
Theorem Proving in Isabelle

Lutz Schröder

December 21, 2001



Recursion

Lutz Schröder: Isabelle, December 21, 2001



Recursion 2

(Primitive) recursion



Recursion 2

(Primitive) recursion

• Recursion (in general) defines a function f on a datatype

uniquely by means of certain equations



Recursion 2

(Primitive) recursion

• Recursion (in general) defines a function f on a datatype

uniquely by means of certain equations

• Primitive recursion:



Recursion 2

(Primitive) recursion

• Recursion (in general) defines a function f on a datatype

uniquely by means of certain equations

• Primitive recursion:
◦ recursion over one argument only



Recursion 2

(Primitive) recursion

• Recursion (in general) defines a function f on a datatype

uniquely by means of certain equations

• Primitive recursion:
◦ recursion over one argument only

◦ one equation

f(. . . , Ci(y1, . . . , ymi
), . . . ) = . . .

for each constructor Ci



Recursion 2

(Primitive) recursion

• Recursion (in general) defines a function f on a datatype

uniquely by means of certain equations

• Primitive recursion:
◦ recursion over one argument only

◦ one equation

f(. . . , Ci(y1, . . . , ymi
), . . . ) = . . .

for each constructor Ci

◦ recursive calls of f on the right side use only the yi.



Recursion 2

(Primitive) recursion

• Recursion (in general) defines a function f on a datatype

uniquely by means of certain equations

• Primitive recursion:
◦ recursion over one argument only

◦ one equation

f(. . . , Ci(y1, . . . , ymi
), . . . ) = . . .

for each constructor Ci

◦ recursive calls of f on the right side use only the yi.

Lutz Schröder: Isabelle, December 21, 2001



Recursion 3

Primitive recursion: syntax



Recursion 3

Primitive recursion: syntax

• Declare functions by consts



Recursion 3

Primitive recursion: syntax

• Declare functions by consts

• Define functions by primrec



Recursion 3

Primitive recursion: syntax

• Declare functions by consts

• Define functions by primrec

• Put all equations in quotes!



Recursion 3

Primitive recursion: syntax

• Declare functions by consts

• Define functions by primrec

• Put all equations in quotes!

Examples

Lutz Schröder: Isabelle, December 21, 2001



Recursion 4

General recursion



Recursion 4

General recursion

• Primitive recursion doesn’t always suffice



Recursion 4

General recursion

• Primitive recursion doesn’t always suffice

• Classical example: the Fibonacci numbers

f(0) = f(1) = 1
f(Suc(Suc(n))) = f(Suc(n)) + f(n)



Recursion 4

General recursion

• Primitive recursion doesn’t always suffice

• Classical example: the Fibonacci numbers

f(0) = f(1) = 1
f(Suc(Suc(n))) = f(Suc(n)) + f(n)

• Generalized recursion (on datatype t):



Recursion 4

General recursion

• Primitive recursion doesn’t always suffice

• Classical example: the Fibonacci numbers

f(0) = f(1) = 1
f(Suc(Suc(n))) = f(Suc(n)) + f(n)

• Generalized recursion (on datatype t):
◦ relies on measure function t→ nat



Recursion 4

General recursion

• Primitive recursion doesn’t always suffice

• Classical example: the Fibonacci numbers

f(0) = f(1) = 1
f(Suc(Suc(n))) = f(Suc(n)) + f(n)

• Generalized recursion (on datatype t):
◦ relies on measure function t→ nat

◦ arbitrary patterns on the left side of equations



Recursion 4

General recursion

• Primitive recursion doesn’t always suffice

• Classical example: the Fibonacci numbers

f(0) = f(1) = 1
f(Suc(Suc(n))) = f(Suc(n)) + f(n)

• Generalized recursion (on datatype t):
◦ relies on measure function t→ nat

◦ arbitrary patterns on the left side of equations

◦ arguments of f on the right side must have provably smaller

measure (this proves termination: a natural number can only

become smaller so many times.)

Lutz Schröder: Isabelle, December 21, 2001



Recursion 5

General recursion: syntactic details



Recursion 5

General recursion: syntactic details

• Use recdef in place of primrec



Recursion 5

General recursion: syntactic details

• Use recdef in place of primrec

• Explicitly name function f to be defined



Recursion 5

General recursion: syntactic details

• Use recdef in place of primrec

• Explicitly name function f to be defined

• Provide measure function by "measure(%x. ...)"



Recursion 5

General recursion: syntactic details

• Use recdef in place of primrec

• Explicitly name function f to be defined

• Provide measure function by "measure(%x. ...)"

• Recursion only for argument before the first ‘⇒’:



Recursion 5

General recursion: syntactic details

• Use recdef in place of primrec

• Explicitly name function f to be defined

• Provide measure function by "measure(%x. ...)"

• Recursion only for argument before the first ‘⇒’:
◦ If necessary, rearrange arguments, or



Recursion 5

General recursion: syntactic details

• Use recdef in place of primrec

• Explicitly name function f to be defined

• Provide measure function by "measure(%x. ...)"

• Recursion only for argument before the first ‘⇒’:
◦ If necessary, rearrange arguments, or

◦ collect several arguments into a tuple (type . . . ∗ . . . )



Recursion 5

General recursion: syntactic details

• Use recdef in place of primrec

• Explicitly name function f to be defined

• Provide measure function by "measure(%x. ...)"

• Recursion only for argument before the first ‘⇒’:
◦ If necessary, rearrange arguments, or

◦ collect several arguments into a tuple (type . . . ∗ . . . )

• Special induction rule f.induct, applied via

induct_thm_tac



Recursion 5

General recursion: syntactic details

• Use recdef in place of primrec

• Explicitly name function f to be defined

• Provide measure function by "measure(%x. ...)"

• Recursion only for argument before the first ‘⇒’:
◦ If necessary, rearrange arguments, or

◦ collect several arguments into a tuple (type . . . ∗ . . . )

• Special induction rule f.induct, applied via

induct_thm_tac

Another example

Lutz Schröder: Isabelle, December 21, 2001


	Recursion

