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We put

Geq P = {x | ∃y . y ≥ x ∧ y ::: P}

From the rule about sections, we get

` 1 ::: $!(== 1)

By disjunction introduction,

` 1 ::: $!(== 1) ∨Geq ξ

From this and n ::: $!(== 0) ` n == 0 ::: $True, we get by the if-then-else rule

n ::: $!(== 0) ` if n == 0 then1 else n ∗ fact(n− 1) ::: $!(== 1) ∨Geq ξ

By the abstraction rule, we get

` \n → if n == 0 then1 else n ∗ fact(n− 1) ::: $($!(== 0) → $!(== 1) ∨Geq ξ) (1)

By arithmetic reasoning (which either is coded in extra rules, or is based on reasoning about algebraic
datatypes), we get

n ::: $!(> 0) ` n− 1 ::: $(≥ 0)

and

fact ::: $!(> 0) → ξ, n ::: $!(> 0) ` fact(n− 1) ::: Geq ξ

From these two, again by arithmetic reasoning, we get

fact ::: $!(> 0) → ξ, n ::: $!(> 0) ` n ∗ fact(n− 1) ::: Geq ξ

By disjunction introduction,

fact ::: $!(> 0) → ξ, n ::: $!(> 0) ` n ∗ fact(n− 1) ::: $!(== 1) ∨Geq ξ

From this and n ::: $!(> 0) ` n == 0 ::: $False, we get by the if-then-else rule

fact ::: $!(> 0) → ξ, n ::: $!(> 0) ` if n == 0 then1 else n ∗ fact(n− 1) ::: $!(== 1) ∨Geq ξ

By the abstraction rule, we get

fact ::: $!(> 0) → ξ ` \n → if n == 0 then1 else n ∗ fact(n− 1) ::: $!(> 0) → $!(== 1) ∨Geq ξ

From this (the inductive step) and (1), the inductive base, we get by the Lfp rule:

fact = \n → if n == 0 then1 else n ∗ fact(n− 1) ` fact ::: $($(≥ 0) → Lfp ξ . $!(== 1) ∨Geq ξ)
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