
234 3 Verification by model checking

init(a) := 1;
init(b) := 0;
next(a) := case

!a : 0;
b : 1;
1 : {0,1};

esac;
next(b) := case

a & next(a) : !b;
!a : 1;
1 : {0,1};

esac;

q3

q1 q2

ab

q4

ab

ab ab

Figure 3.33. An SMV program and its model M.

a b φ

q4

a b φ

a b φ

q1

q′3

a b φ

q3

a b φ

q2

Figure 3.34. Automaton accepting precisely traces satisfying φ
def= a U b.

The transitions with no arrows can be taken in either direction. The

acceptance condition is that the path of the automaton cannot loop

indefinitely through q3.

� the path respects a certain ‘accepting condition.’ For the automaton of Fig-
ure 3.34, the accepting condition is that the path should not end q3, q3, q3 . . . ,
indefinitely.

For example, suppose t is a b, a b, a b, a b, a b, a b, a b, a b, . . . , eventually re-
peating forevermore the state a b. Then we choose the path q3, q3, q3, q4, q4,

q1, q
′
3, q

′
3 We start in q3 because the first state is a b and it is an initial

234 3 Verification by model checking

init(a) := 1;
init(b) := 0;
next(a) := case

!a : 0;
b : 1;
1 : {0,1};

esac;
next(b) := case

a & next(a) : !b;
!a : 1;
1 : {0,1};

esac;

q3

q1 q2

ab

q4

ab

ab ab

Figure 3.33. An SMV program and its model M.

a b φ

q4

a b φ

a b φ

q1

q′3

a b φ

q3

a b φ

q2

Figure 3.34. Automaton accepting precisely traces satisfying φ
def= a U b.

The transitions with no arrows can be taken in either direction. The

acceptance condition is that the path of the automaton cannot loop

indefinitely through q3.

� the path respects a certain ‘accepting condition.’ For the automaton of Fig-
ure 3.34, the accepting condition is that the path should not end q3, q3, q3 . . . ,
indefinitely.

For example, suppose t is a b, a b, a b, a b, a b, a b, a b, a b, . . . , eventually re-
peating forevermore the state a b. Then we choose the path q3, q3, q3, q4, q4,

q1, q
′
3, q

′
3 We start in q3 because the first state is a b and it is an initial

236 3 Verification by model checking

a ba b

a b

q1

a b

a b

q2

a b φa b φ

a b φ

q1

a b φ

a b φ

q2

q3

q′3

q3

q′3
q4 q4

Figure 3.35. Left: the system M of Figure 3.33, redrawn with an ex-

panded state space; right: the expanded M and AaUb combined.

to Step 3, and as we expected, ¬(a U b) is not satisfied in all paths of the
original system M.

Constructing the automaton Let us look in more detail at how the
automaton is constructed. Given an LTL formula φ, we wish to construct
an automaton Aφ such that Aφ accepts precisely those runs on which φ

holds. We assume that φ contains only the temporal connectives U and X;
recall that the other temporal connectives can be written in terms of these
two.

Define the closure C(φ) of formula φ as the set of subformulas of φ
and their complements, identifying ¬¬ψ and ψ. For example, C(a U b) =
{a, b,¬a,¬b, a U b,¬(a U b)}. The states of Aφ, denoted by q, q′ etc., are
the maximal subsets of C(φ) which satisfy the following conditions:

� For all (non-negated) ψ ∈ C(φ), either ψ ∈ q or ¬ψ ∈ q, but not both.
� ψ1 ∨ ψ2 ∈ q holds iff ψ1 ∈ q or ψ2 ∈ q, whenever ψ1 ∨ ψ2 ∈ C(φ).
� Conditions for other boolean combinations are similar.
� If ψ1 U ψ2 ∈ q, then ψ2 ∈ q or ψ1 ∈ q.
� If ¬(ψ1 U ψ2) ∈ q, then ¬ψ2 ∈ q.

Intuitively, these conditions imply that the states of Aφ are capable of saying
which subformulas of φ are true.

238 3 Verification by model checking

¬(p U q),
¬(¬p U q),
¬p,¬q,¬φ

¬(p U q),
¬(¬p U q),

p U q,
¬p U q,
¬p, q, φ

p U q,
¬(¬p U q),
p,¬q, φ

p U q,
¬p U q,
p, q, φ

¬(p U q),
¬p U q,
¬p,¬q, φ

q1 q2

q3 q4

q5 q6

p,¬q,¬φ

Figure 3.36. Automaton accepting precisely traces satisfying φ
def= (p U

q) ∨ (¬p U q). The transitions with no arrows can be taken in either direc-

tion. The acceptance condition asserts that every run must pass infinitely

often through the set {q1, q3, q4, q5, q6}, and also the set {q1, q2, q3, q5, q6}.

and checking whether there is a path of the resulting system which satisfies
the acceptance condition of A¬φ.

It is possible to implement the check for such a path in terms of CTL
model checking, and this is in fact what NuSMV does. The combined system
M×A¬φ is represented as the system to be model checked in NuSMV,
and the formula to be checked is simply EG�. Thus, we ask the question:
does the combined system have a path. The acceptance conditions of A¬φ
are represented as implicit fairness conditions for the CTL model-checking
procedure. Explicitly, this amounts to asserting ‘FAIRNESS ¬(χ U ψ) ∨ ψ’
for each formula χ U ψ occurring in C(φ).

3.7 The fixed-point characterisation of CTL

On page 227, we presented an algorithm which, given a CTL formula φ and
a model M = (S,→, L), computes the set of states s ∈ S satisfying φ. We
write this set as [[φ]]. The algorithm works recursively on the structure of
φ. For formulas φ of height 1 (⊥, � or p), [[φ]] is computed directly. Other

