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December 21, 2001



Recursion
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• Declare functions by consts

• Define functions by primrec

• Put all equations in quotes!

Examples
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General recursion

• Primitive recursion doesn’t always suffice

• Classical example: the Fibonacci numbers

f(0) = f(1) = 1
f(Suc(Suc(n))) = f(Suc(n)) + f(n)

• Generalized recursion (on datatype t):
◦ relies on measure function t→ nat

◦ arbitrary patterns on the left side of equations

◦ arguments of f on the right side must have provably smaller

measure (this proves termination: a natural number can only

become smaller so many times.)
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• Use recdef in place of primrec
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• Provide measure function by "measure(%x. ...)"

• Recursion only for argument before the first ‘⇒’:
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• Special induction rule f.induct, applied via

induct_thm_tac

Another example
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