
Formal Methods for Software
Development

Till Mossakowski, Lutz Schröder

17.11.2004



2

Denotational Semantics
• developed by Christopher Strachey and Dana Scott

• approach to formalize the semantics of computer
programs

• while operational semantics uses a reduction relation,
denotational semantics is compositional, i.e. the
meaning of an expression (or indeed a whole program)
is composed of the meaning of its constituent parts

• types are interpreted as domains (e.g. complete partial
orders)

• programs are interpreted as continuous functions

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



3

Partial Orders
A partial order (D,≤) is a set D equipped with a binary
relation ≤ (i.e. a subset of D ×D) that satisfies the
following laws:

• reflexivity: x ≤ x

• transitivity: x ≤ y ∧ y ≤ z ⇒ x ≤ z

• antisymmetry: x ≤ y ∧ y ≤ x ⇒ x = y

In domain theory, ≤ generally is written as v.

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



4

Examples of Partial Orders
• natural numbers with the standard ordering

• words over an alphabet with lexicographic ordering

• divisibility relation on integers

• ancestor relation in trees

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



5

ω-Chains and Suprema
An ω-chain in a partial order (D,v) is a family (xi)i∈IN

with xi v xi+1 for all i ∈ IN .
An upper bound for an ω-chain (xi)i∈IN is an element
y ∈ D with xi v y for all i ∈ IN .
A supremum of an ω-chain (xi)i∈IN is a is a least upper
bound, i.e. an upper bound less or equal than every
upper bound.

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



6

Pointed ω-Complete Partial Orders
(ω-PCPOs)

A partial order (D,v) is a pointed ω-complete partial
order (ω-PCPO), if
• if contains a least element ⊥, and

• each chain (xi)i∈IN in D has a supremum
⊔

(xi), also
written

⊔
i∈IN xi.

In the sequel, we just write CPO for ω-PCPO.

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



7

Example: Flat CPOs
Every set X can be turned into a CPO (D,v) by putting
• D = X ] {⊥}
• x v y iff x = ⊥
Example in Haskell semantics: Booleans

True False

⊥

HHHHHHHHHH

uuuuuuuuuuu

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



8

Example: Strict Natural Numbers
data Nat = Z | S !Nat

D = {SnZ | n ∈ IN} ∪ {⊥}, ordered as a flat CPO

Z S Z S(S Z) S(S(S Z)) . . .

⊥

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

LLLLLLLLLLLLLLL

mmmmmmmmmmmmmmmmmm

gggggggggggggggggggggggggggggggggggggggggggggggggg

The semantics of
infinity = S infinity

is ⊥.

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



9

Example: Lazy Natural Numbers
data Nat = Z | S Nat

D = {Sn⊥ | n ∈ IN} ∪ {SnZ | n ∈ IN} ∪ {∞}
v is the least partially ordered relation with
• Sm⊥ v Sn⊥ for m ≤ n; • Sm⊥ v SnZ for m ≤ n

• Sn⊥ v ∞ for any n

Z S Z S(S Z) S(S(S Z)) . . .

⊥ S⊥ S(S⊥) S(S(S⊥)) . . . ∞
The semantics of infinity = S infinity is ∞.

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



10

Example: Strict Lists
data List a = [] | (:) !a !(List a)

DList a = (Da \ {⊥})∗ ∪ {⊥}, ordered as a flat CPO

[] [A] [A,A] [A,A, A] . . .

⊥

RRRRRRRRRRRRRRRRRRRRRRRRRRRRR

IIIIIIIIIIIII

ooooooooooooooo

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Note that [x1, . . . , xn] is shorthand for x1 : . . . : xn : [].

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



11

Example: Lazy Lists
data List a = [] | (:) a (List a)

DList a = D∗
a × {⊥, []} ∪Dω

a

Dω
a consists of sequences (indexed by IN ) of elements

from Da. Note that Da contains an element ⊥.

Informally, x v y if y may be obtained from x by replacing
some ⊥’s with elements from Da or DList a

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



12

Lazy Lists Over One-Element Datatype

data unitA = A

[A,A]

[A] [A,⊥] A : A : ⊥

QQQQQQQQQQQQQQQQ

. . . [A,A, . . .

[] A : ⊥ A : ⊥ : ⊥

nnnnnnnnnnnnnnnnn

⊥ : A : ⊥ . . .

⊥ ⊥ : ⊥ ⊥ : ⊥ : ⊥

nnnnnnnnnnnnnnnnn

. . . . . . [⊥,⊥, . . .

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



13

Semantics of Haskell
• Datatypes are interpreted as CPOs. Let dτe be the

interpretation of type τ

• Type constructors are interpreted as functions mapping
CPOs to CPOs

• Functions are interpreted as continuous functions
between two CPOs

• Polymorphic functions are interpreted as families of
functions between CPOs (indexed by types)

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



14

Function Spaces as CPOs
Let (D1,v1) and (D2,v2) be CPOs.
A function f : D1 → D2 is continuous, if it preserves v
and

⊔
. I.e.

x v1 y implies f(x) v2 f(y)

f(
⊔

i∈IN xi) =
⊔

i∈IN f(xi)

Proposition. If (D1,v1) and (D2,v2) are CPOs, then the
space of continuous functions [D1 → D2] is a CPO with
the pointwise ordering.

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



15

Kleene’s Theorem
Theorem. A continuous function F : D → D on a CPO
(D,v) has a least fixed point, given by⊔

n∈IN

F n(⊥)

where F 0(⊥) = ⊥
F n+1(⊥) = F (F n(⊥))

That is, F (
⊔

n∈IN F n(⊥)) =
⊔

n∈IN F n(⊥), and for any x

with F (x) = x, we have
⊔

n∈IN F n(⊥) ≤ x.

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



16

Semantics of Recursive Functions
A recursive definition
f :: t -> u
f x = ... f ...

leads to a functional F : [dte → due] → [dte → due], given
by

F (f)(x) = . . . f . . .

The semantics of the recursive definition is given by the
least fixed point of the functional F .

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



17

Example: Factorial Function
A recursive definition
fac :: Int -> Int
fac x = if x=0 then 1 else x*fac(x-1)

The corresponding functional:
F :: (Int -> Int) -> (Int -> Int)
F f x = if x=0 then 1 else x*f(x-1)

F⊥ = λx . if x = 0 then 1 else ⊥
F (F⊥) = λx . if x = 0 then 1 else

x ∗ (if x− 1 = 0 then 1 else ⊥)⊔
n∈IN F n(⊥) is the factorial function

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



18

Admissible Predicates
• Given a CPO (D,v), a predicate P ⊆ D is called

admissible, if it is closed under suprema of ω-chains.
This means: for any ω-chain (xi)i∈IN , if xi ∈ P for all
i ∈ IN , then also

⊔
i∈IN xi ∈ P

• Predicates in P-logic are interpreted as admissible
predicates.

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



19

Obtaining Admissible Predicates
• Admissible predicates are closed under intersections,

but not under unions.

• If P is an arbitrary predicate, the intersection of all
admissible predicates containing P is denoted by 〈P 〉
(the admissible predicate generated by P ):

〈P 〉 =
⋂
{Q | P ⊆ Q, Q admissible}

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



20

Constructive Description of 〈P 〉

P0 = P

Pn+1 = {
⊔

i∈IN xi | xi ∈ Pn for i ∈ IN}
Pα =

⋃
i<α Pi (α a limit ordinal)

〈P 〉 =
⋃

i Pi

That is, 〈P 〉 adds to P all suprema of chains in P .

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



21

Semantics of Fixed-Point Formulas

[[Lfp ξ •H]]τ = 〈
⋃
i

Hi〉

[[Gfp ξ •H]]τ =
⋂
i

H ′
i

where

H0 = {⊥} H ′
0 = dτe

Hn+1 = H[Hn/ξ] H ′
n+1 = H[H ′

n/ξ]
Hα =

⋃
i<α Hi H ′

α =
⋂

i<α H ′
i

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



22

Example: Finite Lists

Lfp ξ • [] ∨ (Univ : $ξ)

Hi = set of all lists of length at most i, closing with []⋃
i Hi = 〈

⋃
i Hi〉 = set of all finite lists

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



23

Example: Head-strict Lists

Lfp ξ • [] ∨ ($Univ : ξ)

Hi = set of all lists of length at most i, with defined
elements (but possibly closing with ⊥)⋃

i Hi = set of all head-strict finite lists (i.e. with defined
elements, but possibly closing with ⊥)
〈
⋃

i Hi〉 = set of all head-strict finite and infinite lists

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004



24

Example: Infinite Lists

Gfp ξ • (Univ : $ξ)

H ′
i = set of all lists of length at least i⋂
i H

′
i = set of all infinite lists

Till Mossakowski, Lutz Schröder: Formal Methods; 17.11.2004


