
Till Mossakowski

Formal Methods for Software Development

Exercise sheet 1

Exercise 1:

Write a set of HUnit test cases for a Haskell program that tests if a list is a
sublist of another list.

[Hints: Use the function error :: String -> a to generate a dummy
implementation that is needed for writing the test cases. Use auxiliary func-
tions to abstract from common patterns in the test cases.]

Then implement the program, and test it.
[Hint: Use elem :: (Eq a) => a -> [a] -> Bool to test member-

ship, and all :: (a -> Bool) -> [a] -> Bool to test whether a pred-
icate is satisfied by all members of a list. Haskell supports the so-called
section notation: (‘elem‘ l) is a test for membership in the list l.]

Discuss possible variants of the sublist function.

Exercise 2:

Write a set of HUnit test cases for a Haskell program that computes the
difference of two lists. [Hints as above]

Then implement the program, and test it.
[Hint: Use filter :: (a -> Bool) -> [a] -> [a] to obtains those

elements of a list satisfying a given predicate. not :: Bool -> Bool is
negation of Booleans, and (.) :: (b -> c) -> (a -> b) -> a -> c is
function composition.]


