
Till Mossakowski

Formal Methods for Software Development

Exercise sheet 2

Exercise 1:

Consider the following implementation of the sublist function:

sublist :: Eq a => [a] -> [a] -> Bool

sublist [] _ = True

sublist _ [] = False

sublist (x:xs) (y:ys) | x==y = sublist xs ys

| otherwise = sublist (x:xs) ys

and let this be the intended one. Consider the following non-intended
implementations:

sublist [] _ = True

sublist _ [] = False

sublist (x:xs) (y:ys) | x==y && xs == take (length xs) ys = True

| otherwise = sublist (x:xs) ys

sublist l1 l2 = all (‘elem‘ l2) l1

sublist l1 l2 = all (‘elem‘ l1) l2

Write a set of QuickCheck specifications that only passes for the intended
implementation. Try to formulate general quantified properties rather than
individual test cases.

[Hint: Use import Debug.QuickCheck to import the QuickQueck mod-
ule]

Exercise 2:

Extend the monadic implementation of queues with additional operation(s),
e.g. for taking the rear of a queue. Formulate additional QuickCheck prop-
erties characterizing the new operations.


