Formal Methods for Software Development

Till Mossakowski, Lutz Schröder

Denotational Semantics

- developed by Christopher Strachey and Dana Scott
- approach to formalize the semantics of computer programs
- while operational semantics uses a reduction relation, denotational semantics is compositional, i.e. the meaning of an expression (or indeed a whole program) is composed of the meaning of its constituent parts
- types are interpreted as domains (e.g. complete partial orders)
- programs are interpreted as continuous functions

Partial Orders

A partial order (D, \leq) is a set D equipped with a binary relation \leq (i.e. a subset of $D \times D$) that satisfies the following laws:

- reflexivity: $x \le x$
- transitivity: $x \le y \land y \le z \Rightarrow x \le z$
- antisymmetry: $x \le y \land y \le x \Rightarrow x = y$

In domain theory, \leq generally is written as \sqsubseteq .

Examples of Partial Orders

- natural numbers with the standard ordering
- words over an alphabet with lexicographic ordering
- divisibility relation on integers
- ancestor relation in trees

$\omega\text{-Chains}$ and Suprema

An ω -chain in a partial order (D, \sqsubseteq) is a family $(x_i)_{i \in \mathbb{N}}$ with $x_i \sqsubseteq x_{i+1}$ for all $i \in \mathbb{N}$.

An upper bound for an ω -chain $(x_i)_{i \in \mathbb{N}}$ is an element $y \in D$ with $x_i \sqsubseteq y$ for all $i \in \mathbb{N}$.

A supremum of an ω -chain $(x_i)_{i \in \mathbb{N}}$ is a is a least upper bound, i.e. an upper bound less or equal than every upper bound.

Pointed ω -Complete Partial Orders (ω -PCPOs)

A partial order (D, \sqsubseteq) is a pointed ω -complete partial order (ω -PCPO), if

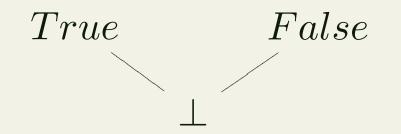
- \bullet if contains a least element $\bot,$ and
- each chain $(x_i)_{i \in \mathbb{I}N}$ in D has a supremum $\bigsqcup(x_i)$, also written $\bigsqcup_{i \in \mathbb{I}N} x_i$.

In the sequel, we just write CPO for ω -PCPO.

Example: Flat CPOs

Every set X can be turned into a CPO (D, \sqsubseteq) by putting

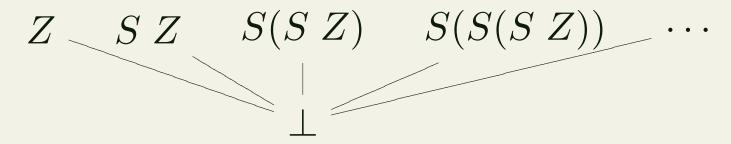
- $D = X \uplus \{\bot\}$
- $x \sqsubseteq y$ iff $x = \bot$
- Example in Haskell semantics: Booleans



Example: Strict Natural Numbers

data Nat = Z | S !Nat

 $D = \{S^n Z \mid n \in \mathbb{N}\} \cup \{\bot\}$, ordered as a flat CPO



The semantics of infinity = S infinity is \perp .

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004

Example: Lazy Natural Numbers

data Nat = Z | S Nat

- $D = \{S^n \perp \mid n \in \mathbb{N}\} \cup \{S^n Z \mid n \in \mathbb{N}\} \cup \{\infty\}$
- \sqsubseteq is the least partially ordered relation with
- $S^m \perp \sqsubseteq S^n \perp$ for $m \le n$; $S^m \perp \sqsubseteq S^n Z$ for $m \le n$
- $S^n \bot \sqsubseteq \infty$ for any n

The semantics of infinity = S infinity is ∞ .

Example: Strict Lists

data List a = [] (:) !a !(List a)

 $D_{List a} = (D_a \setminus \{\bot\})^* \cup \{\bot\}$, ordered as a flat CPO

$$\begin{bmatrix} A \end{bmatrix} \begin{bmatrix} A, A \end{bmatrix} \begin{bmatrix} A, A, A \end{bmatrix} \cdots$$

Note that $[x_1, \ldots, x_n]$ is shorthand for $x_1 : \ldots : x_n : []$.

Example: Lazy Lists

data List a = [] (:) a (List a)

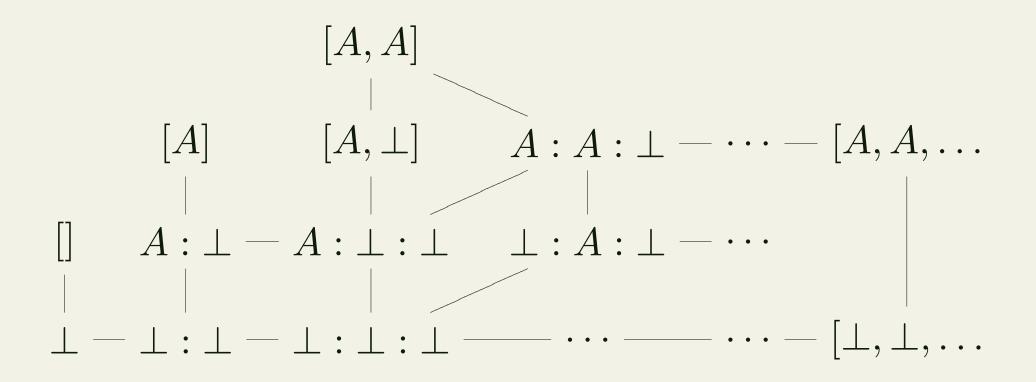
 $D_{List\ a} = D_a^* \times \{\bot, []\} \cup D_a^{\omega}$

 D_a^{ω} consists of sequences (indexed by $I\!N$) of elements from D_a . Note that D_a contains an element \perp .

Informally, $x \sqsubseteq y$ if y may be obtained from x by replacing some \perp 's with elements from D_a or $D_{List a}$

Lazy Lists Over One-Element Datatype

data unitA = A



Semantics of Haskell

- Datatypes are interpreted as CPOs. Let $\lceil \tau \rceil$ be the interpretation of type τ
- Type constructors are interpreted as functions mapping CPOs to CPOs
- Functions are interpreted as continuous functions between two CPOs
- Polymorphic functions are interpreted as families of functions between CPOs (indexed by types)

Function Spaces as CPOs

Let (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) be CPOs. A function $f: D_1 \to D_2$ is continuous, if it preserves \sqsubseteq and \bigsqcup . I.e.

 $x \sqsubseteq_1 y$ implies $f(x) \sqsubseteq_2 f(y)$

$$f(\bigsqcup_{i\in\mathbb{N}}x_i)=\bigsqcup_{i\in\mathbb{N}}f(x_i)$$

Proposition. If (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) are CPOs, then the space of continuous functions $[D_1 \rightarrow D_2]$ is a CPO with the pointwise ordering.

Kleene's Theorem

Theorem. A continuous function $F: D \rightarrow D$ on a CPO (D, \sqsubseteq) has a least fixed point, given by

 $\bigsqcup_{n \in \mathbb{N}} F^n(\bot)$

where $F^0(\perp) = \perp$ $F^{n+1}(\perp) = F(F^n(\perp))$

That is, $F(\bigsqcup_{n \in \mathbb{N}} F^n(\bot)) = \bigsqcup_{n \in \mathbb{N}} F^n(\bot)$, and for any x with F(x) = x, we have $\bigsqcup_{n \in \mathbb{N}} F^n(\bot) \le x$.

Semantics of Recursive Functions

A recursive definition

- f :: t -> u
- f x = ... f ...

leads to a functional $F : [\lceil t \rceil \to \lceil u \rceil] \to [\lceil t \rceil \to \lceil u \rceil]$, given by

$$F(f)(x) = \dots f \dots$$

The semantics of the recursive definition is given by the least fixed point of the functional F.

Example: Factorial Function

A recursive definition

fac :: Int -> Int
fac x = if x=0 then 1 else x*fac(x-1)
The corresponding functional:

F :: (Int -> Int) -> (Int -> Int) F f x = if x=0 then 1 else x*f(x-1) $F \perp = \lambda x . if x = 0 then 1 else \perp$ $F(F \perp) = \lambda x . if x = 0 then 1 else$ $x * (if x - 1 = 0 then 1 else \perp)$ $\bigsqcup_{n \in \mathbb{N}} F^n(\perp)$ is the factorial function

Admissible Predicates

- Given a CPO (D, ⊑), a predicate P ⊆ D is called admissible, if it is closed under suprema of ω-chains. This means: for any ω-chain (x_i)_{i∈IN}, if x_i ∈ P for all i ∈ IN, then also ∐_{i∈IN} x_i ∈ P
- Predicates in P-logic are interpreted as admissible predicates.

Obtaining Admissible Predicates

- Admissible predicates are closed under intersections, but not under unions.
- If P is an arbitrary predicate, the intersection of all admissible predicates containing P is denoted by (P) (the admissible predicate generated by P):

 $\langle P \rangle = \bigcap \{ Q \mid P \subseteq Q, \ Q \text{ admissible} \}$

Constructive Description of $\langle P \rangle$

$$P_{0} = P$$

$$P_{n+1} = \{ \bigsqcup_{i \in \mathbb{N}} x_{i} \mid x_{i} \in P_{n} \text{ for } i \in \mathbb{N} \}$$

$$P_{\alpha} = \bigcup_{i < \alpha} P_{i} \quad (\alpha \text{ a limit ordinal})$$

$$\langle P \rangle = \bigcup_{i} P_{i}$$

That is, $\langle P \rangle$ adds to P all suprema of chains in P.

20

Semantics of Fixed-Point Formulas

$$\begin{bmatrix} Lfp \, \xi \bullet H \end{bmatrix}^{\tau} = \langle \bigcup_{i} H_{i} \rangle$$
$$\begin{bmatrix} Gfp \, \xi \bullet H \end{bmatrix}^{\tau} = \bigcap_{i} H'_{i}$$

where

$$\begin{aligned} H_0 &= \{\bot\} & H'_0 &= \lceil \tau \rceil \\ H_{n+1} &= H[H_n/\xi] & H'_{n+1} &= H[H'_n/\xi] \\ H_\alpha &= \bigcup_{i < \alpha} H_i & H'_\alpha &= \bigcap_{i < \alpha} H'_i \end{aligned}$$

Example: Finite Lists

 $Lfp \xi \bullet [] \lor (Univ : \$\xi)$

 H_i = set of all lists of length at most *i*, closing with [] $\bigcup_i H_i = \langle \bigcup_i H_i \rangle$ = set of all finite lists

Example: Head-strict Lists

 $Lfp \xi \bullet [] \lor (\$Univ : \xi)$

 H_i = set of all lists of length at most *i*, with defined elements (but possibly closing with \perp)

 $\bigcup_i H_i$ = set of all head-strict finite lists (i.e. with defined elements, but possibly closing with \perp)

 $\langle \bigcup_i H_i \rangle$ = set of all head-strict finite and infinite lists

Example: Infinite Lists

 $Gfp \xi \bullet (Univ : \$\xi)$

 H'_i = set of all lists of length at least i $\bigcap_i H'_i$ = set of all infinite lists