A Logic for Has kell

Dick Kieburtz

OGl S chool of § cience & Engineering
Oregon Health & S cience Univers ity

September 25, 2001
Updated April 17, 2003



Overall Objectives

* A verification logic for Programatica

— To support formal reas oning about properties of
programs

— The term language is Haskell 98

* Initially, omitting monads and classes

— First-order predicate formulas with equality

* Extended to a modal u-calculus
— u-calculus adds least and greatest fixed-point formulas
— A modality designates predicates that require evaluation of
a term for their s atis faction
* A tool to certify properties asserted of a program by
(interactive) proof cons truction
— Libraries of proof strategies suggested by human intuition

will be programmed to use in certifying properties by
verification



Technical Approach

* Define a logic whose standard interpretation
is given in terms of Haskell semantics

— Programatica logic expresses properties of well-
typed Haskell terms

* Avoids translating to a more primitive modeling language
* Check soundness of each rule of the logic
with res pect to a Haskell semantics model
— S emantics is formulated independently of the logic
* Develop strategies for computational proof

cons truction

— To support verification of program properties with
machine-checked proofs



This Talk

* Introduction to the Programatica logic
* S emantic interpretation of the logic

* Inference rules

* Soundness

* Overview of tool s upport



P-logic

* A modal logic for Haskell
— Predicates range over Haskell terms

— Predicate formulas are constructed with
* lifted data constructors (term congruence operators)
* propositional connectives
* least and greatest fixed-point binders, Lfp and Gfp
* $-modality designates a well-definedness requirement

— Congruence formulas relate properties to the
shapes of terms

* e.g. the formula (P :Q ), where P and Q are formulas, is
satis fied by a Haskell term (h :t ) where h satis fies P
and t satisfies Q
— Lfp and Gfp formulas assert univers al/exis tential
properties of (unbounded) term structures



A S yntax of Formulas

P ropos itions :

M:: P -- asserts that Msatisfies P
— where Mis a term and P is a predicate formula
M =—=N -- asserts (semantic) equality of Mand N
Unary Predicates:
P ::= Univ -- the universal predicate
Undef -- the predicate satis fied only by L
P, AP, -- a conjunctive predicate formula
P,VP, -- a disjunctive predicate formula
P,->P, -- an “arrow” formula
SP -- a strong predicate (requires well-definedness)
Lfp C*P -- a least fixpoint (LFP) formula

Gfp &P -- a greatest fixpoint (GFP) formula

CP,..P, --atermcongruence formula
* Where C is a “lifted” data constructor of arity k

(<) -- “lifted” sections
{|pattern | Prop [} —a set comprehension




E xpressing Properties of Terms

* How can we express the property (of a lis t-typed
value) of finiteness?

— In first-order logic, it's not possible to express the condition
that a list is finite, without resorting to recursion

— In a higher-order logic, inductive formulas are available
* Induction rules quantify over predicates, e.g.
Finite-list(A) =[Pl P->(A->P->P) ->P

This formula gives a type of finite lists, but does not directly
describe their structure as Haskell terms

* A better solution
— Introduce recursion in predicate definitions
* mu-calculus (Kozen, 1983)

— Lift the constructors of terms to the status of predicates
(analogous to pattern constructors)



Term Congruence Formulas

* Taking advantage of the isomorphis m between a free
datatype and the sum-of-products of its component types
— Haskell exploits the isomorphis m in pattern-matches

— Programatica logic exploits the is omorphis m with congruence
formulas

The proposition M::: C P, ... P.is equivalent to:
AN; cee Np e M=C N, coe NpA (N iz PO)A A (N2 P
— where C is a data constructor of arity k

* Congruence formulas are succinct, and

— Coherent with the interpretation of P-logic (to follow)

— The isomorphis m between structure and components leads
directly to inference rules for congruence formulas (to follow)



A logic for reasoning about partial,
continuous functions

* S trong and weak as s ertions

— Astrong assertion, M ::: $P, is satisfied if term M
has a defined value which s atis fies P

— A weak assertion, N ::: Q , is satisfied if term N is
undefined or has a defined value which s atis fies Q

* Assertions about a function f :: 7, - 1,
fi: S$(SUniv - SUniv) asserts thatfis total
f ::: UnDef - UnDef asserts that fis strict
f ::: Univ - SUniv asserts that f is



Predicate Formulas

* Propos itional connectives are lifted to
connectives of unary predicate formulas

X X X X X

2 (PAQ) =g Xt PAX 2 Q

PV Q) =g Xx::PVXx::Q

2 S(PAQ) =46 Xt SPAX 2 5Q

2 S(PV Q) =46 Xt SPV x 2 5Q

i P =40r 0 (X 222 P) V x 22 UnDef



Recursively Defined Predicates

* u-calculus extends first-order logic with
least and greatest fixed-point formulas

— Expresses properties asserted over the
extent of a data structure

 Examples:
— Finite-list =Lfp E¢[]V (Univ : §&)

— Head-strict-list =Lfp £¢[]V ($Univ : &)
— Infinite-Stream =Gfp &*(Univ : §&)



Example 1: length of lists is additive

* Functions as defined in Haskell
length :: [a] - > Integer
length [] =0
length (_:t) =1 +length t
— the multi-equation function definition is desugared to yield a single

equation:
length =\ xs ->case xs of
[]1->0
(_ t)->1+length t
— Similarly,
(++) =\ xs ys ->case xs of

[]->ys

(x :xs)->x:(++) Xs ys
— We assert the following
assert All xs, ys ::: Finite-list  length (xs ++ys) $==length xs + length ys
Proved using an inductive proof rule for list equality



Example 2: Correctness of a factorial
function

* Functions as defined in Haskell
— A generalized primitive recursion combinator:
genPR :: (a->Bool)->(a->a)->c->(@->c->c)->a->c
genPR pb g hx =if pxthen g else h x (genPR pb g h (b x))
— A factorial function:
fact:: Integer - > Integer
fact =genPR eqO (subtract1) 1 (%)
— We assert the following
property x > 0 = fact x =x!
where 0! =1
(x+1)! =(x+1)*x!
Proved using an inductive proof rule for genPR
This rule requires that a set well-ordered by p and b be s pecified:
WOPpb =Lfpye {|x | px $==True V (b x::: $n) |}



Example 3: Ordered insertion in a list

* Functions as defined in Haskell
insert :: Int - > [Int] - > [Int]
inserta [] =[a]
insertays@(y:_) |a <y =a:ys
|la =y =ys
inserta (y:ys) =y:insertays
— the multi-equation function definition is desugared to yield a single
equation:
inserta =\ _ys ->case ys of
[]->I[a]
(y:_)|a<y->a:ys
|a =y->ys
(y:ys)->y:inserta ys
— We assert the following
assert All xs * xs ::: (0SUniv = inserta xs ::: |(<a) unless !|(==a)
where P unless Q =Gfp £¢(SQ : Univ) V (§P : $¢)
and 0P =Gfp &[]V (P :$)
This property has been proved using the Gfp rule (and many others)



S emantic Interpretation



S emantic Interpretation of
Formulas

* Predicate formulas are interpreted as characteris tic
predicates of sets (posets) in a semantics domain for
Has kell

— A formula is interpreted in a type (or type scheme)
* Notation:

[ 7] is the set of domain elements of the Haskell type 7 (an ideal*)
C ris the interpretation of the constant symbol C in the type t

[P]" is the ideal of domain elements {t €| 7] |t satisfies P}, where
P is an unstrengthened predicate

[SP]" is the set of elements [P]" — {1}

(Recall that an ideal posetis downward-closed and contains limits
of its finite directed subsets.)



For Example:
Dis tinguis hed Predicates

S trong modality Weak modality

[Suniv]® =l 7| - {1 [univ]® =l
[SUnDef]* ={} [UnDef]" ={1}

| N—



Predicates derived from
S ections

* Equality comparisons with cons tants
(=) | ={xelzl |x =avx =1}

* Ordering relations
[(<a) " ={xelz] |x sqaryvx =1}

where 7 is an instance of the Ord type
class



Term Congru
* A datatype definition

e

DO

nce Predicates

pulates a signature X7,

with its data constructors of arity k (for k > 0)

(C, (7q5 ... ,T,)) €XF, =>
[I:CP] oo Pk:I]T=

{Crﬂ X] ceoo Xf? |X] € [[P]]]T] /\ coo /\Xf? € [I:Pk:l]fk}u {J_}

Arrow Predicates

[[P —> Q]]Tl_’fz =

{feltl-olt,l|Vxe[P]refx e [Q2} U {1}



Conjunction and Dis junction

[Py AP =[P " NP,
[Py v P,I* =[P ] U [P,]

The E quality Predicate

[(=]° ={(u,v) |[uelzlAveltIAu=v}
[$=]" ={(u,v) |uelztlAveltlAu =v
AUu=+1}



Fixed-Point Formulas

H is a predicate formula, admissible for fixed-point binding of the
predicate variable ¢ if £ does not occur in a negated pos ition.

(00)

Lep:  [Lfpée HI = | 1A'

J=0

where HY9 =UnDef
H* =H [H/]

(00}

Grp: [Gfpée HI = (\1H'I'

j=0
where HY =Univ

H* =H [H/e]



Example 1: Tail-strict lis ts

e Consider LFP formula
Strict-list(A) = Lfp Eo[ ] V (SA : $&)
where dat a unitA =A

* The interpretation of Strict-list(A) is
{LJ UL UL LA FU{LL ] [ALLLAA] U ...

This is the representation of a flat subdomain (the L
element is never embedded in a list structure)



E xample 2: Non-tail-s trict lis ts

e Consider LFP formula
Non-strict(A) = Lfp E¢[] V (A : &)
where dat a unitA =A

* The interpretation of Non-strict(A) is
{U{Ll]. (), A:) UL ].[ 1] .[A]l,
(L), (Lo(en)), (As(:r)), (L:(A:L)), (A:(A:1))} U ...

containing many more elements than in Example 1
because 1 elements are embedded

e Non-tail-strict(A) = Univl"tAl



Inference Rules of
Programatica logic



Constructors as Predicates

* |dea: Data constructors are “lifted” to
act as predicate constructors

e Example:

x ::: [ ]is the proposition “x has the value [] or
else is undefined”

x 2 (P :Q) is the proposition “du,v. x has value
(u:v)andu::Pandv::Qorelse xis
undefined”



Rules in the style of a S equent

Calculus

* Right-introduction rules
Example: [ |-h::P T |-¢t::0
[ |~ (h:t):::(P: Q)
— Hypotheses make assertions about subterms of the subject
term that appears on the right side of the conclusion

e Left-introduction rules
Example: AP, t:::Q [ A
(h:t):::(P:0) |- A

— Hypotheses make assumptions about subterms of a subject
term that appears on the left side of the conclusion

Left introduction rules in a sequent style corres pond to elimination
rules in a natural deduction style.



Rules for Congruence Formulas

* Constructor application, right introduction
L (C(T,,..., T )OZ, + x:=P'... T+ x P
M(Co(Ty s T OZ[ Cxpoxii G BB

e Constructor application, left introduction
(C,(t,,...,T ) 0], xlzzzPlrl,...,x :::Pkr"-l- A
(CTsees TN OZL, Cxyoxy 2t G B P A




Abs traction and Application

* Abstraction (right introduction)
[,x:::P|-e:::0
M- Ax —>e::5(P - 0)

— The arrow (-) is a predicate constructor symbol

* Abstraction (left introduction)
[ |~e:::P I, fe::Q-A
M f$(P - Q) -A

* Application (right introduction)
[-7::%P - Q) [|-e::P
[ - fe::O




Properties of Recursively-Defined
Functions — LFP Formulas

* A verification rule for LFP properties of a
recurs ive function definition, let m= M
[,m:::Univ |- M:::5(P, - H)
[,m:(POR)> & M::$(P- H)
[,m===M |-m::: $(P, OP, -~ Lfpé H)
— P, and P, are separation predicates

which partition the argument set into subsets on which
m is not recursively invoked (resp. is invoked) in M

— ¢ is a predicate variable that may occur only in H
P Y



E xample: fact yields a positive result
on a domain of non-negative integers

« fact=in-> ifn==0then 1 (Haskell definition)
else n x fact (n— 1)
assert fact ::: $1(>0) - $(Lfp & $I(==1) Vv Geq &)
property Geq P ={x | dyex>y Ay :: P}
e Separation predicates: PI = $!(==0), P2 = $!(>0),

s upport deductions of:
fact::Univ|—(An ->if n ==0 then 1 else nfact(n— 1))

[Separation 2 81(==0) - $(1(==1) OGeq ¢)

constraint

and (using several facts about arithmetic)
fact::: $Y(=0) » &|=(An ->if n ==0 then 1 else n Jfact(n— 1))

=2 $1(>0) - $(1(==1) OGeq &)

‘ Separation constraint

from which the assertion can be proved by the LFP rule




Properties of Recursively-Defined
Functions — GFP Formulas

* A verification rule for GFP properties of a
recurs ive function definition, let m= M
[ = M::$H[Univ/ €&]
LM SH |-m:::¢é
[.m===M|-m:.. Gfpé *H

where C is a predicate variable that may occur only in H



Patterned Abstractions

* Explicit abstraction over argument patterns

— Extended with guarded expressions as the bodies of
abs tractions
(This is an orthogonal extension to Has kell — not part of the language)
* Function definitions, case expressions and let clauses
can be defined in terms of patterned abs tractions

* The fatbar connective combines a sequence of
patterned abstractions into a composite, function-
typed expression

— Defined by interpreting patterned abs traction in the Maybe
monad



Rules for a Patterned Abstraction

* Successful match
[Lx::P,..x P |- g0

[, e ST P,....P) |- (A TTx,,....,x,) —>g)e:::$Just(Q)
where 7T represents a pattern with n
variables

° M@tCQﬁ@MW)‘-’|— (ATl(x,,...,x,) —>g)e:::$ Nothing

where Dom (r) is the predicate satis fied by
terms that do not match n



The fatbar connective

(|I) :: (@ -~ Maybe b) - (a - Maybe b) - a - Maybe b
* Rules
[|-g e:::$Nothing T|-g,e:::Q
=(gillgy)e:: ¢
[ —g, e:::$Just(P)
[ =(g,||g,)e:::$Just(P)




Guarded E xpressions

* Rules for expressions with guards
— Maybe is a monadic type cons tructor

[—e::P [ |-g::8Y(==True)
[-g->e ::: $Just(P)

where P :: Prop

[ |—-g:::$!(== False)
[ |-g->e::: $Nothing




Confirming property assertions in
the Maybe monad

* Properties asserted in the Maybe monad are
collected over branches of a case expression

e But atthe end of a list of case branches,
— A strongly Just-prefixed property is
equivalent to an ordinary predicate
[ |-e:::$Just(P)
[ |—e::: P




Class Instances and Overloading

* Two kinds of overloading

— Derived instances of an operator are language- (or
implementation)-defined
* Derived instances are generic functions
* Derived instances satisfy a common law

— Programmer-defined instances are particular
* Instances have independent properties
* Overloading is resolved (logically) by typing
— Use type-indexed predicates to s pecify properties

— Give the meaning of an assertion at each instance
of its index type



Type-Indexed Predicates

* Each predicate is annotated with a type formula

— Indicates the type at which the predicate is
interpreted

— The predicate index on a formula must be compatible
with the type of the expressions to which it applies
* If e has type t then e ::: P* has meaning
* Predicates in rules for generic operators may be
indexed with a (qualified) type variable

— For example, !|(=0Q)Numa=>a
* Rules for s pecific operators may contain
predicate expressions indexed by concrete

types



S oundness of the
Programatica logic

A sequent, T |- e ::P %, is valid if

For every semantic valuation (of term variables)
such that all propositions of the context, I', are true,
the conclusion e :::P " is true (if e has type 7).

A criterion for soundness of an inference rule,
I' -Prop, ... I |-Prop,
I -Prop
For every context, I', such that the antecedents of

the rule are valid sequents, the consequentis also
valid

P-logic is sound iff all of its inference rules are
s ound with res pect to a semantics for Has kell

S niindne<< nronf ic nre<cented in A <cenarate talk




Tool S upport for P-logic

* PFE, the Programatica Front-E nd tool

— Parses and type-checks property assertions and
declarations embedded in a Haskell program text

— Interfaces with the PFE browser, which dis plays a
text with embedded as s ertions
e supports Haskell module structure
e provides links to declarations of identifiers

— S upports certificate management for asserted
properties
* automatically calculates and updates dependencies

e PFE is described in another talk (by Thomas
Hallgren)



Conclusions

* P-logic meets its design objectives

— Expresses properties of Haskell terms
* Without trans lation or artificial coding

e With modalities for both strict and non-strict functions and
data constructors

* Its semantics is given in terms of a domain-
theoretic model for Has kell

— S emantics furnishes a reference for soundness of
proof rules

* To be done:
— Develop a verification server for P-logic assertions



