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Overall Objectives
� A verification logic for P rogramatica

� To s upport formal reas oning about properties  of
programs

� The term language is  Has kell 98
� Initially, omitting monads  and clas s es

� Firs t-order predicate formulas  with equality
� E xtended to a modal �-calculus

� �-calculus  adds  leas t and greates t fixed-point formulas
� A modality des ignates  predicates  that require evaluation of

a term for their s atis faction

� A tool to certify properties  as s erted of a program by
(interactive) proof cons truction
� Libraries  of proof s trategies  s ugges ted by human intuition

will be programmed to us e in certifying properties  by
verification



Technical Approach
� Define a logic whos e s tandard interpretation

is  given in terms  of Has kell s emantics
� Programatica logic expres s es  properties  of well-

typed Has kell terms
� Avoids  trans lating to a more primitive modeling language

� Check s oundnes s  of each rule of the logic
with res pect to a Has kell s emantics  model
� S emantics  is  formulated independently of the logic

� Develop s trategies  for computational proof
cons truction
� To s upport verification of program properties  with

machine-checked proofs



This  Talk

� Introduction to the Programatica logic
� S emantic interpretation of the logic
� Inference rules
� S oundnes s
� Overview of tool s upport



P-logic
� A modal logic for Has kell

� Predicates  range over Has kell terms
� Predicate formulas  are cons tructed with

� lifted data cons tructors  (term congruence operators )
� propos itional connectives
� leas t and greates t fixed-point binders , Lfp and Gfp
� $-modality des ignates  a well-definednes s  requirement

� Congruence formulas  relate properties  to the
s hapes  of terms

� e.g. the formula (P :Q ), where P and Q are formulas , is
s atis fied by a Has kell term (h :t ) where h s atis fies  P
and t s atis fies  Q

� Lfp and Gfp formulas  as s ert univers al/exis tential
properties  of (unbounded) term s tructures



A S yntax of Formulas
Propos itions :

M ::: P     -- as s erts  that M s atis fies  P
� where M is  a term and P  is  a predicate formula

M === N     -- as s erts  (s emantic) equality of M and N

Unary Predicates :
P  ::=  Univ     -- the univers al predicate

|    Undef     -- the predicate s atis fied only by ����
|    P 1  ���� P 2            -- a conjunctive predicate formula
|    P 1  ���� P 2            -- a dis junctive predicate formula
|    P 1  ���� P 2            -- an �arrow� formula
|    $P     -- a s trong predicate (requires  well-definednes s )
|    Lfp ��P     -- a leas t fixpoint (LFP) formula
|    Gfp ��P      -- a greates t fixpoint (GFP) formula
|    C P 1  � P k      -- a term congruence formula

� Where C is  a �lifted� data cons tructor of arity k

|    !(<c)      -- �lifted� s ections
|    {| pattern | Prop |}   � a s et comprehens ion



E xpres s ing Properties  of Terms
� How can we expres s  the property (of a lis t-typed

value) of finitenes s ?
� In firs t-order logic, it�s  not pos s ible to expres s  the condition

that a lis t is  finite, without res orting to recurs ion
� In a higher-order logic, inductive formulas  are available

� Induction rules  quantify over predicates , e.g.
Finite-list(A) = [P] P -> (A -> P -> P) -> P

This  formula gives  a type of finite lis ts , but does  not directly
des cribe their s tructure as  Has kell terms

� A better s olution
� Introduce recurs ion in predicate definitions

� mu-calculus  (Kozen, 1 983)
� Lift the cons tructors  of terms  to the s tatus  of predicates

(analogous  to pattern cons tructors )



Term Congruence Formulas

� Taking advantage of the is omorphis m between a free
datatype and the s um-of-products  of its  component types
� Has kell exploits  the is omorphis m in pattern-matches
� Programatica logic exploits  the is omorphis m with congruence

formulas

The propos ition M ::: C P 1  � P k is  equivalent to:
���� N1 � Nk � M = C N1 � Nk � (N1 ::: P 1 ) � � � (Nk ::: P k)
� where C is  a data cons tructor of arity k

� Congruence formulas  are s uccinct, and
� Coherent with the interpretation of P -logic (to follow)
� The is omorphis m between s tructure and components  leads

directly to inference rules  for congruence formulas  (to follow)



A logic for reas oning about partial,
continuous  functions

� S trong and weak as s ertions
� A strong as s ertion, M ::: $P , is  s atis fied if term M

has  a defined value which s atis fies  P
� A weak as s ertion, N ::: Q , is  s atis fied if term N is

undefined or has  a defined value which s atis fies  Q

� As s ertions  about a function f :: �1  � �2
f ::: $($Univ � $Univ) as s erts  that f is  total
f ::: UnDef � UnDef as s erts  that f is  s trict
f ::: Univ � $Univ as s erts  that f is
                          



Predicate Formulas

� Propos itional connectives  are lifted to
connectives  of unary predicate formulas
x ::: (P � Q)    �def  x ::: P � x ::: Q
x ::: (P � Q)    �def  x ::: P � x ::: Q
x ::: $(P � Q)  �def  x ::: $P � x ::: $Q
x ::: $(P � Q)  �def  x ::: $P � x ::: $Q
x ::: � P          �def � (x ::: P) � x ::: UnDef



Recurs ively Defined Predicates
� �-calculus  extends  firs t-order logic with

leas t and greates t fixed-point formulas
� E xpres s es  properties  as s erted over the

extent of a data s tructure
� E xamples :

� Finite-list = Lfp ��[ ] � (Univ : $�)

� Head-strict-list = Lfp ��[ ] � ($Univ : �)

� Infinite-Stream = Gfp ��(Univ : $�)



E xample 1 : length of lis ts  is  additive
� Functions  as  defined in Has kell

length :: [a] -> Integer

length [ ] = 0
length ( _:t) = 1  + length t
� the multi-equation function definition is  des ugared to yield a s ingle

equation:
length = \ _xs  -> cas e _xs  of

[]-> 0
 ( _:t) -> 1  + length t

� S imilarly,
(++) = \ _xs  ys  -> cas e _xs  of

[]-> ys
(x :xs ) -> x : (++) xs  ys

� We as s ert the following
assert All xs , ys  ::: Finite-lis t � length (xs  ++ ys ) $== length xs  + length ys
Proved us ing an inductive proof rule for lis t equality



E xample 2: Correctnes s  of a factorial
function

� Functions  as  defined in Has kell
� A generalized primitive recurs ion combinator:
genPR :: (a -> Bool) -> (a -> a) -> c -> (a -> c -> c) -> a -> c
genPR p b g h x = if p x then g else h x (genPR p b g h (b x))
� A factorial function:
fact :: Integer -> Integer

fact = genPR eq0 (s ubtract 1 ) 1  (�)
� We as s ert the following
property x � 0 � fact x = x!

where 0! = 1
        (x+1 )! = (x+1 )�x!

Proved us ing an inductive proof rule for genPR
This  rule requires  that a s et well-ordered by p and b be s pecified:

WO p b = Lfp �� {| x | p x $=== True � (b x ::: $�) |}



E xample 3: Ordered ins ertion in a lis t
� Functions  as  defined in Has kell

ins ert :: Int -> [Int] -> [Int]
ins ert a [ ] = [a]
ins ert a ys @(y :_ ) | a < y  = a : ys

       | a == y = ys
ins ert a (y : ys ) = y : ins ert a ys
� the multi-equation function definition is  des ugared to yield a s ingle

equation:
ins ert a = \ _ys  -> cas e _ys  of

[]-> [a]
(y :_ ) | a < y -> a : ys
          | a == y -> ys
(y : ys ) -> y : ins ert a ys

� We as s ert the following
assert All xs  � xs  ::: �$Univ  �  ins ert a xs  ::: !(<a) unless !(==a)

where P  unless Q = Gfp ��($Q : Univ) � ($P : $�)
and     �P = Gfp ��[ ] � (P  : $�)

This  property has  been proved us ing the Gfp rule (and many others )



S emantic Interpretation



S emantic Interpretation of
Formulas

� Predicate formulas  are interpreted as  characteris tic
predicates  of s ets  (pos ets ) in a s emantics  domain for
Has kell
� A formula is  interpreted in a type (or type s cheme)

� Notation:
��� is  the s et of domain elements  of the Has kell type � (an ideal*)
C ��� is  the interpretation of the cons tant s ymbol C in the type �
�P�� is  the ideal of domain elements  {t � ���  | t  s atis fies  P }, where

P is  an uns trengthened predicate
�$P�� is  the s et of elements  �P�� � {�}

* (Recall that an ideal pos et is  downward-clos ed and contains  limits
of its  finite directed s ubs ets .)



For E xample:
Dis tinguis hed Predicates

S trong modality Weak modality

 �$Univ�� = ��� � {�}                �Univ�� = ���
 �$UnDef�� = { } �UnDef�� = {�}



Predicates  derived from
S ections

� E quality comparis ons  with cons tants
�!(==a) �� = {x � ���  | x = a���  � x = �}

� Ordering relations
�!(<a) �� = {x � ���  | x <��� a��� � x = �}

where � is  an ins tance of the Ord type
clas s



Term Congruence Predicates
� A datatype definition populates  a s ignature ��

k
with its  data cons tructors  of arity k (for k � 0)

(C, (�1 , � ,�k )) � ��

k =>
  �C P1  � Pk �

� =
 {C ��� x1  � xk  | x1  � �P1�

�1  � � � xk � �Pk�
�k} 	 {�}

Arrow Predicates
�P � Q��1��2 =

    {f � ��1 � � ��2� | �x � �P��1�f x � �Q��2} 	 {�}



Conjunction and Dis junction
�P1   � P2�

� = �P1�
�1   
 �P2�

�

�P1   � P2�
� = �P1�

�1   	 �P2�
�

The E quality Predicate
�(===)�� = {(u,v) | u � ��� � v � ��� � u = v }
�($===)�� = {(u,v) | u � ��� � v � ��� � u = v

� u � � }



Fixed-Point Formulas
H is  a predicate formula, admissible for fixed-point binding of the

predicate variable � if � does  not occur in a negated pos ition.

LFP :

where H0 = UnDef
H j+1 = H [H j/�]

GFP:

where H0 = Univ
H j+1 = H [H j/�]

[| |] [| |]Lfpξ τ τ• =
=

∞

H H j

j 0
�

[| |] [| |]Gfpξ τ τ• =
=

∞

H H j

j 0
�



E xample 1 : Tail-s trict lis ts
� Cons ider LFP formula

Strict-list(A) � Lfp ��[ ] ���� ($A : $����)
       where   data unitA = A

� The interpretation of Strict-list(A) is
{�} � {�,[]} � {�,[],[A]} � {�,[],[A],[A,A]} � �

This  is  the repres entation of a flat s ubdomain (the �
element is  never embedded in a lis t s tructure)



E xample 2: Non-tail-s trict lis ts
� Cons ider LFP formula

Non-strict(A) � Lfp ��[] ���� (A : ����)
       where   data unitA = A

� The interpretation of Non-strict(A) is
{�} � {�,[],(�:�),(A:�)} � {�,[],[�],[A],

(�:�),(�:(�:�)),(A:(�:�)),(�:(A:�)),(A:(A:�))} � �
containing many more elements  than in E xample 1

becaus e � elements  are embedded

� Non-tail-strict(A) � Univ[unitA]



Inference Rules  of
Programatica logic



Cons tructors  as  P redicates
� Idea: Data cons tructors  are �lifted� to

act as  predicate cons tructors
� E xample:

x ::: [ ] is  the propos ition �x has  the value [ ] or
els e is  undefined�

x ::: (P :Q) is  the propos ition ��u,v. x has  value
(u :v) and u ::: P and v ::: Q or els e x is
undefined�



Rules  in the s tyle of a S equent
Calculus

� Right-introduction rules
E xample:

� Hypothes es  make as s ertions  about s ubterms  of the s ubject
term that appears  on the right s ide of the conclus ion

� Left-introduction rules
E xample:

� Hypothes es  make as s umptions  about s ubterms  of a s ubject
term that appears  on the left s ide of the conclus ion

Left introduction rules  in a s equent s tyle corres pond to elimination
rules  in a natural deduction s tyle.

Γ Γ
Γ
| ::: | :::

| ( : ):::( : )
− −

−
h P t Q

h t P Q

h P t Q
h t P Q
::: , ::: |

( : ):::( : ) |
−
−

∆
∆



Rules  for Congruence Formulas

� Cons tructor application, right introduction

� Cons tructor application, left introduction

Γ Σ Γ
Γ Σ

, , ,..., ...
, , ,..., ... ...
( ( )) ::: :::
( ( )) :::

1

1

C x P x P
C C x x C P P

k k k k
k

k k k k
k

τ τ
τ τ

τ τ τ

τ τ τ
τ

∈ − −
∈ −

| |

|
1 1

1

1 1
1

( ( )) ::: :::
( ( )) :::

1

1

C x P x P
C C x x C P P

k k k k
k

k k k k
k

, ,..., , ,...,
, ,..., , ... ...

τ τ
τ τ

τ τ τ

τ τ τ
τ

∈ −
∈ −

Σ ∆
Σ ∆

1 1
1

1 1
1

|

|



Abs traction and Application
� Abs traction (right introduction)

� The arrow (����) is a predicate constructor symbol

� Abs traction (left introduction)

� Application (right introduction)

Γ
Γ

, |
| ( )

x P e Q
x e P Q

::: :::
:::
−

− −> →λ $

Γ Γ
Γ

| ( ) |
|

− → −
−

f P Q e P
f e Q

::: :::
:::

$

Γ Γ ∆
Γ ∆
| , |

, ( ) |
− −

→ −
e P f e Q
f P Q
::: :::
:::$



Properties  of Recurs ively-Defined
Functions  � LFP Formulas

� A verification rule for LFP properties  of a
recurs ive function definition, let m = M

� P1 and P2 are separation predicates
which partition the argument s et into s ubs ets  on which

m is not recurs ively invoked (res p. is invoked) in M
� � is  a predicate variable that may occur only in H

Γ
Γ

Γ

, | )
, ( )

, | ( )

m Univ M P H
m P P M P H

m M m P P H

::: ::: (
:::( ) | :::

:::

− →
∨ → − →

=== − ∨ → •

$
$

$ Lfp

1

1 2 2

1 2

ξ
ξ



E xample: fact yields  a pos itive res ult
on a domain of non-negative integers
� fact = �n -> if n == 0 then 1 (Haskell definition)

     else n � fact (n � 1)
assert  fact ::: $!(����0) � $(Lfp � � $!(==1) � Geq �)
property Geq P  = {x  | �y�x � y � y ::: P }

� S eparation predicates :  P1 � $!(==0), P2 � $!(>0),
s upport deductions  of:

and (us ing s everal facts  about arithmetic)

from which the as s ertion can be proved by the LFP  rule

fact Univ n n n fact n
Geq

:: ( if then 1 else ( )) 
::: !( ) (!( ) )

| ->− == ∗ −
== → == ∨

λ
ξ

0 1
0 1$ $

fact n n n fact n
Geq

:::  ( ) ( if then 1 else ( )) 
:::  !( ) (!( ) )

$
$ $

! ≥ → − == ∗ −
> → == ∨

0 0 1
0 1

ξ λ
ξ

| ->

Separation
constraint

Separation constraint



Properties  of Recurs ively-Defined
Functions  � GFP Formulas

� A verification rule for GFP properties  of a
recurs ive function definition, let m = M

where � is  a predicate variable that may occur only in H

Γ
Γ

Γ

| [ / ]
,

, |

−
−

=== − •

M H Univ
M H m

m M m H

:::
::: | :::

:::

$
$

Gfp

ξ
ξ

ξ



Patterned Abs tractions
� E xplicit abs traction over argument patterns

� E xtended with guarded expres s ions  as  the bodies  of
abs tractions

(This  is  an orthogonal extens ion to Has kell � not part of the language)

� Function definitions , cas e expres s ions  and let claus es
can be defined in terms  of patterned abs tractions

� The fatbar connective combines  a s equence of
patterned abs tractions  into a compos ite, function-
typed expres s ion
� Defined by interpreting patterned abs traction in the Maybe

monad



Rules  for a Patterned Abs traction

� S ucces s ful match

where � repres ents  a pattern with n
variables

� Match failure

where Dom (�) is  the predicate s atis fied by
terms  that do not match �

Γ
Γ

, ,..., |
, ,..., | ,...,

x P x P g Q
e P P x x g e Just Q

n n

n n

1 1

1 1

::: :: :::
::: ( ) ( ( ) ) ::: ( )

−
− −>$ $π πλ

Γ , ,...,e Dom x x g e Nothingn::: ( ) | ( ( ) ) :::$ $π λπ− −>1



The fatbar connective

(����) :: (a � Maybe b) � (a � Maybe b) � a � Maybe b

� Rules

Γ Γ
Γ

| ::: | :::
| ( ) :::

− −
−

g e Nothing g e Q
g g e Q

1 2

1 2

$
||

Γ
Γ

| ::: ( )
| ( ) ::: ( )

−
−

g e Just P
g g e Just P

1

1 2

$
$||



Guarded E xpres s ions
� Rules  for expres s ions  with guards

� Maybe is  a monadic type cons tructor

where P :: Prop

Γ Γ
Γ

| ::: | :::$!( )
| ::: ( )

− − ==
−

e P g True
g e Just P-> $

Γ
Γ

| ::: ( )
| :::

− ==
−

g False
g e Nothing

$
$

!
->



Confirming property as s ertions  in
the Maybe monad

� Properties  as s erted in the Maybe monad are
collected over branches  of a case expres s ion

� But at the end of a lis t of cas e branches ,
� A s trongly Just-prefixed property is

equivalent to an ordinary predicate

Γ
Γ

| :::$ ( )
| :::

−
−

e Just P
e P



Clas s  Ins tances  and Overloading

� Two kinds  of overloading
� Derived ins tances  of an operator are language- (or

implementation)-defined
� Derived ins tances  are generic functions
� Derived ins tances  s atis fy a common law

� Programmer-defined ins tances  are particular
� Ins tances  have independent properties

� Overloading is  res olved (logically) by typing
� Us e type-indexed predicates  to s pecify properties
� Give the meaning of an as s ertion at each ins tance

of its  index type



Type-Indexed Predicates

� E ach predicate is  annotated with a type formula
� Indicates  the type at which the predicate is

interpreted
� The predicate index on a formula mus t be compatible

with the type of the expres s ions  to which it applies
� If e has  type � then e ::: P � has  meaning

� Predicates  in rules  for generic operators  may be
indexed with a (qualified) type variable
� For example, !(== 0)Num a => a

� Rules  for s pecific operators  may contain
predicate expres s ions  indexed by concrete
types



S oundnes s  of the
Programatica logic

A s equent, � |� e :::P �, is  valid if
For every s emantic valuation (of term variables )
s uch that all propos itions  of the context, �, are true,
the conclus ion e :::P � is  true (if e has  type �).

A criterion for s oundnes s  of an inference rule,

For every context, �, s uch that the antecedents  of
the rule are valid s equents , the cons equent is  als o
valid

P-logic is  s ound iff all of its  inference rules  are
s ound with res pect to a s emantics  for Has kell

S oundnes s proof is pres ented in a s eparate talk

� �

�

| Prop | Prop
Prop|

− −
−

1 ... n



Tool S upport for P -logic

� PFE , the P rogramatica Front-E nd tool
� Pars es  and type-checks  property as s ertions  and

declarations  embedded in a Has kell program text
� Interfaces  with the PFE  brows er, which dis plays  a

text with embedded as s ertions
� s upports  Has kell module s tructure
� provides  links  to declarations  of identifiers

� S upports  certificate management for as s erted
properties

� automatically calculates  and updates  dependencies

� PFE  is  des cribed in another talk (by Thomas
Hallgren)



Conclus ions
� P-logic meets  its  des ign objectives

� E xpres s es  properties  of Has kell terms
� Without trans lation or artificial coding
� With modalities  for both s trict and non-s trict functions  and

data cons tructors

� Its  s emantics  is  given in terms  of a domain-
theoretic model for Has kell
� S emantics  furnis hes  a reference for s oundnes s  of

proof rules

� To be done:
� Develop a verification s erver for P-logic as s ertions


