
A Logic for Has kell

Dick Kieburtz
OGI S chool of S cience & E ngineering
Oregon Health & S cience Univers ity

September 25, 2001
Updated April 17, 2003

Overall Objectives
� A verification logic for P rogramatica

� To s upport formal reas oning about properties of
programs

� The term language is Has kell 98
� Initially, omitting monads and clas s es

� Firs t-order predicate formulas with equality
� E xtended to a modal �-calculus

� �-calculus adds leas t and greates t fixed-point formulas
� A modality des ignates predicates that require evaluation of

a term for their s atis faction

� A tool to certify properties as s erted of a program by
(interactive) proof cons truction
� Libraries of proof s trategies s ugges ted by human intuition

will be programmed to us e in certifying properties by
verification

Technical Approach
� Define a logic whos e s tandard interpretation

is given in terms of Has kell s emantics
� Programatica logic expres s es properties of well-

typed Has kell terms
� Avoids trans lating to a more primitive modeling language

� Check s oundnes s of each rule of the logic
with res pect to a Has kell s emantics model
� S emantics is formulated independently of the logic

� Develop s trategies for computational proof
cons truction
� To s upport verification of program properties with

machine-checked proofs

This Talk

� Introduction to the Programatica logic
� S emantic interpretation of the logic
� Inference rules
� S oundnes s
� Overview of tool s upport

P-logic
� A modal logic for Has kell

� Predicates range over Has kell terms
� Predicate formulas are cons tructed with

� lifted data cons tructors (term congruence operators)
� propos itional connectives
� leas t and greates t fixed-point binders , Lfp and Gfp
� $-modality des ignates a well-definednes s requirement

� Congruence formulas relate properties to the
s hapes of terms

� e.g. the formula (P :Q), where P and Q are formulas , is
s atis fied by a Has kell term (h :t) where h s atis fies P
and t s atis fies Q

� Lfp and Gfp formulas as s ert univers al/exis tential
properties of (unbounded) term s tructures

A S yntax of Formulas
Propos itions :

M ::: P -- as s erts that M s atis fies P
� where M is a term and P is a predicate formula

M === N -- as s erts (s emantic) equality of M and N

Unary Predicates :
P ::= Univ -- the univers al predicate

| Undef -- the predicate s atis fied only by ����
| P 1 ���� P 2 -- a conjunctive predicate formula
| P 1 ���� P 2 -- a dis junctive predicate formula
| P 1 ���� P 2 -- an �arrow� formula
| $P -- a s trong predicate (requires well-definednes s)
| Lfp ��P -- a leas t fixpoint (LFP) formula
| Gfp ��P -- a greates t fixpoint (GFP) formula
| C P 1 � P k -- a term congruence formula

� Where C is a �lifted� data cons tructor of arity k

| !(<c) -- �lifted� s ections
| {| pattern | Prop |} � a s et comprehens ion

E xpres s ing Properties of Terms
� How can we expres s the property (of a lis t-typed

value) of finitenes s ?
� In firs t-order logic, it�s not pos s ible to expres s the condition

that a lis t is finite, without res orting to recurs ion
� In a higher-order logic, inductive formulas are available

� Induction rules quantify over predicates , e.g.
Finite-list(A) = [P] P -> (A -> P -> P) -> P

This formula gives a type of finite lis ts , but does not directly
des cribe their s tructure as Has kell terms

� A better s olution
� Introduce recurs ion in predicate definitions

� mu-calculus (Kozen, 1 983)
� Lift the cons tructors of terms to the s tatus of predicates

(analogous to pattern cons tructors)

Term Congruence Formulas

� Taking advantage of the is omorphis m between a free
datatype and the s um-of-products of its component types
� Has kell exploits the is omorphis m in pattern-matches
� Programatica logic exploits the is omorphis m with congruence

formulas

The propos ition M ::: C P 1 � P k is equivalent to:
���� N1 � Nk � M = C N1 � Nk � (N1 ::: P 1) � � � (Nk ::: P k)
� where C is a data cons tructor of arity k

� Congruence formulas are s uccinct, and
� Coherent with the interpretation of P -logic (to follow)
� The is omorphis m between s tructure and components leads

directly to inference rules for congruence formulas (to follow)

A logic for reas oning about partial,
continuous functions

� S trong and weak as s ertions
� A strong as s ertion, M ::: $P , is s atis fied if term M

has a defined value which s atis fies P
� A weak as s ertion, N ::: Q , is s atis fied if term N is

undefined or has a defined value which s atis fies Q

� As s ertions about a function f :: �1 � �2
f ::: $($Univ � $Univ) as s erts that f is total
f ::: UnDef � UnDef as s erts that f is s trict
f ::: Univ � $Univ as s erts that f is

Predicate Formulas

� Propos itional connectives are lifted to
connectives of unary predicate formulas
x ::: (P � Q) �def x ::: P � x ::: Q
x ::: (P � Q) �def x ::: P � x ::: Q
x ::: $(P � Q) �def x ::: $P � x ::: $Q
x ::: $(P � Q) �def x ::: $P � x ::: $Q
x ::: � P �def � (x ::: P) � x ::: UnDef

Recurs ively Defined Predicates
� �-calculus extends firs t-order logic with

leas t and greates t fixed-point formulas
� E xpres s es properties as s erted over the

extent of a data s tructure
� E xamples :

� Finite-list = Lfp ��[] � (Univ : $�)

� Head-strict-list = Lfp ��[] � ($Univ : �)

� Infinite-Stream = Gfp ��(Univ : $�)

E xample 1 : length of lis ts is additive
� Functions as defined in Has kell

length :: [a] -> Integer

length [] = 0
length (_:t) = 1 + length t
� the multi-equation function definition is des ugared to yield a s ingle

equation:
length = \ _xs -> cas e _xs of

[]-> 0
 (_:t) -> 1 + length t

� S imilarly,
(++) = \ _xs ys -> cas e _xs of

[]-> ys
(x :xs) -> x : (++) xs ys

� We as s ert the following
assert All xs , ys ::: Finite-lis t � length (xs ++ ys) $== length xs + length ys
Proved us ing an inductive proof rule for lis t equality

E xample 2: Correctnes s of a factorial
function

� Functions as defined in Has kell
� A generalized primitive recurs ion combinator:
genPR :: (a -> Bool) -> (a -> a) -> c -> (a -> c -> c) -> a -> c
genPR p b g h x = if p x then g else h x (genPR p b g h (b x))
� A factorial function:
fact :: Integer -> Integer

fact = genPR eq0 (s ubtract 1) 1 (�)
� We as s ert the following
property x � 0 � fact x = x!

where 0! = 1
 (x+1)! = (x+1)�x!

Proved us ing an inductive proof rule for genPR
This rule requires that a s et well-ordered by p and b be s pecified:

WO p b = Lfp �� {| x | p x $=== True � (b x ::: $�) |}

E xample 3: Ordered ins ertion in a lis t
� Functions as defined in Has kell

ins ert :: Int -> [Int] -> [Int]
ins ert a [] = [a]
ins ert a ys @(y :_) | a < y = a : ys

 | a == y = ys
ins ert a (y : ys) = y : ins ert a ys
� the multi-equation function definition is des ugared to yield a s ingle

equation:
ins ert a = \ _ys -> cas e _ys of

[]-> [a]
(y :_) | a < y -> a : ys
 | a == y -> ys
(y : ys) -> y : ins ert a ys

� We as s ert the following
assert All xs � xs ::: �$Univ � ins ert a xs ::: !(<a) unless !(==a)

where P unless Q = Gfp ��($Q : Univ) � ($P : $�)
and �P = Gfp ��[] � (P : $�)

This property has been proved us ing the Gfp rule (and many others)

S emantic Interpretation

S emantic Interpretation of
Formulas

� Predicate formulas are interpreted as characteris tic
predicates of s ets (pos ets) in a s emantics domain for
Has kell
� A formula is interpreted in a type (or type s cheme)

� Notation:
��� is the s et of domain elements of the Has kell type � (an ideal*)
C ��� is the interpretation of the cons tant s ymbol C in the type �
�P�� is the ideal of domain elements {t � ��� | t s atis fies P }, where

P is an uns trengthened predicate
�$P�� is the s et of elements �P�� � {�}

* (Recall that an ideal pos et is downward-clos ed and contains limits
of its finite directed s ubs ets .)

For E xample:
Dis tinguis hed Predicates

S trong modality Weak modality

 �$Univ�� = ��� � {�} �Univ�� = ���
 �$UnDef�� = { } �UnDef�� = {�}

Predicates derived from
S ections

� E quality comparis ons with cons tants
�!(==a) �� = {x � ��� | x = a��� � x = �}

� Ordering relations
�!(<a) �� = {x � ��� | x <��� a��� � x = �}

where � is an ins tance of the Ord type
clas s

Term Congruence Predicates
� A datatype definition populates a s ignature ��

k
with its data cons tructors of arity k (for k � 0)

(C, (�1 , � ,�k)) � ��

k =>
 �C P1 � Pk �

� =
 {C ��� x1 � xk | x1 � �P1�

�1 � � � xk � �Pk�
�k} 	 {�}

Arrow Predicates
�P � Q��1��2 =

 {f � ��1 � � ��2� | �x � �P��1�f x � �Q��2} 	 {�}

Conjunction and Dis junction
�P1 � P2�

� = �P1�
�1
 �P2�

�

�P1 � P2�
� = �P1�

�1 	 �P2�
�

The E quality Predicate
�(===)�� = {(u,v) | u � ��� � v � ��� � u = v }
�($===)�� = {(u,v) | u � ��� � v � ��� � u = v

� u � � }

Fixed-Point Formulas
H is a predicate formula, admissible for fixed-point binding of the

predicate variable � if � does not occur in a negated pos ition.

LFP :

where H0 = UnDef
H j+1 = H [H j/�]

GFP:

where H0 = Univ
H j+1 = H [H j/�]

[| |] [| |]Lfpξ τ τ• =
=

∞

H H j

j 0
�

[| |] [| |]Gfpξ τ τ• =
=

∞

H H j

j 0
�

E xample 1 : Tail-s trict lis ts
� Cons ider LFP formula

Strict-list(A) � Lfp ��[] ���� ($A : $����)
 where data unitA = A

� The interpretation of Strict-list(A) is
{�} � {�,[]} � {�,[],[A]} � {�,[],[A],[A,A]} � �

This is the repres entation of a flat s ubdomain (the �
element is never embedded in a lis t s tructure)

E xample 2: Non-tail-s trict lis ts
� Cons ider LFP formula

Non-strict(A) � Lfp ��[] ���� (A : ����)
 where data unitA = A

� The interpretation of Non-strict(A) is
{�} � {�,[],(�:�),(A:�)} � {�,[],[�],[A],

(�:�),(�:(�:�)),(A:(�:�)),(�:(A:�)),(A:(A:�))} � �
containing many more elements than in E xample 1

becaus e � elements are embedded

� Non-tail-strict(A) � Univ[unitA]

Inference Rules of
Programatica logic

Cons tructors as P redicates
� Idea: Data cons tructors are �lifted� to

act as predicate cons tructors
� E xample:

x ::: [] is the propos ition �x has the value [] or
els e is undefined�

x ::: (P :Q) is the propos ition ��u,v. x has value
(u :v) and u ::: P and v ::: Q or els e x is
undefined�

Rules in the s tyle of a S equent
Calculus

� Right-introduction rules
E xample:

� Hypothes es make as s ertions about s ubterms of the s ubject
term that appears on the right s ide of the conclus ion

� Left-introduction rules
E xample:

� Hypothes es make as s umptions about s ubterms of a s ubject
term that appears on the left s ide of the conclus ion

Left introduction rules in a s equent s tyle corres pond to elimination
rules in a natural deduction s tyle.

Γ Γ
Γ
| ::: | :::

| (:):::(:)
− −

−
h P t Q

h t P Q

h P t Q
h t P Q
::: , ::: |

(:):::(:) |
−
−

∆
∆

Rules for Congruence Formulas

� Cons tructor application, right introduction

� Cons tructor application, left introduction

Γ Σ Γ
Γ Σ

, , ,..., ...
, , ,...,
(()) ::: :::
(()) :::

1

1

C x P x P
C C x x C P P

k k k k
k

k k k k
k

τ τ
τ τ

τ τ τ

τ τ τ
τ

∈ − −
∈ −

| |

|
1 1

1

1 1
1

(()) ::: :::
(()) :::

1

1

C x P x P
C C x x C P P

k k k k
k

k k k k
k

, ,..., , ,...,
, ,..., ,

τ τ
τ τ

τ τ τ

τ τ τ
τ

∈ −
∈ −

Σ ∆
Σ ∆

1 1
1

1 1
1

|

|

Abs traction and Application
� Abs traction (right introduction)

� The arrow (����) is a predicate constructor symbol

� Abs traction (left introduction)

� Application (right introduction)

Γ
Γ

, |
| ()

x P e Q
x e P Q

::: :::
:::
−

− −> →λ $

Γ Γ
Γ

| () |
|

− → −
−

f P Q e P
f e Q

::: :::
:::

$

Γ Γ ∆
Γ ∆
| , |

, () |
− −

→ −
e P f e Q
f P Q
::: :::
:::$

Properties of Recurs ively-Defined
Functions � LFP Formulas

� A verification rule for LFP properties of a
recurs ive function definition, let m = M

� P1 and P2 are separation predicates
which partition the argument s et into s ubs ets on which

m is not recurs ively invoked (res p. is invoked) in M
� � is a predicate variable that may occur only in H

Γ
Γ

Γ

, |)
, ()

, | ()

m Univ M P H
m P P M P H

m M m P P H

::: ::: (
:::() | :::

:::

− →
∨ → − →

=== − ∨ → •

$
$

$ Lfp

1

1 2 2

1 2

ξ
ξ

E xample: fact yields a pos itive res ult
on a domain of non-negative integers
� fact = �n -> if n == 0 then 1 (Haskell definition)

 else n � fact (n � 1)
assert fact ::: $!(����0) � $(Lfp � � $!(==1) � Geq �)
property Geq P = {x | �y�x � y � y ::: P }

� S eparation predicates : P1 � $!(==0), P2 � $!(>0),
s upport deductions of:

and (us ing s everal facts about arithmetic)

from which the as s ertion can be proved by the LFP rule

fact Univ n n n fact n
Geq

:: (if then 1 else ())
::: !() (!())

| ->− == ∗ −
== → == ∨

λ
ξ

0 1
0 1$ $

fact n n n fact n
Geq

::: () (if then 1 else ())
::: !() (!())

$
$ $

! ≥ → − == ∗ −
> → == ∨

0 0 1
0 1

ξ λ
ξ

| ->

Separation
constraint

Separation constraint

Properties of Recurs ively-Defined
Functions � GFP Formulas

� A verification rule for GFP properties of a
recurs ive function definition, let m = M

where � is a predicate variable that may occur only in H

Γ
Γ

Γ

| [/]
,

, |

−
−

=== − •

M H Univ
M H m

m M m H

:::
::: | :::

:::

$
$

Gfp

ξ
ξ

ξ

Patterned Abs tractions
� E xplicit abs traction over argument patterns

� E xtended with guarded expres s ions as the bodies of
abs tractions

(This is an orthogonal extens ion to Has kell � not part of the language)

� Function definitions , cas e expres s ions and let claus es
can be defined in terms of patterned abs tractions

� The fatbar connective combines a s equence of
patterned abs tractions into a compos ite, function-
typed expres s ion
� Defined by interpreting patterned abs traction in the Maybe

monad

Rules for a Patterned Abs traction

� S ucces s ful match

where � repres ents a pattern with n
variables

� Match failure

where Dom (�) is the predicate s atis fied by
terms that do not match �

Γ
Γ

, ,..., |
, ,..., | ,...,

x P x P g Q
e P P x x g e Just Q

n n

n n

1 1

1 1

::: :: :::
::: () (()) ::: ()

−
− −>$ $π πλ

Γ , ,...,e Dom x x g e Nothingn::: () | (()) :::$ $π λπ− −>1

The fatbar connective

(����) :: (a � Maybe b) � (a � Maybe b) � a � Maybe b

� Rules

Γ Γ
Γ

| ::: | :::
| () :::

− −
−

g e Nothing g e Q
g g e Q

1 2

1 2

$
||

Γ
Γ

| ::: ()
| () ::: ()

−
−

g e Just P
g g e Just P

1

1 2

$
$||

Guarded E xpres s ions
� Rules for expres s ions with guards

� Maybe is a monadic type cons tructor

where P :: Prop

Γ Γ
Γ

| ::: | :::$!()
| ::: ()

− − ==
−

e P g True
g e Just P-> $

Γ
Γ

| ::: ()
| :::

− ==
−

g False
g e Nothing

$
$

!
->

Confirming property as s ertions in
the Maybe monad

� Properties as s erted in the Maybe monad are
collected over branches of a case expres s ion

� But at the end of a lis t of cas e branches ,
� A s trongly Just-prefixed property is

equivalent to an ordinary predicate

Γ
Γ

| :::$ ()
| :::

−
−

e Just P
e P

Clas s Ins tances and Overloading

� Two kinds of overloading
� Derived ins tances of an operator are language- (or

implementation)-defined
� Derived ins tances are generic functions
� Derived ins tances s atis fy a common law

� Programmer-defined ins tances are particular
� Ins tances have independent properties

� Overloading is res olved (logically) by typing
� Us e type-indexed predicates to s pecify properties
� Give the meaning of an as s ertion at each ins tance

of its index type

Type-Indexed Predicates

� E ach predicate is annotated with a type formula
� Indicates the type at which the predicate is

interpreted
� The predicate index on a formula mus t be compatible

with the type of the expres s ions to which it applies
� If e has type � then e ::: P � has meaning

� Predicates in rules for generic operators may be
indexed with a (qualified) type variable
� For example, !(== 0)Num a => a

� Rules for s pecific operators may contain
predicate expres s ions indexed by concrete
types

S oundnes s of the
Programatica logic

A s equent, � |� e :::P �, is valid if
For every s emantic valuation (of term variables)
s uch that all propos itions of the context, �, are true,
the conclus ion e :::P � is true (if e has type �).

A criterion for s oundnes s of an inference rule,

For every context, �, s uch that the antecedents of
the rule are valid s equents , the cons equent is als o
valid

P-logic is s ound iff all of its inference rules are
s ound with res pect to a s emantics for Has kell

S oundnes s proof is pres ented in a s eparate talk

� �

�

| Prop | Prop
Prop|

− −
−

1 ... n

Tool S upport for P -logic

� PFE , the P rogramatica Front-E nd tool
� Pars es and type-checks property as s ertions and

declarations embedded in a Has kell program text
� Interfaces with the PFE brows er, which dis plays a

text with embedded as s ertions
� s upports Has kell module s tructure
� provides links to declarations of identifiers

� S upports certificate management for as s erted
properties

� automatically calculates and updates dependencies

� PFE is des cribed in another talk (by Thomas
Hallgren)

Conclus ions
� P-logic meets its des ign objectives

� E xpres s es properties of Has kell terms
� Without trans lation or artificial coding
� With modalities for both s trict and non-s trict functions and

data cons tructors

� Its s emantics is given in terms of a domain-
theoretic model for Has kell
� S emantics furnis hes a reference for s oundnes s of

proof rules

� To be done:
� Develop a verification s erver for P-logic as s ertions

