Theorem Proving in Isabelle

Lutz Schroder

January 17, 2005

77

. W N

Unification

Unification

What is Unification?

Lutz Schroder: Isabelle; January 17, 2005

Ea
nn

Unification

What is Unification?

e In a nutshell: the process of finding a substitution that
makes two given terms equal (‘equation solving’).

Lutz Schroder: Isabelle; January 17, 2005

Unification

What is Unification?

e In a nutshell: the process of finding a substitution that
makes two given terms equal (‘equation solving’).

e In detail:

Lutz Schroder: Isabelle; January 17, 2005

Unification

What is Unification?

e In a nutshell: the process of finding a substitution that
makes two given terms equal (‘equation solving’).

e In detail:
o Terms have free variables

Lutz Schroder: Isabelle; January 17, 2005

Unification 3

What is Unification?

e In a nutshell: the process of finding a substitution that
makes two given terms equal (‘equation solving’).

e In detail:
o Terms have free variables

o A substitution is a map o:Variables— Terms
(write 0 = [t/x,s/y,...])

&
[10)]

Lutz Schroder: Isabelle; January 17, 2005

Unification

What is Unification?

e In a nutshell: the process of finding a substitution that
makes two given terms equal (‘equation solving’).

e In detail:
o Terms have free variables

o A substitution is a map o:Variables— Terms
(write 0 = [t/x,s/y,...]|)

o Applying o to a term t means replacing each free variable v in ¢ by
o(v) — write to for the result. Similarly: 7o, 7 substitution

&
[10)]

Lutz Schroder: Isabelle; January 17, 2005

Unification 3

What is Unification?

e In a nutshell: the process of finding a substitution that
makes two given terms equal (‘equation solving’).

e In detail:
o Terms have free variables

o A substitution is a map o:Variables— Terms
(write 0 = [t/x,s/y,...]|)

o Applying o to a term t means replacing each free variable v in ¢ by
o(v) — write to for the result. Similarly: 7o, 7 substitution

o A unifier of two terms s and ¢ is a substitution o such that so = to.

&
[10)]

Lutz Schroder: Isabelle; January 17, 2005

Unification 3

What is Unification?

e In a nutshell: the process of finding a substitution that
makes two given terms equal (‘equation solving’).

e In detail:
o Terms have free variables

o A substitution is a map o:Variables— Terms
(write 0 = [t/x,s/y,...]|)

o Applying o to a term t means replacing each free variable v in ¢ by
o(v) — write to for the result. Similarly: 7o, 7 substitution

o A unifier of two terms s and ¢ is a substitution o such that so = to.

e Qoof.

&
[10)]

Lutz Schroder: Isabelle; January 17, 2005

Unification

We do this every day:

Lutz Schroder: Isabelle; January 17, 2005

Ea
nn

Unification

We do this every day:

Boolean terms:

Lutz Schroder: Isabelle; January 17, 2005

3

nn

Unification

We do this every day:

Boolean terms:

mother(x,y) A mother(x, Paul) = sibling(y, Paul)

Lutz Schroder: Isabelle; January 17, 2005

Unification

We do this every day:

Boolean terms:

mother(x,y) A mother(x, Paul) = sibling(y, Paul)
mother(Mary,y) A mother(Mary, z) = sibling(y, 2)

Lutz Schroder: Isabelle; January 17, 2005

Unification

We do this every day:

Boolean terms:

mother(x,y) A mother(x, Paul) = sibling(y, Paul)
mother(Mary,y) A mother(Mary, z) = sibling(y, 2)

Unifier is [x/Mary, z/ Paul|:

Lutz Schroder: Isabelle; January 17, 2005

MiS
MlS

Unification

We do this every day:

Boolean terms:

mother(x,y) A mother(x, Paul) = sibling(y, Paul)
mother(Mary,y) A mother(Mary, z) = sibling(y, 2)

Unifier is [x/Mary, z/ Paul|:

mother(Mary,y) A mother(Mary, Paul)
— stbling(y, Paul)

Lutz Schroder: Isabelle; January 17, 2005

Unification

We do this every day:

Boolean terms:

mother(x,y) A mother(x, Paul) = sibling(y, Paul)
mother(Mary,y) A mother(Mary, z) = sibling(y, 2)

Unifier is |x/Mary, z/ Paul|:
mother(Mary,y) A mother(Mary, Paul)
— stbling(y, Paul)

N.B.: [Mary/x, Peter/y, Paul/z] is also a unifier!

Lutz Schroder: Isabelle; January 17, 2005

Unification

This illustrates: substitution is specialization

Lutz Schroder: Isabelle; January 17, 2005

=
nn

Unification

One more example

(x +y) * 2

u * (v + w)

3

nn

Lutz Schroder: Isabelle; January 17, 2005

Unification

One more example

t=(x+y)*z

s=ux*(v+w)

Unifier is 0 = [(x + y) /u, (v + w)/z]:

Lutz Schroder: Isabelle; January 17, 2005

MiS
MlS

Unification

One more example

t=(x+y)*z

s=ux(v+w)
Unifier is 0 = [(x + y) /u, (v + w)/z]:

(z+y) * (v+w)

Lutz Schroder: Isabelle; January 17, 2005

MiS
MlS

Unification

One more example

t=(x+y)*z

s=ux(v+w)
Unifier is 0 = [(x + y) /u, (v + w)/z]:
(z +y) * (v+w)
Use this in the right and left distributive laws to show

rx(vt+w)tyx(v+w)=(x+y)xv+(r+y)*xw

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification

Unifiers may not exist

Lutz Schroder: Isabelle; January 17, 2005

Ea
nn

Unification

Unifiers may not exist

x4+ 1y and T *xy

do not admit a unifier.
(No matter what one substitutes, one always has a sum on
the left and a product on the right.)

Lutz Schroder: Isabelle; January 17, 2005

Unification

Unifiers may not exist

x4+ 1y and T *xy

do not admit a unifier.

(No matter what one substitutes, one always has a sum on
the left and a product on the right.)

Neither do
rand x + 1

(No matter what one substitutes, the right term is always
larger.)

Lutz Schroder: Isabelle; January 17, 2005

Unification

The most general unifier (mgu)

Lutz Schroder: Isabelle; January 17, 2005

Ea
nn

Unification

The most general unifier (mgu)

e Does ‘as little as possible’

Lutz Schroder: Isabelle; January 17, 2005

3

nn

Unification 3

The most general unifier (mgu)

e Does ‘as little as possible’

e Formally:

o o is more general than 7 if 7 = o7 for some T;

o A unifier of s and t is an mgu if it is more general than all other
unifiers :-)

&
[10)]

Lutz Schroder: Isabelle; January 17, 2005

Unification

The most general unifier (mgu)

e Does ‘as little as possible’

e Formally:

o o is more general than 7 if 7 = o7 for some T;

o A unifier of s and t is an mgu if it is more general than all other
unifiers :-)

e Above: o Is mgu

Lutz Schroder: Isabelle; January 17, 2005

3

nn

Unification 3

The most general unifier (mgu)

e Does ‘as little as possible’

e Formally:
o o is more general than 7 if 7 = o7 for some T;
o A unifier of s and t is an mgu if it is more general than all other
unifiers :-)
e Above: o Is mgu
e 7= [(z+y)/u, (uxu+w)/z, (u*xu)/v]
Is also a unifier

&
[10)]

Lutz Schroder: Isabelle; January 17, 2005

Unification 3

The most general unifier (mgu)

e Does ‘as little as possible’

e Formally:

o o is more general than 7 if 7 = o7 for some T;

o A unifier of s and t is an mgu if it is more general than all other
unifiers :-)

e Above: o Is mgu

o T =|(x+y)/u,(uxu+w)/z, (uxu)/ vl
Is also a unifier

o T =0luxu/v

&
[10)]

Lutz Schroder: Isabelle; January 17, 2005

Unification

Terms are Trees

Eg., ux(v+w)is

/\
/\

Lutz Schroder: Isabelle; January 17, 2005

Unification

10

Robinson’s Algorithm

Lutz Schroder: Isabelle; January 17, 2005

Ea
nn

Unification

10

Robinson’s Algorithm

Finds the mgu o of terms s and ¢ if a unifier exists:

Lutz Schroder: Isabelle; January 17, 2005

3

nn

Unification 10

Robinson’s Algorithm

Finds the mgu o of terms s and ¢ if a unifier exists:
o= |
while so # to {
Find the first place in the tree where so and to
have different subterms a, b
if none of a, b is a variable return(" not unifiable”)
else (w.l.o.g. a is a variable v)
if b contains v return(” not unifiable”)

else 0 := o|b/v]}

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification 11
An example
Take s = (x +y) * z and t = w * .
Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification

11

An example

Take s = (x +y) * z and t = w * .
1. x + y is different from and does not contain w:

o= |(z+y)/w]

Lutz Schroder: Isabelle; January 17, 2005

Unification

11

An example

Take s = (x +y) * z and t = w * .
1. x + y is different from and does not contain w:

o= |(z+y)/w]
2. z 1Is different from and does not contain z:

o:=olr/z

Lutz Schroder: Isabelle; January 17, 2005

Unification 11

An example

Take s = (x +y) * z and t = w * .
1. x + y is different from and does not contain w:

o= |(z+y)/w]
2. z 1s different from and does not contain x:
o:=olr/z

Result: 0 = [z/2, (x +y)/w], soc = (x + y) xx = to.
N.B: [z/x, (2 4+ y)/w]| would have done the job as well.

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification

12

Why does this work?

Lutz Schroder: Isabelle; January 17, 2005

=
nn

Unification 12

Why does this work?

e [he algorithm terminates: in each iteration, the number of
free variables decreases by 1.

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification 12

Why does this work?

e [he algorithm terminates: in each iteration, the number of
free variables decreases by 1.

e If the algorithm terminates successfully, it obviously
returns a unifier (look at the while-condition); i.e. if there
Is no unifier, the result is correct.

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification 12

Why does this work?

e [he algorithm terminates: in each iteration, the number of
free variables decreases by 1.

e If the algorithm terminates successfully, it obviously
returns a unifier (look at the while-condition); i.e. if there
Is no unifier, the result is correct.

e If 7 is a unifier, prove by induction that in each step, o is
more general than 7, so that

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification 12

Why does this work?

e [he algorithm terminates: in each iteration, the number of
free variables decreases by 1.

e If the algorithm terminates successfully, it obviously
returns a unifier (look at the while-condition); i.e. if there
Is no unifier, the result is correct.

e If 7 is a unifier, prove by induction that in each step, o is
more general than 7, so that

o so and to are always unifiable

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification 12

Why does this work?

e [he algorithm terminates: in each iteration, the number of
free variables decreases by 1.

e If the algorithm terminates successfully, it obviously
returns a unifier (look at the while-condition); i.e. if there
Is no unifier, the result is correct.

e If 7 is a unifier, prove by induction that in each step, o is

more general than 7, so that
o so and to are always unifiable

o Thus, we are always in the else branches (cf. examples above)

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification 12

Why does this work?

e [he algorithm terminates: in each iteration, the number of
free variables decreases by 1.

e If the algorithm terminates successfully, it obviously
returns a unifier (look at the while-condition); i.e. if there
Is no unifier, the result is correct.

e If 7 is a unifier, prove by induction that in each step, o is

more general than 7, so that
o so and to are always unifiable

o Thus, we are always in the else branches (cf. examples above)

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification

13

o In particular, the algorithm does not fail and returns an mgu.

Lutz Schroder: Isabelle; January 17, 2005

Ea
nn

Unification

14

The inductive proof

Lutz Schroder: Isabelle; January 17, 2005

Ea
nn

Unification

14

The inductive proof

e Base case o0 = || is trivial.

Lutz Schroder: Isabelle; January 17, 2005

3

nn

Unification

14

The inductive proof

e Base case o0 = || is trivial.

e Assume 7 = oT at the beginning of a step.

Lutz Schroder: Isabelle; January 17, 2005

3

nn

Unification

14

The inductive proof

e Base case 0 = |[] is trivial.
e Assume 7 = oT at the beginning of a step.
e Let o' = ola/v| (i.e. ‘the o of the next step’)

e Let 7' be the same as T except that v7’ = wv.

Lutz Schroder: Isabelle; January 17, 2005

Unification

14

The inductive proof

e Base case 0 = |[] is trivial.

e Assume 7 = oT at the beginning of a step.

e Let o' = ola/v| (i.e. ‘the o of the next step’)
e Let 7' be the same as T except that v7’ = wv.

e Note: v7 = aT.

Lutz Schroder: Isabelle; January 17, 2005

Unification

14

The inductive proof

e Base case 0 = |[] is trivial.

e Assume 7 = oT at the beginning of a step.

e Let o' = ola/v| (i.e. ‘the o of the next step’)
e Let 7' be the same as T except that v7’ = wv.
e Note: vT = aT.

o Claim: 7 = o'7.

Lutz Schroder: Isabelle; January 17, 2005

Unification

14

The inductive proof

e Base case 0 = |[] is trivial.

e Assume 7 = oT at the beginning of a step.

e Let o' = ola/v| (i.e. ‘the o of the next step’)
e Let 7' be the same as T except that v7’ = wv.
e Note: vT = aT.

o Claim: 7 = o'7.

Lutz Schroder: Isabelle; January 17, 2005

Unification 15
[]
Proof of the Claim
Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification

15

Proof of the Claim

Lutz Schroder: Isabelle; January 17, 2005

Ea
nn

Unification

15

Proof of the Claim

Lutz Schroder: Isabelle; January 17, 2005

3

nn

Unification

15

Proof of the Claim

= o7 [aT /0] (since vT' = v)

Lutz Schroder: Isabelle; January 17, 2005

Unification 15

Proof of the Claim

o'7’
= ola/v]|7
= o7 [aT /0] (since vT' = v)
= o7'[aT /] (v not in a)

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification 15

Proof of the Claim

o'7’
= ola/v]|7
= o7 [aT /0] (since vT' = v)
= o7'[aT /] (v not in a)
=0T (since vT = aT)

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification 15

Proof of the Claim

o'7’
= ola/v]|7
= o7 [aT /0] (since vT' = v)
= o7'[aT /] (v not in a)
=0T (since vT = aT)
— 7

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification

16

Higher Order Unification

Lutz Schroder: Isabelle; January 17, 2005

Ea
nn

Unification

16

Higher Order Unification

e . ..Is a lot harder.

Lutz Schroder: Isabelle; January 17, 2005

3

nn

Unification 16

Higher Order Unification

e . ..Is a lot harder.

e [he reason is that it concerns terms modulo certain
equations, so that we get more unifiers

&
[10)]

Lutz Schroder: Isabelle; January 17, 2005

Unification 16

Higher Order Unification

e . ..Is a lot harder.

e [he reason is that it concerns terms modulo certain
equations, so that we get more unifiers

e Specifically, we have to unify A\-terms modulo (3-equality.

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification

17

What was that again?

Lutz Schroder: Isabelle; January 17, 2005

Ea
nn

Unification

17

What was that again?

e Recall A-notation from functional programming:

Lutz Schroder: Isabelle; January 17, 2005

Unification

17

What was that again?

e Recall A-notation from functional programming:
AT. T

means ‘the function that maps = to ¢’ (where £ may
contain x as a free variable — as in Azx. z + x)

Lutz Schroder: Isabelle; January 17, 2005

Unification

17

What was that again?

e Recall A-notation from functional programming:
AT. T

means ‘the function that maps = to ¢’ (where £ may
contain x as a free variable — as in Azx. z + x)

e (J-equality is

(Ax.t)(s) = t|s/x]

Lutz Schroder: Isabelle; January 17, 2005

Unification

17

What was that again?

e Recall A-notation from functional programming:
AT. T

means ‘the function that maps = to ¢’ (where £ may
contain x as a free variable — as in Azx. z + x)

e (J-equality is
(Ax.t)(s) = t|s/x]
eEg (Mr.z+2)3xy)=3xy+3xy.

Lutz Schroder: Isabelle; January 17, 2005

Unification

18

Huet’s Procedure

Lutz Schroder: Isabelle; January 17, 2005

=
nn

Unification

18

Huet’s Procedure

Huet, G.P.: A unification algorithm for typed A-calculus.
Theoret. Comput. Sci. 1 (1975), 27-57.

Lutz Schroder: Isabelle; January 17, 2005

Unification

18

Huet’s Procedure

Huet, G.P.: A unification algorithm for typed A-calculus.
Theoret. Comput. Sci. 1 (1975), 27-57.

e Works by systematic ‘guessing’

Lutz Schroder: Isabelle; January 17, 2005

Unification 18

Huet’s Procedure

Huet, G.P.: A unification algorithm for typed A-calculus.
Theoret. Comput. Sci. 1 (1975), 27-57.

e Works by systematic ‘guessing’

e Is complete, i.e. finds all unifiers (unlike unification in
Isabelle, which is even harder due to type variables)

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification 18

Huet’s Procedure

Huet, G.P.: A unification algorithm for typed A-calculus.
Theoret. Comput. Sci. 1 (1975), 27-57.

e Works by systematic ‘guessing’

e Is complete, i.e. finds all unifiers (unlike unification in
Isabelle, which is even harder due to type variables)

e May fail to terminate (i.e. may keep putting out unifiers)

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification

19

How to guess unifiers

Lutz Schroder: Isabelle; January 17, 2005

Ea
nn

Unification

19

How to guess unifiers

Problem: Solve

?f(tl, S ,tm) — g(ul, oo o ,un)

(From now on, unification variables are indicated by ‘7’)

Lutz Schroder: Isabelle; January 17, 2005

Unification

19

How to guess unifiers

Problem: Solve

?f(tl, S ,tm) — g(ul, oo o ,un)

(From now on, unification variables are indicated by ‘7’)
Two types of guesses for 7 f:

Lutz Schroder: Isabelle; January 17, 2005

Unification

19

How to guess unifiers

Problem: Solve

?f(tl, S ,tm) — g(ul, oo o ,un)

(From now on, unification variables are indicated by ‘7’)

Two types of guesses for 7 f:
e Imitation: assume that 7 f applies g to something.

Lutz Schroder: Isabelle; January 17, 2005

Unification 19

How to guess unifiers

Problem: Solve

?f(tl, S ,tm) — g(ul, oo o ,un)

(From now on, unification variables are indicated by ‘7’)
Two types of guesses for 7 f:
e Imitation: assume that 7 f applies g to something.

e Projection: assume that 7 f applies one of the ¢; to
something (i.e. hope that g is hidden somewhere in t;).

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification

20

Imitation

Lutz Schroder: Isabelle; January 17, 2005

Ea
nn

Unification 20
Imitation
(Assume m = 1 for simplicity)
Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification

20

Imitation

(Assume m = 1 for simplicity)
e Guess 7f = Az.g(Thi(x),...,Th,(z))

Lutz Schroder: Isabelle; January 17, 2005

Unification 20

Imitation

(Assume m = 1 for simplicity)
e Guess 7f = Az.g(Thi(x),...,Th,(z))
e Plug this into the equation and obtain (after -reduction)

g(Thi(t), ..., 72hy(t)) = g(ug, ..., uy,)

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification 20

Imitation

(Assume m = 1 for simplicity)
e Guess 7f = Az.g(Thi(x),...,Th,(z))
e Plug this into the equation and obtain (after -reduction)

g(Thi(t), ..., 72hy(t)) = g(ug, ..., uy,)
o Next step: solve

?hz(t) :ui,i: 1,...,TL

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification

21

Projection

Lutz Schroder: Isabelle; January 17, 2005

3

nn

Unification

21

Projection

(Works if t has the same result type as g)

Lutz Schroder: Isabelle; January 17, 2005

3

nn

Unification

21

Projection

(Works if t has the same result type as g)
o Guess 7f = Az.x(?hi(x),..., The(x)),
where k is the number of arguments for ¢

Lutz Schroder: Isabelle; January 17, 2005

Unification

21

Projection

(Works if t has the same result type as g)
o Guess 7f = Az.x(?hi(x),..., The(x)),
where k is the number of arguments for ¢

e Plug in and 3-reduce:

t(Thi(t),...,7hi(t)) = g(uq, ...

Lutz Schroder: Isabelle; January 17, 2005

MiS
MlS

Unification

21

Projection

(Works if t has the same result type as g)
o Guess 7f = Az.x(?hi(x),..., The(x)),
where k is the number of arguments for ¢

e Plug in and (3-reduce:
t(Thi(t),...,?hi(t)) = g(uq, ..., uy)

e this is a 'simpler’ problem, since the unknowns have been
pushed ‘further down’ in the term.

Lutz Schroder: Isabelle; January 17, 2005

Unification

22

An Example

Lutz Schroder: Isabelle; January 17, 2005

=
nn

Unification

22

Solve ?f(a) = a + a.

An Example

Lutz Schroder: Isabelle; January 17, 2005

3

nn

Unification

22

An Example

Solve ?f(a) = a + a.
e Imitation: 7f = Ax. 7hy(x)+7hs(x),
have to solve 7h;(a) = a, i = 1,2, next.

Lutz Schroder: Isabelle; January 17, 2005

Unification 22

An Example

Solve ?f(a) = a + a.
e Imitation: 7f = Ax. 7hy(x)+7hs(x),
nave to solve 7h;(a) = a, i = 1,2, next.

e |Imitation: 7h; = \x. a.

Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification

22

An Example

Solve ?f(a) = a + a.
e Imitation: 7f = Ax. 7hy(x)+7hs(x),
nave to solve 7h;(a) = a, i = 1,2, next.

e |Imitation: 7h; = \x. a.

e Alternatively, projection (a takes 0 arguments!):

then have to ‘solve’ a = a.

Lutz Schroder: Isabelle; January 17, 2005

Unification 23
y
Example (cont’d)
Lutz Schroder: Isabelle; January 17, 2005 Mig

Unification

23

Example (cont’d)

e [hus: four solutions
AXe.x+z, . x+a, A\r.a+x, \r.a+ a
for 7f.

Lutz Schroder: Isabelle; January 17, 2005

3

nn

Unification 23

Example (cont’d)

e [hus: four solutions
AXe.x+z, . x+a, A\r.a+x, \r.a+ a
for 7f.

e None of these is more general than another, since we
cannot substitute for bound variables.

&
[10)]

Lutz Schroder: Isabelle; January 17, 2005

Unification

23

Example (cont’d)

e [hus: four solutions
AXe.x+z, . x+a, A\r.a+x, \r.a+ a
for 7f.

e None of these is more general than another, since we
cannot substitute for bound variables.

Who on earth would believe that?

Lutz Schroder: Isabelle; January 17, 2005

	Unification

