
of status comes in a pair: to a successor state where request is false, or
true, respectively. For example, the state ‘¬req, busy’ has four states it can
move to (itself and three others).

LTL specifications are introduced by the keyword LTLSPEC and are sim-
ply LTL formulas. Notice that SMV uses &, |, -> and ! for ∧, ∨, → and
¬, respectively, since they are available on standard keyboards. We may

3.3 Model checking: systems, tools, properties 193

req
ready busy

req

¬req
busyready

¬req

Figure 3.9. The model corresponding to the SMV program in the text.

easily verify that the specification of our module main holds of the model in
Figure 3.9.

Modules in SMV SMV supports breaking a system description into sev-
eral modules, to aid readability and to verify interaction properties. A mod-
ule is instantiated when a variable having that module name as its type is
declared. This defines a set of variables, one for each one declared in the
module description. In the example below, which is one of the ones dis-
tributed with SMV, a counter which repeatedly counts from 000 through to
111 is described by three single-bit counters. The module counter cell is
instantiated three times, with the names bit0, bit1 and bit2. The counter
module has one formal parameter, carry in, which is given the actual value
1 in bit0, and bit0.carry out in the instance bit1. Hence, the carry in of
module bit1 is the carry out of module bit0. Note that we use the period
‘.’ in m.v to access the variable v in module m. This notation is also used by
Alloy (see Chapter 2) and a host of programming languages to access fields
in record structures, or methods in objects. The keyword DEFINE is used
to assign the expression value & carry in to the symbol carry out (such
definitions are just a means for referring to the current value of a certain
expression).

MODULE main
VAR

bit0 : counter_cell(1);
bit1 : counter_cell(bit0.carry_out);
bit2 : counter_cell(bit1.carry_out);

LTLSPEC
G F bit2.carry_out

196 3 Verification by model checking

MODULE main

VAR

pr1: process prc(pr2.st, turn, 0);

pr2: process prc(pr1.st, turn, 1);

turn: boolean;

ASSIGN

init(turn) := 0;

-- safety

LTLSPEC G!((pr1.st = c) & (pr2.st = c))

-- liveness

LTLSPEC G((pr1.st = t) -> F (pr1.st = c))

LTLSPEC G((pr2.st = t) -> F (pr2.st = c))

-- ‘negation’ of strict sequencing (desired to be false)

LTLSPEC G(pr1.st=c -> (G pr1.st=c | (pr1.st=c U

(!pr1.st=c & G !pr1.st=c | ((!pr1.st=c) U pr2.st=c)))))

MODULE prc(other-st, turn, myturn)

VAR

st: {n, t, c};
ASSIGN

init(st) := n;

next(st) :=

case

(st = n) : {t,n};
(st = t) & (other-st = n) : c;

(st = t) & (other-st = t) & (turn = myturn): c;

(st = c) : {c,n};
1 : st;

esac;

next(turn) :=

case

turn = myturn & st = c : !turn;

1 : turn;

esac;

FAIRNESS running

FAIRNESS !(st = c)

Figure 3.10. SMV code for mutual exclusion. Because W is not sup-

ported by SMV, we had to make use of equivalence (3.3) to write the

no-strict-sequencing formula as an equivalent but longer formula in-

volving U.

198
3

V
e
rific

a
tio

n
b
y

m
o
d
e
l
c
h
e
c
k
in

g

cn0

tn0tc0

tt0

nn0

ct0

1,2

2 1

1

1

2

1,2

1

2

2

2

2 1

1

2

1

1,2
11,2

1,2

12

2

2

1
2

1

1

1

2

1

2

2

nn1

tn1cn1ct1nt1

tt1

nc1

tc1

1,2

2

nc0nt0

1,2
2 1

1,21,2

1

1,2

F
ig

u
re

3
.1

1
.

T
h
e

tra
n
sitio

n
sy

ste
m

c
o
rre

sp
o
n
d
in

g
to

th
e

S
M

V
c
o
d
e

in
F
ig

u
re

3
.1

0
.
T
h
e

la
b
e
ls

o
n

th
e

tra
n
sitio

n
s

d
e
n
o
te

th
e

p
ro

c
e
ss

w
h
ic

h

m
a
k
e
s

th
e

m
o
v
e
.

T
h
e

la
b
e
l

1
,2

m
e
a
n
s

th
a
t

e
ith

e
r

p
ro

c
e
ss

c
o
u
ld

m
a
k
e

th
a
t
m

o
v
e
.

MODULE main

VAR

ferryman : boolean;

goat : boolean;

cabbage : boolean;

wolf : boolean;

carry : {g,c,w,0};
ASSIGN

init(ferryman) := 0; init(goat) := 0;

init(cabbage) := 0; init(wolf) := 0;

init(carry) := 0;

next(ferryman) := 0,1;

next(carry) := case

ferryman=goat : g;

1 : 0;

esac union

case

ferryman=cabbage : c;

1 : 0;

esac union

case

ferryman=wolf : w;

1 : 0;

esac union 0;

next(goat) := case

ferryman=goat & next(carry)=g : next(ferryman);

1 : goat;

esac;

next(cabbage) := case

ferryman=cabbage & next(carry)=c : next(ferryman);

1 : cabbage;

esac;

next(wolf) := case

ferryman=wolf & next(carry)=w : next(ferryman);

1 : wolf;

esac;

LTLSPEC !(((goat=cabbage | goat=wolf) -> goat=ferryman)

U (cabbage & goat & wolf & ferryman))

Figure 3.12. NuSMV code for the ferryman planning problem.

