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What is Unification?
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e In detail:
o Terms have free variables

o A substitution is a map o:Variables— Terms
(write 0 = [t/x,s/y,...])
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Unification 3

What is Unification?

e In a nutshell: the process of finding a substitution that
makes two given terms equal (‘equation solving’).

e In detail:
o Terms have free variables

o A substitution is a map o:Variables— Terms
(write 0 = [t/x,s/y,...]|)

o Applying o to a term t means replacing each free variable v in ¢ by
o(v) — write to for the result. Similarly: 7o, 7 substitution

o A unifier of two terms s and ¢ is a substitution o such that so = to.

e Qoof.
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Unification

We do this every day:

Boolean terms:

mother(x,y) A mother(x, Paul) = sibling(y, Paul)
mother(Mary,y) A mother(Mary, z) = sibling(y, 2)

Unifier is |x/Mary, z/ Paul|:
mother(Mary,y) A mother(Mary, Paul)
— stbling(y, Paul)

N.B.: [Mary/x, Peter/y, Paul/z] is also a unifier!
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One more example

(x +y) * 2

u * (v + w)
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One more example

t=(x+y)*z

s=ux*(v+w)

Unifier is 0 = [(x + y) /u, (v + w)/z]:
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Unification

One more example

t=(x+y)*z

s=ux(v+w)
Unifier is 0 = [(x + y) /u, (v + w)/z]:

(z+y) * (v+w)
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Unification

One more example

t=(x+y)*z

s=ux(v+w)
Unifier is 0 = [(x + y) /u, (v + w)/z]:
(z +y) * (v+w)
Use this in the right and left distributive laws to show

rx(vt+w)tyx(v+w)=(x+y)xv+(r+y)*xw

Lutz Schroder: Isabelle; January 17, 2005 Mig
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x4+ 1y and T *xy

do not admit a unifier.
(No matter what one substitutes, one always has a sum on
the left and a product on the right.)
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Unification

Unifiers may not exist

x4+ 1y and T *xy

do not admit a unifier.

(No matter what one substitutes, one always has a sum on
the left and a product on the right.)

Neither do
rand x + 1

(No matter what one substitutes, the right term is always
larger.)
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The most general unifier (mgu)

e Does ‘as little as possible’

e Formally:

o o is more general than 7 if 7 = o7 for some T;

o A unifier of s and t is an mgu if it is more general than all other
unifiers :-)
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Unification 3

The most general unifier (mgu)

e Does ‘as little as possible’

e Formally:
o o is more general than 7 if 7 = o7 for some T;
o A unifier of s and t is an mgu if it is more general than all other
unifiers :-)
e Above: o Is mgu
e 7= [(z+y)/u, (uxu+w)/z, (u*xu)/v]
Is also a unifier

&
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Unification 3

The most general unifier (mgu)

e Does ‘as little as possible’

e Formally:

o o is more general than 7 if 7 = o7 for some T;

o A unifier of s and t is an mgu if it is more general than all other
unifiers :-)

e Above: o Is mgu

o T =|(x+y)/u,(uxu+w)/z, (uxu)/ vl
Is also a unifier

o T =0luxu/v

&
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Terms are Trees

Eg., ux(v+w)is

/\
/\
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Robinson’s Algorithm

Finds the mgu o of terms s and ¢ if a unifier exists:
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Robinson’s Algorithm

Finds the mgu o of terms s and ¢ if a unifier exists:
o= |
while so # to {
Find the first place in the tree where so and to
have different subterms a, b
if none of a, b is a variable return(" not unifiable”)
else (w.l.o.g. a is a variable v)
if b contains v return(” not unifiable”)

else 0 := o|b/v]}

Lutz Schroder: Isabelle; January 17, 2005 Mig
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An example

Take s = (x +y) * z and t = w * .
1. x + y is different from and does not contain w:
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Unification 11

An example

Take s = (x +y) * z and t = w * .
1. x + y is different from and does not contain w:

o= |(z+y)/w]
2. z 1s different from and does not contain x:
o:=olr/z

Result: 0 = [z/2, (x +y)/w], soc = (x + y) xx = to.
N.B: [z/x, (2 4+ y)/w]| would have done the job as well.
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Why does this work?
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Why does this work?

e [he algorithm terminates: in each iteration, the number of
free variables decreases by 1.
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o In particular, the algorithm does not fail and returns an mgu.
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Proof of the Claim

= o7 [aT /0] (since vT' = v)
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Proof of the Claim

o'7’
= ola/v]|7
= o7 [aT /0] (since vT' = v)
= o7'[aT /] (v not in a)
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Proof of the Claim

o'7’
= ola/v]|7
= o7 [aT /0] (since vT' = v)
= o7'[aT /] (v not in a)
=0T (since vT = aT)
— 7
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Higher Order Unification

e . ..Is a lot harder.

e [ he reason is that it concerns terms modulo certain
equations, so that we get more unifiers

&
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Higher Order Unification

e . ..Is a lot harder.

e [ he reason is that it concerns terms modulo certain
equations, so that we get more unifiers

e Specifically, we have to unify A\-terms modulo (3-equality.
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What was that again?

e Recall A-notation from functional programming:
AT. T

means ‘the function that maps = to ¢’ (where £ may
contain x as a free variable — as in Azx. z + x)

e (J-equality is
(Ax.t)(s) = t|s/x]
eEg (Mr.z+2)3xy)=3xy+3xy.
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Huet’s Procedure

Huet, G.P.: A unification algorithm for typed A-calculus.
Theoret. Comput. Sci. 1 (1975), 27-57.
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Huet, G.P.: A unification algorithm for typed A-calculus.
Theoret. Comput. Sci. 1 (1975), 27-57.

e Works by systematic ‘guessing’
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Huet’s Procedure

Huet, G.P.: A unification algorithm for typed A-calculus.
Theoret. Comput. Sci. 1 (1975), 27-57.

e Works by systematic ‘guessing’

e Is complete, i.e. finds all unifiers (unlike unification in
Isabelle, which is even harder due to type variables)
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Huet’s Procedure

Huet, G.P.: A unification algorithm for typed A-calculus.
Theoret. Comput. Sci. 1 (1975), 27-57.

e Works by systematic ‘guessing’

e Is complete, i.e. finds all unifiers (unlike unification in
Isabelle, which is even harder due to type variables)

e May fail to terminate (i.e. may keep putting out unifiers)

Lutz Schroder: Isabelle; January 17, 2005 Mig
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How to guess unifiers

Problem: Solve

?f(tl, S ,tm) — g(ul, oo o ,un)

(From now on, unification variables are indicated by ‘7’)
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How to guess unifiers

Problem: Solve

?f(tl, S ,tm) — g(ul, oo o ,un)

(From now on, unification variables are indicated by ‘7’)
Two types of guesses for 7 f:
e Imitation: assume that 7 f applies g to something.

e Projection: assume that 7 f applies one of the ¢; to
something (i.e. hope that g is hidden somewhere in t;).

Lutz Schroder: Isabelle; January 17, 2005 Mig
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Imitation
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Imitation

(Assume m = 1 for simplicity)
e Guess 7f = Az.g(Thi(x),...,Th,(z))
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Imitation

(Assume m = 1 for simplicity)
e Guess 7f = Az.g(Thi(x),...,Th,(z))
e Plug this into the equation and obtain (after -reduction)

g(Thi(t), ..., 72hy(t)) = g(ug, ..., uy,)
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Imitation

(Assume m = 1 for simplicity)
e Guess 7f = Az.g(Thi(x),...,Th,(z))
e Plug this into the equation and obtain (after -reduction)

g(Thi(t), ..., 72hy(t)) = g(ug, ..., uy,)
o Next step: solve

?hz(t) :ui,i: 1,...,TL

Lutz Schroder: Isabelle; January 17, 2005 Mig
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Projection
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Projection

(Works if t has the same result type as g)

Lutz Schroder: Isabelle; January 17, 2005

3

nn



Unification

21

Projection

(Works if t has the same result type as g)
o Guess 7f = Az.x(?hi(x),..., The(x)),
where k is the number of arguments for ¢
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Projection

(Works if t has the same result type as g)
o Guess 7f = Az.x(?hi(x),..., The(x)),
where k is the number of arguments for ¢

e Plug in and 3-reduce:

t(Thi(t),...,7hi(t)) = g(uq, ...
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Projection

(Works if t has the same result type as g)
o Guess 7f = Az.x(?hi(x),..., The(x)),
where k is the number of arguments for ¢

e Plug in and (3-reduce:
t(Thi(t),...,?hi(t)) = g(uq, ..., uy)

e this is a 'simpler’ problem, since the unknowns have been
pushed ‘further down’ in the term.
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An Example
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Solve ?f(a) = a + a.

An Example
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An Example

Solve ?f(a) = a + a.
e Imitation: 7f = Ax. 7hy(x)+7hs(x),
have to solve 7h;(a) = a, i = 1,2, next.
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An Example

Solve ?f(a) = a + a.
e Imitation: 7f = Ax. 7hy(x)+7hs(x),
nave to solve 7h;(a) = a, i = 1,2, next.

e |Imitation: 7h; = \x. a.
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An Example

Solve ?f(a) = a + a.
e Imitation: 7f = Ax. 7hy(x)+7hs(x),
nave to solve 7h;(a) = a, i = 1,2, next.

e |Imitation: 7h; = \x. a.

e Alternatively, projection (a takes 0 arguments!):

then have to ‘solve’ a = a.

Lutz Schroder: Isabelle; January 17, 2005
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Example (cont’d)
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Example (cont’d)

e [hus: four solutions
AXe.x+z, . x+a, A\r.a+x, \r.a+ a
for 7f.
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Example (cont’d)

e [hus: four solutions
AXe.x+z, . x+a, A\r.a+x, \r.a+ a
for 7f.

e None of these is more general than another, since we
cannot substitute for bound variables.

&
[10)]
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Example (cont’d)

e [hus: four solutions
AXe.x+z, . x+a, A\r.a+x, \r.a+ a
for 7f.

e None of these is more general than another, since we
cannot substitute for bound variables.

Who on earth would believe that?
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