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Denotational Semantics
e developed by Christopher Strachey and Dana Scott

e approach to formalize the semantics of computer
programs

e While operational semantics uses a reduction relation,
denotational semantics Is compositional, I.e. the
meaning of an expression (or indeed a whole program)
IS composed of the meaning of its constituent parts

e types are interpreted as domains (e.g. complete partial
orders)

e programs are interpreted as continuous functions
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Partial Orders

A partial order (D, <) is a set D equipped with a binary

relation < (i.e. a subset of D x D) that satisfies the
following laws:

o reflexivity: x < x
o transitivity: c < yANy<z=zx <z
o antisymmetry. r <yAy<zcz=x=y

In domain theory, < generally is written as C.
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Examples of Partial Orders
e natural numbers with the standard ordering
e words over an alphabet with lexicographic ordering
e divisibility relation on integers
e ancestor relation in trees
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w-Chains and Suprema
An w-chain in a partial order (D, C) is a family (x;);cw
with x; C x;.; forall = € IV.
An upper bound for an w-chain (z;);cv IS an element
y € D with x; C y forall 2 € IV.

A supremum of an w-chain (z;);cpv IS @ is a least upper

bound, I.e. an upper bound less or equal than every
upper bound.
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Pointed w-Complete Partial Orders
(w-PCPQOs)

A partial order (D, C) is a pointed w-complete partial
order (w-PCPO), If

e If contains a least element |, and

e each chain (z;);cv In D has a supremum | |(x;), also
written | |, 2.

In the sequel, we just write CPO for w-PCPO.
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Example: Flat CPOs
Every set X can be turned into a CPO (D, C) by putting
e D=Xuw{l}
ex Cyliffc =1
Example in Haskell semantics: Booleans

True False
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Example: Strict Natural Numbers
data Nat = Z | S !Nat

D={5"7Z|ne IN}U{L}, ordered as a flat CPO

Z. .Sz 58(52Z) 5(5(572))

The semantics of
Infinity = S Infinity
IS 1.
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Example: Lazy Natural Numbers
data Nat = Z | S Nat
D={5"L|neN}JU{S"Z |ne N} U{x}

C Is the least partially ordered relation with
e SMICS*"lform<n eS"|ILCS"Zform<n
e 5”1 C oo forany n

Z Sz SSZ) S(5(S2)

1 —81L—S8SL)—SSSL) —:-—o0
The semantics of infinity = S Infinity IS 00.
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Example: Strict Lists
0| ) 'a !(List a)

data List a

Drist o = (Do \ {L})*U{L}, ordered as a flat CPO

Note that |x4,...,x,] is shorthand for z; : ... : x, : [|.
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Example: Lazy Lists
01 (¢ a (List &)

data List a
Drist o = Dy X {J—a H} U D;

D¢ consists of sequences (indexed by IV) of elements
from D,. Note that D, contains an element _L.

Informally, x C y If y may be obtained from x by replacing
some _L’s with elements from D, or Dy, ,
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Lazy Lists Over One-Element Datatype
data unitA = A

A, Al
T~
Al A, l] A:A:1 —---—[AA,...
_—
| A: 1l —A:1:1 1:A:1—

1l — L1 —1:
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Semantics of Haskell

e Datatypes are interpreted as CPOs. Let |7]| be the
Interpretation of type 7

e Type constructors are interpreted as functions mapping
CPOs to CPOs

e Functions are interpreted as continuous functions
petween two CPOs

e Polymorphic functions are interpreted as families of
functions between CPQOs (indexed by types)
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Function Spaces as CPOs
Let (Dl, ;1) and (DQ, Eg) be CPOs.

A function f : D; — D5 IS continuous, If it preserves C
and | |. l.e.

r Ty y implies f(z) B f(y)
f(LliEﬂV x@) — |_|z'elN f(:C@)
Proposition. If (Dy,E;) and (D-, E,) are CPOs, then the

space of continuous functions [D; — D»| is a CPO with
the pointwise ordering.
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Kleene's Theorem

Theorem. A continuous function ' : D — D on a CPO
(D, C) has a least fixed point, given by

|| P

ne N

where FY(L) = L
Fri(L) = F(F" (1))

Thatis, F'(| |, .y F" (L)) =], F"(L), and for any
with F'(x) = =, we have | | . F" (L) < z.
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Semantics of Recursive Functions
A recursive definition
foot->u
fx=..1..
leads to a functional F : [[t]| — [u]] — [[t] — [u]], given
by

F(f)(x)=... f ...

The semantics of the recursive definition Is given by the
least fixed point of the functional F'.
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Example: Factorial Function
A recursive definition
fac :: Int -> Int
fac x = If x=0 then 1 else x*fac(x-1)
The corresponding functional:
F :: (Int -=> Int) -> (Int -> Int)
F fx =1f x=0 then 1 else x*f(x-1)
Fl=Mx.if xt =0then 1 else L

F(Fl)= Ax.if x =0then 1 else
rx(if x —1=0¢then 1else 1)
||, F" (L) Is the factorial function
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Admissible Predicates

e Given a CPO (D, L), a predicate P C D is called
admissible, if it Is closed under suprema of w-chains.
This means: for any w-chain (x;);cmw, if z; € P for all
i € IN,thenalso | |,z € P

e Predicates in P-logic are interpreted as admissible
predicates.
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Obtaining Admissible Predicates

e Admissible predicates are closed under intersections,
but not under unions.

e If P Is an arbitrary predicate, the intersection of all
admissible predicates containing P is denoted by (P)
(the admissible predicate generated by P):.

(P)=( Q| P CQ, Qadmissible}
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Constructive Description of  (P)

Fh=PF
Poni={lleyzi|zie P,fori e IN}
P,=U,.,F (aalimitordinal)
. P

P) =

(
That is, (P) adds to P all suprema of chains in P.
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Semantics of Fixed-Point Formulas

[Lfp& e H] UH
(Gfp& e H ﬂH’

where
= {1} Hy =[]

H, 1 = H[H,/¢] H’+1 = H[H,/¢]
HOC — Ui<a HZ ng — mz<oz Hz/
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Example: Finite Lists

Lfp&el]V (Univ : $¢)
H; = set of all lists of length at most ¢, closing with ||
U, H; = (U, H;) = set of all finite lists
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Example: Head-strict Lists

Lfp&e|lV ($Univ : &)

H; = set of all lists of length at most ¢, with defined

e
L
e

ements (but possibly closing with L)
- H, = set of all head-strict finite lists (i.e. with defined

(4

ements, but possibly closing with _L)

(U, H;) = set of all head-strict finite and infinite lists
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Example: Infinite Lists

Gfp&e (Univ : $&)
! = set of all lists of length at least :
(), H; = set of all infinite lists
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