

Figure 3.33. An SMV program and its model \mathcal{M} .

Figure 3.34. Automaton accepting precisely traces satisfying $\phi \stackrel{\text{def}}{=} a \cup b$. The transitions with no arrows can be taken in either direction. The acceptance condition is that the path of the automaton cannot loop indefinitely through q_3 .

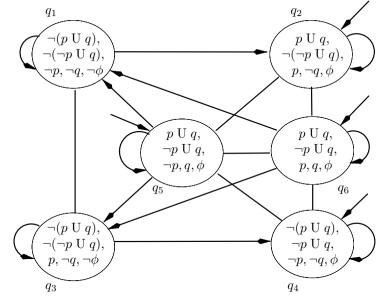


Figure 3.35. Left: the system \mathcal{M} of Figure 3.33, redrawn with an expanded state space; right: the expanded \mathcal{M} and A_{aUb} combined.

 q_2

 $\overline{a} b d$

 $a b \phi$

Figure 3.36. Automaton accepting precisely traces satisfying $\phi \stackrel{\text{def}}{=} (p \cup q) \lor (\neg p \cup q)$. The transitions with no arrows can be taken in either direction. The acceptance condition asserts that every run must pass infinitely often through the set $\{q_1, q_3, q_4, q_5, q_6\}$, and also the set $\{q_1, q_2, q_3, q_5, q_6\}$.