
Theorem Proving in Isabelle

Lutz Schröder

January 17, 2005



Unification



Unification 3

What is Unification?

Lutz Schröder: Isabelle; January 17, 2005



Unification 3

What is Unification?

• In a nutshell: the process of finding a substitution that

makes two given terms equal (‘equation solving’).

Lutz Schröder: Isabelle; January 17, 2005



Unification 3

What is Unification?

• In a nutshell: the process of finding a substitution that

makes two given terms equal (‘equation solving’).

• In detail:

Lutz Schröder: Isabelle; January 17, 2005



Unification 3

What is Unification?

• In a nutshell: the process of finding a substitution that

makes two given terms equal (‘equation solving’).

• In detail:
◦ Terms have free variables

Lutz Schröder: Isabelle; January 17, 2005



Unification 3

What is Unification?

• In a nutshell: the process of finding a substitution that

makes two given terms equal (‘equation solving’).

• In detail:
◦ Terms have free variables

◦ A substitution is a map σ:Variables→Terms

(write σ = [t/x, s/y, . . . ])

Lutz Schröder: Isabelle; January 17, 2005



Unification 3

What is Unification?

• In a nutshell: the process of finding a substitution that

makes two given terms equal (‘equation solving’).

• In detail:
◦ Terms have free variables

◦ A substitution is a map σ:Variables→Terms

(write σ = [t/x, s/y, . . . ])

◦ Applying σ to a term t means replacing each free variable v in t by

σ(v) — write tσ for the result. Similarly: τσ, τ substitution

Lutz Schröder: Isabelle; January 17, 2005



Unification 3

What is Unification?

• In a nutshell: the process of finding a substitution that

makes two given terms equal (‘equation solving’).

• In detail:
◦ Terms have free variables

◦ A substitution is a map σ:Variables→Terms

(write σ = [t/x, s/y, . . . ])

◦ Applying σ to a term t means replacing each free variable v in t by

σ(v) — write tσ for the result. Similarly: τσ, τ substitution

◦ A unifier of two terms s and t is a substitution σ such that sσ = tσ.

Lutz Schröder: Isabelle; January 17, 2005



Unification 3

What is Unification?

• In a nutshell: the process of finding a substitution that

makes two given terms equal (‘equation solving’).

• In detail:
◦ Terms have free variables

◦ A substitution is a map σ:Variables→Terms

(write σ = [t/x, s/y, . . . ])

◦ Applying σ to a term t means replacing each free variable v in t by

σ(v) — write tσ for the result. Similarly: τσ, τ substitution

◦ A unifier of two terms s and t is a substitution σ such that sσ = tσ.

• Ooof.

Lutz Schröder: Isabelle; January 17, 2005



Unification 4

We do this every day:

Lutz Schröder: Isabelle; January 17, 2005



Unification 4

We do this every day:

Boolean terms:

Lutz Schröder: Isabelle; January 17, 2005



Unification 4

We do this every day:

Boolean terms:

mother(x, y) ∧mother(x, Paul) =⇒ sibling(y, Paul)

Lutz Schröder: Isabelle; January 17, 2005



Unification 4

We do this every day:

Boolean terms:

mother(x, y) ∧mother(x, Paul) =⇒ sibling(y, Paul)

mother(Mary, y) ∧mother(Mary, z) =⇒ sibling(y, z)

Lutz Schröder: Isabelle; January 17, 2005



Unification 4

We do this every day:

Boolean terms:

mother(x, y) ∧mother(x, Paul) =⇒ sibling(y, Paul)

mother(Mary, y) ∧mother(Mary, z) =⇒ sibling(y, z)

Unifier is [x/Mary, z/Paul]:

Lutz Schröder: Isabelle; January 17, 2005



Unification 4

We do this every day:

Boolean terms:

mother(x, y) ∧mother(x, Paul) =⇒ sibling(y, Paul)

mother(Mary, y) ∧mother(Mary, z) =⇒ sibling(y, z)

Unifier is [x/Mary, z/Paul]:

mother(Mary, y) ∧mother(Mary, Paul)

=⇒ sibling(y, Paul)

Lutz Schröder: Isabelle; January 17, 2005



Unification 4

We do this every day:

Boolean terms:

mother(x, y) ∧mother(x, Paul) =⇒ sibling(y, Paul)

mother(Mary, y) ∧mother(Mary, z) =⇒ sibling(y, z)

Unifier is [x/Mary, z/Paul]:

mother(Mary, y) ∧mother(Mary, Paul)

=⇒ sibling(y, Paul)

N.B.: [Mary/x, Peter/y, Paul/z] is also a unifier!

Lutz Schröder: Isabelle; January 17, 2005



Unification 5

This illustrates: substitution is specialization

Lutz Schröder: Isabelle; January 17, 2005



Unification 6

One more example

t = (x + y) ∗ z

s = u ∗ (v + w)

Lutz Schröder: Isabelle; January 17, 2005



Unification 6

One more example

t = (x + y) ∗ z

s = u ∗ (v + w)

Unifier is σ = [(x + y)/u, (v + w)/z]:

Lutz Schröder: Isabelle; January 17, 2005



Unification 6

One more example

t = (x + y) ∗ z

s = u ∗ (v + w)

Unifier is σ = [(x + y)/u, (v + w)/z]:

(x + y) ∗ (v + w)

Lutz Schröder: Isabelle; January 17, 2005



Unification 6

One more example

t = (x + y) ∗ z

s = u ∗ (v + w)

Unifier is σ = [(x + y)/u, (v + w)/z]:

(x + y) ∗ (v + w)

Use this in the right and left distributive laws to show

x ∗ (v + w) + y ∗ (v + w) = (x + y) ∗ v + (x + y) ∗ w

Lutz Schröder: Isabelle; January 17, 2005



Unification 7

Unifiers may not exist

Lutz Schröder: Isabelle; January 17, 2005



Unification 7

Unifiers may not exist

x + y and x ∗ y

do not admit a unifier.

(No matter what one substitutes, one always has a sum on

the left and a product on the right.)

Lutz Schröder: Isabelle; January 17, 2005



Unification 7

Unifiers may not exist

x + y and x ∗ y

do not admit a unifier.

(No matter what one substitutes, one always has a sum on

the left and a product on the right.)

Neither do

x and x + 1
(No matter what one substitutes, the right term is always

larger.)

Lutz Schröder: Isabelle; January 17, 2005



Unification 8

The most general unifier (mgu)

Lutz Schröder: Isabelle; January 17, 2005



Unification 8

The most general unifier (mgu)

• Does ‘as little as possible’

Lutz Schröder: Isabelle; January 17, 2005



Unification 8

The most general unifier (mgu)

• Does ‘as little as possible’

• Formally:
◦ σ is more general than τ if τ = στ̄ for some τ̄ ;

◦ A unifier of s and t is an mgu if it is more general than all other

unifiers :-)

Lutz Schröder: Isabelle; January 17, 2005



Unification 8

The most general unifier (mgu)

• Does ‘as little as possible’

• Formally:
◦ σ is more general than τ if τ = στ̄ for some τ̄ ;

◦ A unifier of s and t is an mgu if it is more general than all other

unifiers :-)

• Above: σ is mgu

Lutz Schröder: Isabelle; January 17, 2005



Unification 8

The most general unifier (mgu)

• Does ‘as little as possible’

• Formally:
◦ σ is more general than τ if τ = στ̄ for some τ̄ ;

◦ A unifier of s and t is an mgu if it is more general than all other

unifiers :-)

• Above: σ is mgu

• τ = [(x + y)/u, (u ∗ u + w)/z, (u ∗ u)/v]
is also a unifier

Lutz Schröder: Isabelle; January 17, 2005



Unification 8

The most general unifier (mgu)

• Does ‘as little as possible’

• Formally:
◦ σ is more general than τ if τ = στ̄ for some τ̄ ;

◦ A unifier of s and t is an mgu if it is more general than all other

unifiers :-)

• Above: σ is mgu

• τ = [(x + y)/u, (u ∗ u + w)/z, (u ∗ u)/v]
is also a unifier

• τ = σ[u ∗ u/v]

Lutz Schröder: Isabelle; January 17, 2005



Unification 9

Terms are Trees

E.g., u ∗ (v + w) is

∗

�
�

�
�

�
� @

@
@

@
@

@

u +

�
�

�
�

�
� @

@
@

@
@

@

v w

Lutz Schröder: Isabelle; January 17, 2005



Unification 10

Robinson’s Algorithm

Lutz Schröder: Isabelle; January 17, 2005



Unification 10

Robinson’s Algorithm

Finds the mgu σ of terms s and t if a unifier exists:

Lutz Schröder: Isabelle; January 17, 2005



Unification 10

Robinson’s Algorithm

Finds the mgu σ of terms s and t if a unifier exists:

σ := []
while sσ 6= tσ {

Find the first place in the tree where sσ and tσ

have different subterms a, b

if none of a, b is a variable return(”not unifiable”)

else (w.l.o.g. a is a variable v)

if b contains v return(”not unifiable”)

else σ := σ[b/v]}

Lutz Schröder: Isabelle; January 17, 2005



Unification 11

An example

Take s = (x + y) ∗ z and t = w ∗ x.

Lutz Schröder: Isabelle; January 17, 2005



Unification 11

An example

Take s = (x + y) ∗ z and t = w ∗ x.

1. x + y is different from and does not contain w:

σ := [(x + y)/w]

Lutz Schröder: Isabelle; January 17, 2005



Unification 11

An example

Take s = (x + y) ∗ z and t = w ∗ x.

1. x + y is different from and does not contain w:

σ := [(x + y)/w]

2. z is different from and does not contain x:

σ := σ[x/z]

Lutz Schröder: Isabelle; January 17, 2005



Unification 11

An example

Take s = (x + y) ∗ z and t = w ∗ x.

1. x + y is different from and does not contain w:

σ := [(x + y)/w]

2. z is different from and does not contain x:

σ := σ[x/z]

Result: σ = [x/z, (x + y)/w], sσ = (x + y) ∗ x = tσ.

N.B: [z/x, (z + y)/w] would have done the job as well.

Lutz Schröder: Isabelle; January 17, 2005



Unification 12

Why does this work?

Lutz Schröder: Isabelle; January 17, 2005



Unification 12

Why does this work?

• The algorithm terminates: in each iteration, the number of

free variables decreases by 1.

Lutz Schröder: Isabelle; January 17, 2005



Unification 12

Why does this work?

• The algorithm terminates: in each iteration, the number of

free variables decreases by 1.

• If the algorithm terminates successfully, it obviously

returns a unifier (look at the while-condition); i.e. if there

is no unifier, the result is correct.

Lutz Schröder: Isabelle; January 17, 2005



Unification 12

Why does this work?

• The algorithm terminates: in each iteration, the number of

free variables decreases by 1.

• If the algorithm terminates successfully, it obviously

returns a unifier (look at the while-condition); i.e. if there

is no unifier, the result is correct.

• If τ is a unifier, prove by induction that in each step, σ is

more general than τ , so that

Lutz Schröder: Isabelle; January 17, 2005



Unification 12

Why does this work?

• The algorithm terminates: in each iteration, the number of

free variables decreases by 1.

• If the algorithm terminates successfully, it obviously

returns a unifier (look at the while-condition); i.e. if there

is no unifier, the result is correct.

• If τ is a unifier, prove by induction that in each step, σ is

more general than τ , so that
◦ sσ and tσ are always unifiable

Lutz Schröder: Isabelle; January 17, 2005



Unification 12

Why does this work?

• The algorithm terminates: in each iteration, the number of

free variables decreases by 1.

• If the algorithm terminates successfully, it obviously

returns a unifier (look at the while-condition); i.e. if there

is no unifier, the result is correct.

• If τ is a unifier, prove by induction that in each step, σ is

more general than τ , so that
◦ sσ and tσ are always unifiable

◦ Thus, we are always in the else branches (cf. examples above)

Lutz Schröder: Isabelle; January 17, 2005



Unification 12

Why does this work?

• The algorithm terminates: in each iteration, the number of

free variables decreases by 1.

• If the algorithm terminates successfully, it obviously

returns a unifier (look at the while-condition); i.e. if there

is no unifier, the result is correct.

• If τ is a unifier, prove by induction that in each step, σ is

more general than τ , so that
◦ sσ and tσ are always unifiable

◦ Thus, we are always in the else branches (cf. examples above)

Lutz Schröder: Isabelle; January 17, 2005



Unification 13

◦ In particular, the algorithm does not fail and returns an mgu.

Lutz Schröder: Isabelle; January 17, 2005



Unification 14

The inductive proof

Lutz Schröder: Isabelle; January 17, 2005



Unification 14

The inductive proof

• Base case σ = [] is trivial.

Lutz Schröder: Isabelle; January 17, 2005



Unification 14

The inductive proof

• Base case σ = [] is trivial.

• Assume τ = στ̄ at the beginning of a step.

Lutz Schröder: Isabelle; January 17, 2005



Unification 14

The inductive proof

• Base case σ = [] is trivial.

• Assume τ = στ̄ at the beginning of a step.

• Let σ′ = σ[a/v] (i.e. ‘the σ of the next step’)

• Let τ̄ ′ be the same as τ̄ except that vτ̄ ′ = v.

Lutz Schröder: Isabelle; January 17, 2005



Unification 14

The inductive proof

• Base case σ = [] is trivial.

• Assume τ = στ̄ at the beginning of a step.

• Let σ′ = σ[a/v] (i.e. ‘the σ of the next step’)

• Let τ̄ ′ be the same as τ̄ except that vτ̄ ′ = v.

• Note: vτ̄ = aτ̄ .

Lutz Schröder: Isabelle; January 17, 2005



Unification 14

The inductive proof

• Base case σ = [] is trivial.

• Assume τ = στ̄ at the beginning of a step.

• Let σ′ = σ[a/v] (i.e. ‘the σ of the next step’)

• Let τ̄ ′ be the same as τ̄ except that vτ̄ ′ = v.

• Note: vτ̄ = aτ̄ .

• Claim: τ = σ′τ̄ ′.

Lutz Schröder: Isabelle; January 17, 2005



Unification 14

The inductive proof

• Base case σ = [] is trivial.

• Assume τ = στ̄ at the beginning of a step.

• Let σ′ = σ[a/v] (i.e. ‘the σ of the next step’)

• Let τ̄ ′ be the same as τ̄ except that vτ̄ ′ = v.

• Note: vτ̄ = aτ̄ .

• Claim: τ = σ′τ̄ ′.

Lutz Schröder: Isabelle; January 17, 2005



Unification 15

Proof of the Claim

Lutz Schröder: Isabelle; January 17, 2005



Unification 15

Proof of the Claim

σ′τ̄ ′

Lutz Schröder: Isabelle; January 17, 2005



Unification 15

Proof of the Claim

σ′τ̄ ′

= σ[a/v]τ̄ ′

Lutz Schröder: Isabelle; January 17, 2005



Unification 15

Proof of the Claim

σ′τ̄ ′

= σ[a/v]τ̄ ′

= στ̄ ′[aτ̄ ′/v] (since vτ̄ ′ = v)

Lutz Schröder: Isabelle; January 17, 2005



Unification 15

Proof of the Claim

σ′τ̄ ′

= σ[a/v]τ̄ ′

= στ̄ ′[aτ̄ ′/v] (since vτ̄ ′ = v)

= στ̄ ′[aτ̄/v] (v not in a)

Lutz Schröder: Isabelle; January 17, 2005



Unification 15

Proof of the Claim

σ′τ̄ ′

= σ[a/v]τ̄ ′

= στ̄ ′[aτ̄ ′/v] (since vτ̄ ′ = v)

= στ̄ ′[aτ̄/v] (v not in a)

= στ̄ (since vτ̄ = aτ̄)

Lutz Schröder: Isabelle; January 17, 2005



Unification 15

Proof of the Claim

σ′τ̄ ′

= σ[a/v]τ̄ ′

= στ̄ ′[aτ̄ ′/v] (since vτ̄ ′ = v)

= στ̄ ′[aτ̄/v] (v not in a)

= στ̄ (since vτ̄ = aτ̄)

= τ.

Lutz Schröder: Isabelle; January 17, 2005



Unification 16

Higher Order Unification

Lutz Schröder: Isabelle; January 17, 2005



Unification 16

Higher Order Unification

• . . . is a lot harder.

Lutz Schröder: Isabelle; January 17, 2005



Unification 16

Higher Order Unification

• . . . is a lot harder.

• The reason is that it concerns terms modulo certain

equations, so that we get more unifiers

Lutz Schröder: Isabelle; January 17, 2005



Unification 16

Higher Order Unification

• . . . is a lot harder.

• The reason is that it concerns terms modulo certain

equations, so that we get more unifiers

• Specifically, we have to unify λ-terms modulo β-equality.

Lutz Schröder: Isabelle; January 17, 2005



Unification 17

What was that again?

Lutz Schröder: Isabelle; January 17, 2005



Unification 17

What was that again?

• Recall λ-notation from functional programming:

Lutz Schröder: Isabelle; January 17, 2005



Unification 17

What was that again?

• Recall λ-notation from functional programming:

λx. t

means ‘the function that maps x to t’ (where t may

contain x as a free variable — as in λx. x + x)

Lutz Schröder: Isabelle; January 17, 2005



Unification 17

What was that again?

• Recall λ-notation from functional programming:

λx. t

means ‘the function that maps x to t’ (where t may

contain x as a free variable — as in λx. x + x)

• β-equality is

(λx. t)(s) = t[s/x]

Lutz Schröder: Isabelle; January 17, 2005



Unification 17

What was that again?

• Recall λ-notation from functional programming:

λx. t

means ‘the function that maps x to t’ (where t may

contain x as a free variable — as in λx. x + x)

• β-equality is

(λx. t)(s) = t[s/x]

• E.g. (λx. x + x)(3 ∗ y) = 3 ∗ y + 3 ∗ y.

Lutz Schröder: Isabelle; January 17, 2005



Unification 18

Huet’s Procedure

Lutz Schröder: Isabelle; January 17, 2005



Unification 18

Huet’s Procedure

Huet, G. P.: A unification algorithm for typed λ-calculus.

Theoret. Comput. Sci. 1 (1975), 27–57.

Lutz Schröder: Isabelle; January 17, 2005



Unification 18

Huet’s Procedure

Huet, G. P.: A unification algorithm for typed λ-calculus.

Theoret. Comput. Sci. 1 (1975), 27–57.

• Works by systematic ‘guessing’

Lutz Schröder: Isabelle; January 17, 2005



Unification 18

Huet’s Procedure

Huet, G. P.: A unification algorithm for typed λ-calculus.

Theoret. Comput. Sci. 1 (1975), 27–57.

• Works by systematic ‘guessing’

• Is complete, i.e. finds all unifiers (unlike unification in

Isabelle, which is even harder due to type variables)

Lutz Schröder: Isabelle; January 17, 2005



Unification 18

Huet’s Procedure

Huet, G. P.: A unification algorithm for typed λ-calculus.

Theoret. Comput. Sci. 1 (1975), 27–57.

• Works by systematic ‘guessing’

• Is complete, i.e. finds all unifiers (unlike unification in

Isabelle, which is even harder due to type variables)

• May fail to terminate (i.e. may keep putting out unifiers)

Lutz Schröder: Isabelle; January 17, 2005



Unification 19

How to guess unifiers

Lutz Schröder: Isabelle; January 17, 2005



Unification 19

How to guess unifiers

Problem: Solve

?f(t1, . . . , tm) = g(u1, . . . , un)

(From now on, unification variables are indicated by ‘?’)

Lutz Schröder: Isabelle; January 17, 2005



Unification 19

How to guess unifiers

Problem: Solve

?f(t1, . . . , tm) = g(u1, . . . , un)

(From now on, unification variables are indicated by ‘?’)

Two types of guesses for ?f :

Lutz Schröder: Isabelle; January 17, 2005



Unification 19

How to guess unifiers

Problem: Solve

?f(t1, . . . , tm) = g(u1, . . . , un)

(From now on, unification variables are indicated by ‘?’)

Two types of guesses for ?f :

• Imitation: assume that ?f applies g to something.

Lutz Schröder: Isabelle; January 17, 2005



Unification 19

How to guess unifiers

Problem: Solve

?f(t1, . . . , tm) = g(u1, . . . , un)

(From now on, unification variables are indicated by ‘?’)

Two types of guesses for ?f :

• Imitation: assume that ?f applies g to something.

• Projection: assume that ?f applies one of the ti to

something (i.e. hope that g is hidden somewhere in ti).

Lutz Schröder: Isabelle; January 17, 2005



Unification 20

Imitation

Lutz Schröder: Isabelle; January 17, 2005



Unification 20

Imitation

(Assume m = 1 for simplicity)

Lutz Schröder: Isabelle; January 17, 2005



Unification 20

Imitation

(Assume m = 1 for simplicity)

• Guess ?f = λx. g(?h1(x), . . . , ?hn(x))

Lutz Schröder: Isabelle; January 17, 2005



Unification 20

Imitation

(Assume m = 1 for simplicity)

• Guess ?f = λx. g(?h1(x), . . . , ?hn(x))
• Plug this into the equation and obtain (after β-reduction)

g(?h1(t), . . . , ?hn(t)) = g(u1, . . . , un)

Lutz Schröder: Isabelle; January 17, 2005



Unification 20

Imitation

(Assume m = 1 for simplicity)

• Guess ?f = λx. g(?h1(x), . . . , ?hn(x))
• Plug this into the equation and obtain (after β-reduction)

g(?h1(t), . . . , ?hn(t)) = g(u1, . . . , un)

• Next step: solve

?hi(t) = ui, i = 1, . . . , n

Lutz Schröder: Isabelle; January 17, 2005



Unification 21

Projection

Lutz Schröder: Isabelle; January 17, 2005



Unification 21

Projection

(Works if t has the same result type as g)

Lutz Schröder: Isabelle; January 17, 2005



Unification 21

Projection

(Works if t has the same result type as g)

• Guess ?f = λx. x(?h1(x), . . . , ?hk(x)),
where k is the number of arguments for t

Lutz Schröder: Isabelle; January 17, 2005



Unification 21

Projection

(Works if t has the same result type as g)

• Guess ?f = λx. x(?h1(x), . . . , ?hk(x)),
where k is the number of arguments for t

• Plug in and β-reduce:

t(?h1(t), . . . , ?hk(t)) = g(u1, . . . , un)

Lutz Schröder: Isabelle; January 17, 2005



Unification 21

Projection

(Works if t has the same result type as g)

• Guess ?f = λx. x(?h1(x), . . . , ?hk(x)),
where k is the number of arguments for t

• Plug in and β-reduce:

t(?h1(t), . . . , ?hk(t)) = g(u1, . . . , un)

• this is a ‘simpler’ problem, since the unknowns have been

pushed ‘further down’ in the term.

Lutz Schröder: Isabelle; January 17, 2005



Unification 22

An Example

Lutz Schröder: Isabelle; January 17, 2005



Unification 22

An Example

Solve ?f(a) = a + a.

Lutz Schröder: Isabelle; January 17, 2005



Unification 22

An Example

Solve ?f(a) = a + a.

• Imitation: ?f = λx. ?h1(x)+?h2(x),
have to solve ?hi(a) = a, i = 1, 2, next.

Lutz Schröder: Isabelle; January 17, 2005



Unification 22

An Example

Solve ?f(a) = a + a.

• Imitation: ?f = λx. ?h1(x)+?h2(x),
have to solve ?hi(a) = a, i = 1, 2, next.

• Imitation: ?hi = λx. a.

Lutz Schröder: Isabelle; January 17, 2005



Unification 22

An Example

Solve ?f(a) = a + a.

• Imitation: ?f = λx. ?h1(x)+?h2(x),
have to solve ?hi(a) = a, i = 1, 2, next.

• Imitation: ?hi = λx. a.

• Alternatively, projection (a takes 0 arguments!):

?hi = λx. x,

then have to ‘solve’ a = a.

Lutz Schröder: Isabelle; January 17, 2005



Unification 23

Example (cont’d)

Lutz Schröder: Isabelle; January 17, 2005



Unification 23

Example (cont’d)

• Thus: four solutions

λx. x + x, λx. x + a, λx. a + x, λx. a + a

for ?f .

Lutz Schröder: Isabelle; January 17, 2005



Unification 23

Example (cont’d)

• Thus: four solutions

λx. x + x, λx. x + a, λx. a + x, λx. a + a

for ?f .

• None of these is more general than another, since we

cannot substitute for bound variables.

Lutz Schröder: Isabelle; January 17, 2005



Unification 23

Example (cont’d)

• Thus: four solutions

λx. x + x, λx. x + a, λx. a + x, λx. a + a

for ?f .

• None of these is more general than another, since we

cannot substitute for bound variables.

Who on earth would believe that?

Lutz Schröder: Isabelle; January 17, 2005


	Unification

