
Formal Methods for Software
Development

Till Mossakowski, Lutz Schröder

20.10.2004

2

Overview of this Lecture
• MMISS

• Software Development and Formal Specification

• Overview of the course

• “Scheinkriterien”

Till Mossakowski, Lutz Schröder: Formal Methods; 20.10.2004

3

MMISS
• MMISS = multimedia instructions in safe and secure

systems

• aim: multimedia Internet-based adaptive educational
system

• repository of lectures (in english)

• glossary with central notions translated to German

• See www.mmiss.de

Till Mossakowski, Lutz Schröder: Formal Methods; 20.10.2004

Software Development and
Formal Specification

Software Development and Formal Specification 5

Software Development and Formal
Specification

Goals
• to understand the basic principles of software

development

• to understand the role of formal methods in software
development

• to understand the basic principles of functional
programs and their formal specification

Till Mossakowski, Lutz Schröder: Formal Methods; 20.10.2004

Software Development and Formal Specification 6

Software Engineering
deals with the technical and organisational aspects of the
development and maintenance of large software systems.

State of the Art
• natural language documentations

• diagrammatic modeling languages (e.g. UML)

• CASE Tools (Computer Aided Software Engineering)

• formal methods (for safety critical systems)

Till Mossakowski, Lutz Schröder: Formal Methods; 20.10.2004

Software Development and Formal Specification 7

Formal Methods

• based on mathematics (set theory, algebra, math.
logics)

• advantages:
◦ unambiguous interpretation of syntactic constructs

◦ verification of properties (of specifications, models, programs)

◦ verification of the correctness of development steps

• difficulties:
◦ knowledge of formal notations and their meaning

◦ additional development costs

Till Mossakowski, Lutz Schröder: Formal Methods; 20.10.2004

Software Development and Formal Specification 8

Process Models
• waterfall model

• iterative model, V-model, spiral model, XP/agile.......

Formal software development uses additionally formal
specifications in the different phases. Verification of the
correctness of a development step is only possible on the
basis of formal specifications.

Till Mossakowski, Lutz Schröder: Formal Methods; 20.10.2004

Software Development and Formal Specification 9

Proving the Correctness of the
Implementation

a) Verification of the implementation against the
requirements specification (post mortem) OR

b) Verification of each realization step (verification
conditions)

Remarks
• Testing can only show the existence of errors.

Verification can show the absence of errors.

• The adequateness of a (formal) specification w.r.t. the
desires of the user can not be verified.

Till Mossakowski, Lutz Schröder: Formal Methods; 20.10.2004

Software Development and Formal Specification 10

Verification Success Stories
• complete formal verification of Pentium 4 arithmetic

• NASA uses formal specification of physical units

• verification of the Java bytecode verifier

• found 12 deadlocks in occam code for international
space station

Till Mossakowski, Lutz Schröder: Formal Methods; 20.10.2004

Software Development and Formal Specification 11

Haskell
• is a purely functional programming language

• therefore it is well-suited for application of formal
methods

• side-effects are encapsulated via monads

• Haskell specification logic P-logic

• specifications can be used for both testing and
verification

Till Mossakowski, Lutz Schröder: Formal Methods; 20.10.2004

Software Development and Formal Specification 12

Sorting in Haskell
insert :: Ord a => (a,[a]) -> [a]
insert(x,[]) = [x]
insert(x,y:l) = if x <= y then x:y:l

else y:insert(x,l)

insert_sort :: Ord a => [a] -> [a]
insert_sort([]) = []
insert_sort(x:l) = insert(x,insert_sort(l))

Till Mossakowski, Lutz Schröder: Formal Methods; 20.10.2004

Software Development and Formal Specification 13

Test Cases

testSorting
= TestCase

(do let list = [7,2,6,3,5]
sortedList = [2,3,5,6,7]

assertBool "insert_sort is faulty"
(insert_sort list == sortedList)

)

Till Mossakowski, Lutz Schröder: Formal Methods; 20.10.2004

Software Development and Formal Specification 14

Test Case Generation

propSorted [] = True
propSorted [x] = True
propSorted (x:y:xs) =

x <= y && propSorted (y:xs)

instance Arbitrary [Int] where
arbitrary =

do len <- choose (0,20)
l <- mapM (\x -> choose (0,20))

[1..len]
return l

Till Mossakowski, Lutz Schröder: Formal Methods; 20.10.2004

Software Development and Formal Specification 15

Till Mossakowski, Lutz Schröder: Formal Methods; 20.10.2004

Software Development and Formal Specification 16

Specification

{-# AXIOMS
"isSorted" forall l l1 l2 x y ->

insert_sort l == l1++[x,y]++l2 ==> x <= y
#-}

Till Mossakowski, Lutz Schröder: Formal Methods; 20.10.2004

This Course

This Course 18

Overview of the course
• Testing with user-defined test cases (HUnit)

• Testing with automated test-case generation
(QuickCheck)

• Testing monadic programs

• P-logic specification logic

• Isabelle/HOL: verification of simple functional programs

• ISabelle/HOLCF: verification of general functional
programs

• From P-logic to HOLCF

Till Mossakowski, Lutz Schröder: Formal Methods; 20.10.2004

This Course 19

Scheinkriterien
• two big exercises (one in December, one at the end of

the lecture)

• successful solution of the exercises and presentation in
the course

• in groups of at most three students

Till Mossakowski, Lutz Schröder: Formal Methods; 20.10.2004

This Course 20

Dates + Rooms
• Mon. 13-15h: MZH 7230

• Wed. 15-17h: MZH 7250

• Lectures and, from time to time, exercises (please bring
your laptops)

• Web:
http://www.tzi.de/agbkb/lehre/ws04-05/fmsd

Till Mossakowski, Lutz Schröder: Formal Methods; 20.10.2004

	Software Development and Formal Specification
	This Course

