
Formal Methods for Software
Development

Till Mossakowski, Lutz Schröder

01.11.2004

2

Deficiencies of HUnit
• user has to supply test cases

• degree of coverage is unclear

• systematically writing tests can be tedious

• specification language limited to simple Boolean
expressions

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

3

QuickCheck
• test cases are generated automatically, using random

testing

• test cases are checked against specifications

• specifications also document the program

• test data generation language

• leightweight approach

• see
http://www.cs.chalmers.se/˜rjmh/QuickCheck/

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

4

QuickCheck Specification Language
• basic conditions: Boolean Haskell expressions

• conditinal properties

• universal quantification (over all finite, total datatype
elements)

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

5

Example Specifications
prop_RevUnit x = reverse [x] == [x]

where types = x::Int

prop_RevApp xs ys =
reverse (xs++ys) ==

reverse ys ++ reverse xs
where types = (xs::[Int], ys::[Int])

prop_RevRev xs = reverse (reverse xs) == xs
where types = xs::[Int]

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

6

Properties of Functions
prop_ComposeAssoc f g h x =

((f . g) . h) x == (f . (g . h)) x
where types = [f, g, h] :: [Int->Int]

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

7

Conditional Laws

<condition> ==> <property>

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

8

Conditional Laws – Example: the Program

ordered xs =
and (zipWith (<=) xs (drop 1 xs))

insert(x,[]) = [x]
insert(x,y:l) = if x <= y then x:y:l

else y:insert(x,l)

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

9

Conditional Laws – Example: the
Specification

prop_Insert x xs =
ordered xs ==> ordered (insert (x,xs))
where types = x::Int

prop_Insert’ = \(x::Int) -> \ xs ->
(ordered xs ==> ordered (insert (x,xs)))

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

10

Counting Trivial Cases

<condition> ‘trivial‘ <property>

prop_Insert2 x xs =
ordered xs ==>

null xs ‘trivial‘ ordered (insert (x,xs))
where types = x::Int

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

11

Classifying Test Cases

classify <condition> <string>$ <property>

prop_Insert3 x xs =
ordered xs ==>

classify (ordered (x:xs)) "at-head"$
classify (ordered (xs++[x])) "at-tail"$
ordered (insert (x,xs))

where types = x::Int

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

12

Collecting Data Values

collect <expression>$ <property>

prop_Insert4 x xs =
ordered xs ==>

collect (length xs)$
ordered (insert (x,xs))

where types = x::Int

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

13

Quantified Properties

forAll <generator> $ \<pattern> -> <property>

prop_Insert5 x =
forAll orderedList $ \xs ->

ordered (insert (x,xs))
where types = x::Int

orderedList is a test data generator.

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

14

Test Data Generators: The Type Gen
• Test data is produced by test data generators.

• QuickCheck defines default generators for most types.

• User-supplied generators: with forAll , and for any
new types.

• Generators have types of the form Gen a, where Gen
is a monad

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

15

The Class Arbitrary

class Arbitrary a where
arbitrary :: Gen a

The class method arbitrary is the default generator for
type a.
Generators are built up on top of the function

choose :: Random a => (a, a) -> Gen a

which makes a random choice of a value from an interval,
with a uniform distribution.

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

16

Example: Random Choice Between
Elements of a List

oneof :: [Gen a] -> Gen a
oneof m =

do xs <- sequence m
i<-choose (0,length xs-1)
return (xs!!i)

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

17

Generation of Ordered Lists

orderedList :: Gen [Int]
orderedList = orderedListAux 0
orderedListAux :: Int -> Gen [Int]
orderedListAux n = frequency

[(1, return []),
(4, do i <- arbitrary

let j = abs i
xs <- orderedListAux (n+j)
return ((n+j):xs))]

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

18

Generators for User-Defined Types
data Colour = Red | Blue | Green

instance Arbitrary Colour where
arbitrary = oneof

[return Red, return Blue, return Green]

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

19

Generators for Lists
instance Arbitrary a => Arbitray [a] where

arbitrary = oneof
[return [], liftM2 (:) arbitrary arbitrary]

liftM2 :: (Monad m) =>
(a1 -> a2 -> r) -> m a1 -> m a2 -> m r

liftM2 f m1 m2 = do
x1 <- m1
x2 <- m2
return (f x1 x2)

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

20

Better Distribution of Lists
instance Arbitrary a => Arbitray [a] where

arbitrary = frequency
[(1, return []),

(4, liftM2 (:) arbitrary arbitrary)]

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

21

Generation of Trees
data Tree a = Leaf a

| Branch (Tree a) (Tree a)
instance Arbitrary a => Arbitray (Tree a)

where
arbitrary = frequency

[(1, liftM Leaf arbitrary),
(2, liftM2 Branch arbitrary arbitrary)]

Problem: this definition only has a 50% chance of
terminating!

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

22

Generation of Trees: Size Function
sized :: (Int -> Gen a) -> Gen a
instance Arbitrary a => Arbitrary (Tree a)

where
arbitrary = sized arbTree

arbTree 0 = liftM Leaf arbitrary
arbTree n = frequency

[(1, liftM Leaf arbitrary),
(4, liftM2 Branch subtree subtree)]

where subtree = arbTree (n ‘div‘ 2)

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

23

Limits of QuickCheck
• Undefined values (can be handled via catching

exceptions)

• Infinite datastructures (can be handled via finite parts)

• Monadic values: see next lecture

• No test case coverage analysis (but user can supply
new test generators)

• Only a fragment of higher-order logic is covered

Till Mossakowski, Lutz Schröder: Formal Methods; 01.11.2004

