
208 3 Verification by model checking

exists a path from s satisfying the LTL formula φ, we check whether all paths
satisfy ¬φ; a positive answer to this is a negative answer to our original ques-
tion, and vice versa. We used this approach when analysing the ferryman
puzzle in the previous section. However, as already noted, properties which
mix universal and existential path quantifiers cannot in general be model
checked using this approach, because the complement formula still has a mix.

Branching-time logics solve this problem by allowing us to quantify ex-
plicitly over paths. We will examine a logic known as Computation Tree
Logic, or CTL. In CTL, as well as the temporal operators U, F, G and X of
LTL we also have quantifiers A and E which express ‘all paths’ and ‘exists
a path’, respectively. For example, we can write:

� There is a reachable state satisfying q: this is written EF q.
� From all reachable states satisfying p, it is possible to maintain p continuously

until reaching a state satisfying q: this is written AG (p→ E[p U q]).
� Whenever a state satisfying p is reached, the system can exhibit q continuously

forevermore: AG (p→ EG q).
� There is a reachable state from which all reachable states satisfy p: EF AG p.

3.4.1 Syntax of CTL

Computation Tree Logic, or CTL for short, is a branching-time logic, mean-
ing that its model of time is a tree-like structure in which the future is not
determined; there are different paths in the future, any one of which might
be the ‘actual’ path that is realised.

As before, we work with a fixed set of atomic formulas/descriptions (such
as p, q, r, . . . , or p1, p2, . . .).

Definition 3.12 We define CTL formulas inductively via a Backus Naur
form as done for LTL:

φ ::= ⊥ | � | p | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | AXφ | EXφ |
AFφ | EFφ | AGφ | EGφ | A[φ U φ] | E[φ U φ]

where p ranges over a set of atomic formulas.

Notice that each of the CTL temporal connectives is a pair of symbols.
The first of the pair is one of A and E. A means ‘along All paths’ (inevitably)
and E means ‘along at least (there Exists) one path’ (possibly). The second
one of the pair is X, F, G, or U, meaning ‘neXt state,’ ‘some Future state,’
‘all future states (Globally)’ and Until, respectively. The pair of symbols
in E[φ1 U φ2], for example, is EU. In CTL, pairs of symbols like EU are

210 3 Verification by model checking

AU

EUAX

¬¬ EX

pp ∧

qp

Figure 3.18. The parse tree of a CTL formula without infix notation.

Notice that we use square brackets after the A or E, when the paired
operator is a U. There is no strong reason for this; you could use ordinary
round brackets instead. However, it often helps one to read the formula
(because we can more easily spot where the corresponding close bracket is).
Another reason for using the square brackets is that SMV insists on it.

The reason A[(r U q) ∧ (p U r)] is not a well-formed formula is that the
syntax does not allow us to put a boolean connective (like ∧) directly inside
A[] or E[]. Occurrences of A or E must be followed by one of G, F, X or U;
when they are followed by U, it must be in the form A[φ U ψ]. Now, the φ
and the ψ may contain ∧, since they are arbitrary formulas; so A[(p ∧ q) U
(¬r → q)] is a well-formed formula.

Observe that AU and EU are binary connectives which mix infix and
prefix notation. In pure infix, we would write φ1 AU φ2, whereas in pure
prefix we would write AU(φ1, φ2).

As with any formal language, and as we did in the previous two chapters,
it is useful to draw parse trees for well-formed formulas. The parse tree for
A[AX¬p U E[EX (p ∧ q) U ¬p]] is shown in Figure 3.18.

Definition 3.14 A subformula of a CTL formula φ is any formula ψ whose
parse tree is a subtree of φ’s parse tree.

3.4 Branching-time logic 211

3.4.2 Semantics of computation tree logic

CTL formulas are interpreted over transition systems (Definition 3.4). Let
M = (S,→, L) be such a model, s ∈ S and φ a CTL formula. The definition
of whether M, s � φ holds is recursive on the structure of φ, and can be
roughly understood as follows:

� If φ is atomic, satisfaction is determined by L.
� If the top-level connective of φ (i.e., the connective occurring top-most in the

parse tree of φ) is a boolean connective (∧, ∨, ¬, � etc.) then the satisfaction
question is answered by the usual truth-table definition and further recursion
down φ.

� If the top level connective is an operator beginning A, then satisfaction holds if
all paths from s satisfy the ‘LTL formula’ resulting from removing the A symbol.

� Similarly, if the top level connective begins with E, then satisfaction holds if
some path from s satisfy the ‘LTL formula’ resulting from removing the E.

In the last two cases, the result of removing A or E is not strictly an LTL
formula, for it may contain further As or Es below. However, these will be
dealt with by the recursion.

The formal definition of M, s � φ is a bit more verbose:

Definition 3.15 Let M = (S,→, L) be a model for CTL, s in S, φ a CTL
formula. The relation M, s � φ is defined by structural induction on φ:

1. M, s � � and M, s
� ⊥
2. M, s � p iff p ∈ L(s)
3. M, s � ¬φ iff M, s
� φ
4. M, s � φ1 ∧ φ2 iff M, s � φ1 and M, s � φ2

5. M, s � φ1 ∨ φ2 iff M, s � φ1 or M, s � φ2

6. M, s � φ1 → φ2 iff M, s
� φ1 or M, s � φ2.
7. M, s � AXφ iff for all s1 such that s→ s1 we have M, s1 � φ. Thus, AX says:

‘in every next state.’
8. M, s � EXφ iff for some s1 such that s→ s1 we have M, s1 � φ. Thus, EX

says: ‘in some next state.’ E is dual to A – in exactly the same way that ∃ is
dual to ∀ in predicate logic.

9. M, s � AGφ holds iff for all paths s1 → s2 → s3 → . . ., where s1 equals s, and
all si along the path, we have M, si � φ. Mnemonically: for All computation
paths beginning in s the property φ holds Globally. Note that ‘along the path’
includes the path’s initial state s.

10. M, s � EGφ holds iff there is a path s1 → s2 → s3 → . . ., where s1 equals s,
and for all si along the path, we have M, si � φ. Mnemonically: there Exists
a path beginning in s such that φ holds Globally along the path.

212 3 Verification by model checking

φ

Figure 3.19. A system whose starting state satisfies EF φ.

11. M, s � AFφ holds iff for all paths s1 → s2 → . . ., where s1 equals s, there is
some si such that M, si � φ. Mnemonically: for All computation paths begin-
ning in s there will be some Future state where φ holds.

12. M, s � EFφ holds iff there is a path s1 → s2 → s3 → . . ., where s1 equals s,
and for some si along the path, we have M, si � φ. Mnemonically: there Exists
a computation path beginning in s such that φ holds in some Future state;

13. M, s � A[φ1 U φ2] holds iff for all paths s1 → s2 → s3 → . . ., where s1 equals
s, that path satisfies φ1 U φ2, i.e., there is some si along the path, such that
M, si � φ2, and, for each j < i, we have M, sj � φ1. Mnemonically: All com-
putation paths beginning in s satisfy that φ1 Until φ2 holds on it.

14. M, s � E[φ1 U φ2] holds iff there is a path s1 → s2 → s3 → . . ., where s1 equals
s, and that path satisfies φ1 U φ2 as specified in 13. Mnemonically: there Exists
a computation path beginning in s such that φ1 Until φ2 holds on it.

Clauses 9–14 above refer to computation paths in models. It is there-
fore useful to visualise all possible computation paths from a given state
s by unwinding the transition system to obtain an infinite computation
tree, whence ‘computation tree logic.’ The diagrams in Figures 3.19–3.22
show schematically systems whose starting states satisfy the formulas EFφ,
EGφ, AGφ and AFφ, respectively. Of course, we could add more φ to any
of these diagrams and still preserve the satisfaction – although there is noth-
ing to add for AG . The diagrams illustrate a ‘least’ way of satisfying the
formulas.

212 3 Verification by model checking

φ

Figure 3.19. A system whose starting state satisfies EF φ.

11. M, s � AFφ holds iff for all paths s1 → s2 → . . ., where s1 equals s, there is
some si such that M, si � φ. Mnemonically: for All computation paths begin-
ning in s there will be some Future state where φ holds.

12. M, s � EFφ holds iff there is a path s1 → s2 → s3 → . . ., where s1 equals s,
and for some si along the path, we have M, si � φ. Mnemonically: there Exists
a computation path beginning in s such that φ holds in some Future state;

13. M, s � A[φ1 U φ2] holds iff for all paths s1 → s2 → s3 → . . ., where s1 equals
s, that path satisfies φ1 U φ2, i.e., there is some si along the path, such that
M, si � φ2, and, for each j < i, we have M, sj � φ1. Mnemonically: All com-
putation paths beginning in s satisfy that φ1 Until φ2 holds on it.

14. M, s � E[φ1 U φ2] holds iff there is a path s1 → s2 → s3 → . . ., where s1 equals
s, and that path satisfies φ1 U φ2 as specified in 13. Mnemonically: there Exists
a computation path beginning in s such that φ1 Until φ2 holds on it.

Clauses 9–14 above refer to computation paths in models. It is there-
fore useful to visualise all possible computation paths from a given state
s by unwinding the transition system to obtain an infinite computation
tree, whence ‘computation tree logic.’ The diagrams in Figures 3.19–3.22
show schematically systems whose starting states satisfy the formulas EFφ,
EGφ, AGφ and AFφ, respectively. Of course, we could add more φ to any
of these diagrams and still preserve the satisfaction – although there is noth-
ing to add for AG . The diagrams illustrate a ‘least’ way of satisfying the
formulas.

3.4 Branching-time logic 213

φ

φ

φ

Figure 3.20. A system whose starting state satisfies EG φ.

φ

φ φ

φ φ

φ

φ

φφ φ

Figure 3.21. A system whose starting state satisfies AG φ.

Recall the transition system of Figure 3.3 for the designated starting state
s0, and the infinite tree illustrated in Figure 3.5. Let us now look at some
example checks for this system.

1. M, s0 � p ∧ q holds since the atomic symbols p and q are contained in the node
of s0.

2. M, s0 � ¬r holds since the atomic symbol r is not contained in node s0.

3.4 Branching-time logic 213

φ

φ

φ

Figure 3.20. A system whose starting state satisfies EG φ.

φ

φ φ

φ φ

φ

φ

φφ φ

Figure 3.21. A system whose starting state satisfies AG φ.

Recall the transition system of Figure 3.3 for the designated starting state
s0, and the infinite tree illustrated in Figure 3.5. Let us now look at some
example checks for this system.

1. M, s0 � p ∧ q holds since the atomic symbols p and q are contained in the node
of s0.

2. M, s0 � ¬r holds since the atomic symbol r is not contained in node s0.

214 3 Verification by model checking

φ

φ

φφ φ

Figure 3.22. A system whose starting state satisfies AF φ.

3. M, s0 � � holds by definition.
4. M, s0 � EX (q ∧ r) holds since we have the leftmost computation path s0 →

s1 → s0 → s1 → . . . in Figure 3.5, whose second node s1 contains q and r.
5. M, s0 � ¬AX (q ∧ r) holds since we have the rightmost computation path s0 →

s2 → s2 → s2 → . . . in Figure 3.5, whose second node s2 only contains r, but
not q.

6. M, s0 � ¬EF (p ∧ r) holds since there is no computation path beginning in s0
such that we could reach a state where p ∧ r would hold. This is so because
there is simply no state whatsoever in this system where p and r hold at the
same time.

7. M, s2 � EG r holds since there is a computation path s2 → s2 → s2 → . . .

beginning in s2 such that r holds in all future states of that path; this is
the only computation path beginning at s2 and so M, s2 � AG r holds as well.

8. M, s0 � AF r holds since, for all computation paths beginning in s0, the system
reaches a state (s1 or s2) such that r holds.

9. M, s0 � E[(p ∧ q) U r] holds since we have the rightmost computation path
s0 → s2 → s2 → s2 → . . . in Figure 3.5, whose second node s2 (i = 1) satisfies
r, but all previous nodes (only j = 0, i.e., node s0) satisfy p ∧ q.

10. M, s0 � A[p U r] holds since p holds at s0 and r holds in any possible successor
state of s0, so p U r is true for all computation paths beginning in s0 (so we
may choose i = 1 independently of the path).

11. M, s0 � AG (p ∨ q ∨ r → EF EG r) holds since in all states reachable from s0
and satisfying p ∨ q ∨ r (all states in this case) the system can reach a state
satisfying EG r (in this case state s2).

218 3 Verification by model checking

something quite different: it says ‘if all paths have a p along them, then
all paths have a q along them.’ One might write AG (p→ AF q), which is
closer, since it says that every way of extending every path to a p eventually
meets a q, but that is still not capturing the meaning of F p→ F q.

CTL* is a logic which combines the expressive powers of LTL and CTL,
by dropping the CTL constraint that every temporal operator (X, U, F, G)
has to be associated with a unique path quantifier (A, E). It allows us to
write formulas such as

� A[(p U r) ∨ (q U r)]: along all paths, either p is true until r, or q is true until r.
� A[X p ∨ XX p]: along all paths, p is true in the next state, or the next but one.
� E[G F p]: there is a path along which p is infinitely often true.

These formulas are not equivalent to, respectively, A[(p ∨ q) U r)], AX p ∨
AX AX p and EG EF p. It turns out that the first of them can be written
as a (rather long) CTL formula. The second and third do not have a CTL
equivalent.

The syntax of CTL* involves two classes of formulas:

� state formulas, which are evaluated in states:

φ ::= � | p | (¬φ) | (φ ∧ φ) | A[α] | E[α]

where p is any atomic formula and α any path formula; and
� path formulas, which are evaluated along paths:

α ::= φ | (¬α) | (α ∧ α) | (α U α) | (Gα) | (Fα) | (Xα)

where φ is any state formula. This is an example of an inductive definition
which is mutually recursive: the definition of each class depends upon the
definition of the other, with base cases p and �.

LTL and CTL as subsets of CTL* Although the syntax of LTL does
not include A and E, the semantic viewpoint of LTL is that we consider
all paths. Therefore, the LTL formula α is equivalent to the CTL* formula
A[α]. Thus, LTL can be viewed as a subset of CTL*.

CTL is also a subset of CTL*, since it is the fragment of CTL* in which
we restrict the form of path formulas to

α ::= (φ U φ) | (Gφ) | (Fφ) | (Xφ)

Figure 3.23 shows the relationship among the expressive powers of CTL,
LTL and CTL*. Here are some examples of formulas in each of the subsets

3.5 CTL* and the expressive powers of LTL and CTL 219

LTL

ψ1 ψ2 ψ3 ψ4CTL

CTL*

Figure 3.23. The expressive powers of CTL, LTL and CTL*.

shown:

In CTL but not in LTL: ψ1
def= AG EF p. This expresses: wherever we

have got to, we can always get to a state in which p is true. This is
also useful, e.g., in finding deadlocks in protocols.

The proof that AG EF p is not expressible in LTL is as follows. Let φ be
an LTL formula such that A[φ] is allegedly equivalent to AG EF p. Since
M, s � AG EF p in the left-hand diagram below, we have M, s � A[φ].
Now let M′ be as shown in the right-hand diagram. The paths from s

in M′ are a subset of those from s in M, so we have M′, s � A[φ]. Yet,
it is not the case that M′, s � AG EF p; a contradiction.

¬p¬p p

s st

In CTL*, but neither in CTL nor in LTL: ψ4
def= E[G F p], saying that

there is a path with infinitely many p.
The proof that this is not expressible in CTL is quite complex and may
be found in the papers co-authored by E. A. Emerson with others, given
in the references. (Why is it not expressible in LTL?)

In LTL but not in CTL: ψ3
def= A[G F p→ F q], saying that if there are in-

finitely many p along the path, then there is an occurrence of q. This
is an interesting thing to be able to say; for example, many fairness
constraints are of the form ‘infinitely often requested implies eventually
acknowledged’.

In LTL and CTL: ψ2
def= AG (p→ AF q) in CTL, or G (p→ F q) in LTL:

any p is eventually followed by a q.

Remark 3.18 We just saw that some (but not all) LTL formulas can be
converted into CTL formulas by adding an A to each temporal operator. For

