Software specification in CASL The Common Algebraic Specification Language

Till Mossakowski, Lutz Schröder

Semantics of CASL basic specifications

- Who knows what first-order logic is?
- Who knows what first-order logic is?
- Who knows what a first-order structure (model) is?

The CASL logic (institution)

- Signatures: a signature provides the vocabulary

The CASL logic (institution)

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures

The CASL logic (institution)

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures
- Models: interpret the vocabulary of a signature with mathematical objects (sets, functions, relations)

The CASL logic (institution)

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures
- Models: interpret the vocabulary of a signature with mathematical objects (sets, functions, relations)
- Sentences (formulae): for axiomatizing models denote true or false in a given model

The CASL logic (institution)

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures
- Models: interpret the vocabulary of a signature with mathematical objects (sets, functions, relations)
- Sentences (formulae): for axiomatizing models denote true or false in a given model
- Terms: parts of sentences, denote data values

The CASL logic (institution)

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures
- Models: interpret the vocabulary of a signature with mathematical objects (sets, functions, relations)
- Sentences (formulae): for axiomatizing models denote true or false in a given model
- Terms: parts of sentences, denote data values
- Satisfaction of sentences in models

CASL many-sorted signatures

- a set S of sorts,

CASL many-sorted signatures

- a set S of sorts,
- an $S^{*} \times S$-indexed set $\left(T F_{w, s}\right)_{w, s \in S^{*} \times S}$ of total operation symbols,

CASL many-sorted signatures

- a set S of sorts,
- an $S^{*} \times S$-indexed set $\left(T F_{w, s}\right)_{w, s \in S^{*} \times S}$ of total operation symbols,
- an $S^{*} \times S$-indexed set $\left(P F_{w, s}\right)_{w, s \in S^{*} \times S}$ of partial operation symbols, such that $T F_{w, s} \cap P F_{w, s}=\emptyset$,

CASL many-sorted signatures

- a set S of sorts,
- an $S^{*} \times S$-indexed set $\left(T F_{w, s}\right)_{w, s \in S^{*} \times S}$ of total operation symbols,
- an $S^{*} \times S$-indexed set $\left(P F_{w, s}\right)_{w, s \in S^{*} \times S}$ of partial operation symbols, such that $T F_{w, s} \cap P F_{w, s}=\emptyset$,
- an S^{*}-indexed set $\left(P_{w}\right)_{w \in S^{*}}$ of predicate symbols

Signature morphisms map these components in a compatible way

Example signatures

- $\Sigma^{N a t}=(\{N a t\},\{0: N a t$, succ: $N a t \longrightarrow N a t\}$, $\{p r e: N a t \longrightarrow ? N a t\}, \emptyset)$
- $\left(\{\right.$ Elem $\}, \emptyset, \emptyset,\left\{-_<--\right.$: Elem $*$ Elem $\left.\}\right)$
- (\{Elem, List $\}$,

$$
\{\text { Nil : Elem, Cons: Elem } * \text { List } \longrightarrow \text { List }\}, \emptyset, \emptyset)
$$

CASL many-sorted models

For a many-sorted signature $\Sigma=(S, T F, P F, P)$ a many-sorted model $M \in \operatorname{Mod}(\Sigma)$ consists of

- a non-empty carrier set s^{M} for each sort $s \in S$ (let w^{M} denote the Cartesian product $s_{1}^{M} \times \cdots \times s_{n}^{M}$ when $\left.w=s_{1} \ldots s_{n}\right)$,

CASL many-sorted models

For a many-sorted signature $\Sigma=(S, T F, P F, P)$ a many-sorted model $M \in \operatorname{Mod}(\Sigma)$ consists of

- a non-empty carrier set s^{M} for each sort $s \in S$ (let w^{M} denote the Cartesian product $s_{1}^{M} \times \cdots \times s_{n}^{M}$ when $\left.w=s_{1} \ldots s_{n}\right)$,
- a partial function f^{M} from w^{M} to s^{M} for each function symbol $f \in T F_{w, s}$ or $f \in P F_{w, s}$, the function being required to be total in the former case,

CASL many-sorted models

For a many-sorted signature $\Sigma=(S, T F, P F, P)$ a many-sorted model $M \in \operatorname{Mod}(\Sigma)$ consists of

- a non-empty carrier set s^{M} for each sort $s \in S$ (let w^{M} denote the Cartesian product $s_{1}^{M} \times \cdots \times s_{n}^{M}$ when $\left.w=s_{1} \ldots s_{n}\right)$,
- a partial function f^{M} from w^{M} to s^{M} for each function symbol $f \in T F_{w, s}$ or $f \in P F_{w, s}$, the function being required to be total in the former case,
- a predicate $p^{M} \subseteq w^{M}$ for each predicate symbol $p \in P_{w}$.

Example $\Sigma^{N a t}$-models

- $N a t^{M}=\mathbb{N}, 0^{M}=0, \operatorname{suc}^{M}(x)=x+1$,

$$
\operatorname{pr}^{M}(x)=\left\{\begin{array}{l}
x-1, x>0 \\
\text { undefined, otherwise }
\end{array}\right.
$$

Example $\Sigma^{N a t}$-models

- $N a t^{M}=I N, 0^{M}=0, \operatorname{suc}^{M}(x)=x+1$, $\operatorname{pre}^{M}(x)=\left\{\begin{array}{l}x-1, x>0 \\ \text { undefined, otherwise }\end{array}\right.$
- $N a t^{N}=\mathbb{N} \cup\{\infty\}, 0^{N}=0$,
$\operatorname{suc}^{N}(x)=\left\{\begin{array}{ll}\infty, & \text { if } x=\infty \\ x+1, & \text { otherwise }\end{array}\right.$,
$\operatorname{pr}^{N}(x)= \begin{cases}x-1, & \text { if } 0<x \neq \infty \\ \text { undefined, } & \text { otherwise }\end{cases}$

Example $\Sigma^{N a t}$-models

- $N a t^{M}=I N, 0^{M}=0, \operatorname{suc}^{M}(x)=x+1$, $\operatorname{pre}^{M}(x)=\left\{\begin{array}{l}x-1, x>0 \\ \text { undefined, otherwise }\end{array}\right.$
- $N a t^{N}=\mathbb{N} \cup\{\infty\}, 0^{N}=0$,

$$
\operatorname{suc}^{N}(x)= \begin{cases}\infty, & \text { if } x=\infty \\ x+1, & \text { otherwise }\end{cases}
$$

$$
\operatorname{pre}^{N}(x)= \begin{cases}x-1, & \text { if } 0<x \neq \infty \\ \text { undefined, }, & \text { otherwise }\end{cases}
$$

- $\operatorname{Nat}^{T}=\{*\}, 0^{T}=*, \operatorname{suc}^{T}(*)=*, \operatorname{pre}^{T}(*)=*$

Example $\Sigma^{N a t}$-models

- $N a t^{M}=I N, 0^{M}=0, \operatorname{suc}^{M}(x)=x+1$, $\operatorname{pre}^{M}(x)=\left\{\begin{array}{l}x-1, x>0 \\ \text { undefined, otherwise }\end{array}\right.$
- $N a t^{N}=\mathbb{N} \cup\{\infty\}, 0^{N}=0$,

$$
\operatorname{suc}^{N}(x)= \begin{cases}\infty, & \text { if } x=\infty \\ x+1, & \text { otherwise }\end{cases}
$$

$$
\operatorname{pre}^{N}(x)= \begin{cases}x-1, & \text { if } 0<x \neq \infty \\ \text { undefined, }, & \text { otherwise }\end{cases}
$$

- $\operatorname{Nat}^{T}=\{*\}, 0^{T}=*, \operatorname{suc}^{T}(*)=*, \operatorname{pre}^{T}(*)=*$
- $N a t^{K}=I N, 0^{N}=K, \operatorname{suc}^{K}(x)=x$,

$$
\operatorname{pre}^{K}(x)= \begin{cases}y, & \text { if TM } x \text { outputs } y \text { on input } x \\ \text { undefined }, & \text { otherwise }\end{cases}
$$

- $N a t^{K}=\mathbb{N}, 0^{N}=K, s u c^{K}(x)=x$,
$\operatorname{pre}^{K}(x)= \begin{cases}y, & \text { if TM } x \text { outputs } y \text { on input } x \\ \text { undefined, }, & \text { otherwise }\end{cases}$
- $N a t^{F}=\mathbb{N} \rightarrow \mathbb{N}, 0^{F}(x)=0, s u c^{F}(f)(x)=f(x)+1$, $\operatorname{pre}^{F}(f)$ undefined for each f

CASL many-sorted terms

Given a signature Σ and a variable system $\left(X_{s}\right)_{s \in S}$, the set of terms is defined inductively as follows:

- variables $x \in X_{s}$ are terms of sort s

CASL many-sorted terms

Given a signature Σ and a variable system $\left(X_{s}\right)_{s \in S}$, the set of terms is defined inductively as follows:

- variables $x \in X_{s}$ are terms of sort s
- applications $f_{w, s}\left(t_{1}, \ldots, t_{n}\right)$ is a term of sort s, if $f \in T F_{w, s} \cup P F_{w, s}$ and t_{i} is a term of sort $s_{i}, w=s_{1} \ldots s_{n}$.

Semantics of terms

Given a Σ-model and a variable valuation $\nu: X \longrightarrow M$, the semantics $\nu^{\#}$ of terms is defined as follows:

- variables $\nu^{\#}(x)=\nu(x)$

Semantics of terms

Given a Σ-model and a variable valuation $\nu: X \longrightarrow M$, the semantics $\nu^{\#}$ of terms is defined as follows:

- variables $\nu^{\#}(x)=\nu(x)$
- applications $\nu^{\#}\left(f_{w, s}\left(t_{1}, \ldots, t_{n}\right)\right)=f_{w, s}^{M}\left(\nu^{\#}\left(t_{1}\right), \ldots, \nu^{\#}\left(t_{n}\right)\right)$ if all components are defined (undefined otherwise)

CASL formulae

The set of (Σ, X)-formulae is defined inductively as follows:

- strong equations $t_{1}=t_{2}$

CASL formulae

The set of (Σ, X)-formulae is defined inductively as follows:

- strong equations $t_{1}=t_{2}$
- existential equations $t_{1} \xlongequal{=} t_{2}$

CASL formulae

The set of (Σ, X)-formulae is defined inductively as follows:

- strong equations $t_{1}=t_{2}$
- existential equations $t_{1} \xlongequal{=} t_{2}$
- predications $p_{w}\left(t_{1}, \ldots, t_{n}\right)$

CASL formulae

The set of (Σ, X)-formulae is defined inductively as follows:

- strong equations $t_{1}=t_{2}$
- existential equations $t_{1} \stackrel{e}{=} t_{2}$
- predications $p_{w}\left(t_{1}, \ldots, t_{n}\right)$
- definedness assertions $\operatorname{def}(t)$

CASL formulae

The set of (Σ, X)-formulae is defined inductively as follows:

- strong equations $t_{1}=t_{2}$
- existential equations $t_{1} \stackrel{e}{=} t_{2}$
- predications $p_{w}\left(t_{1}, \ldots, t_{n}\right)$
- definedness assertions $\operatorname{def}(t)$
- conjunctions, disjunctions, implications, equivalences of formulae

CASL formulae

The set of (Σ, X)-formulae is defined inductively as follows:

- strong equations $t_{1}=t_{2}$
- existential equations $t_{1} \stackrel{e}{=} t_{2}$
- predications $p_{w}\left(t_{1}, \ldots, t_{n}\right)$
- definedness assertions $\operatorname{def}(t)$
- conjunctions, disjunctions, implications, equivalences of formulae
- universal, existential, unique-existential quantifications

Satisfaction of atomic formulae

A formula φ is satisfied in a model M w.r.t. a valuation $\nu: X \longrightarrow M$ (short notation: $M, \nu \models \varphi$), if

- $M, \nu \models t_{1}=t_{2}$ if $\nu^{\#}\left(t_{1}\right)=\nu^{\#}\left(t_{2}\right)$ or both sides are undefined,

Satisfaction of atomic formulae

A formula φ is satisfied in a model M w.r.t. a valuation $\nu: X \longrightarrow M$ (short notation: $M, \nu \models \varphi$), if

- $M, \nu \models t_{1}=t_{2}$ if $\nu^{\#}\left(t_{1}\right)=\nu^{\#}\left(t_{2}\right)$ or both sides are undefined,
- $M, \nu \models t_{1} \stackrel{e}{=} t_{2}$ if $\nu^{\#}\left(t_{1}\right)=\nu^{\#}\left(t_{2}\right)$ and both sides defined,

Satisfaction of atomic formulae

A formula φ is satisfied in a model M w.r.t. a valuation $\nu: X \longrightarrow M$ (short notation: $M, \nu \models \varphi$), if

- $M, \nu \models t_{1}=t_{2}$ if $\nu^{\#}\left(t_{1}\right)=\nu^{\#}\left(t_{2}\right)$ or both sides are undefined,
- $M, \nu \models t_{1} \stackrel{e}{=} t_{2}$ if $\nu^{\#}\left(t_{1}\right)=\nu^{\#}\left(t_{2}\right)$ and both sides defined,
- $M, \nu \models p_{w}\left(t_{1}, \ldots, t_{n}\right)$
if $\left(\nu^{\#}\left(t_{1}\right), \ldots, \nu^{\#}\left(t_{n}\right)\right)$ is defined and $\in p_{w}^{M}$,

Satisfaction of atomic formulae

A formula φ is satisfied in a model M w.r.t. a valuation $\nu: X \longrightarrow M$ (short notation: $M, \nu \models \varphi$), if

- $M, \nu \models t_{1}=t_{2}$ if $\nu^{\#}\left(t_{1}\right)=\nu^{\#}\left(t_{2}\right)$ or both sides are undefined,
- $M, \nu \models t_{1} \stackrel{e}{=} t_{2}$ if $\nu^{\#}\left(t_{1}\right)=\nu^{\#}\left(t_{2}\right)$ and both sides defined,
- $M, \nu \models p_{w}\left(t_{1}, \ldots, t_{n}\right)$
if $\left(\nu^{\#}\left(t_{1}\right), \ldots, \nu^{\#}\left(t_{n}\right)\right)$ is defined and $\in p_{w}^{M}$,
- $M, \nu \models \operatorname{def}(t)$ if $\nu^{\#}(t)$ is defined

Satisfaction of compound formulae

A standard in first-order logic, i.e.

- a conjuction is satisfied iff all the conjuncts are satisfied

Satisfaction of compound formulae

A standard in first-order logic, i.e.

- a conjuction is satisfied iff all the conjuncts are satisfied
- similar for disjunction etc.

Satisfaction of compound formulae

A standard in first-order logic, i.e.

- a conjuction is satisfied iff all the conjuncts are satisfied
- similar for disjunction etc.
- a universal (existential) quantification is satisfied when all (some) of the changes of the valuation for the quantified variable lead to satisfcation in the model: $M, \nu \models \forall x: s . \phi$ iff $M, \xi \models \phi$ for all valuation ξ that differ from ν only on $x: s$

Satisfaction of closed formulae

A closed formula (sentences) is satisfied in a model iff it is satisfied w.r.t. the empty valuation:

$$
M \models \varphi \text { iff } M, \emptyset \models \varphi
$$

Sort generation constraints

A Σ-sort-generation constraint (S^{\prime}, F^{\prime}) consists of

Sort generation constraints

A Σ-sort-generation constraint (S^{\prime}, F^{\prime}) consists of

- a set of sorts $S^{\prime} \subseteq S$

Sort generation constraints

A Σ-sort-generation constraint (S^{\prime}, F^{\prime}) consists of

- a set of sorts $S^{\prime} \subseteq S$
- a set of (qualified) operation symbols $F^{\prime} \subseteq T F \cup P F$

Sort generation constraints

A Σ-sort-generation constraint (S^{\prime}, F^{\prime}) consists of

- a set of sorts $S^{\prime} \subseteq S$
- a set of (qualified) operation symbols $F^{\prime} \subseteq T F \cup P F$
$M \models\left(S^{\prime}, F^{\prime}\right)$ iff the carriers of sorts in S^{\prime} are generated by terms in F^{\prime} (with variables of sorts outside S^{\prime})

Sort generation constraints

A Σ-sort-generation constraint (S^{\prime}, F^{\prime}) consists of

- a set of sorts $S^{\prime} \subseteq S$
- a set of (qualified) operation symbols $F^{\prime} \subseteq T F \cup P F$
$M \models\left(S^{\prime}, F^{\prime}\right)$ iff the carriers of sorts in S^{\prime} are generated by terms in F^{\prime} (with variables of sorts outside S^{\prime})
i.e. for each $s \in S^{\prime}, a \in s^{M}$, there is some term t (with variables of sorts outside S^{\prime}) and some valuation ν with $\nu^{\#}(t)=a$.

Example $\Sigma^{N a t}$-models

- $N a t^{M}=I N, 0^{M}=0, \operatorname{suc}^{M}(x)=x+1$, pre $^{M}(x)=\left\{\begin{array}{l}x-1, x>0 \\ \text { undefined, otherwise }\end{array}\right.$
- $N a t^{N}=\mathbb{N} \cup\{\infty\}, 0^{N}=0$,
$\operatorname{suc}^{N}(x)=\left\{\begin{array}{ll}\infty, & \text { if } x=\infty \\ x+1, & \text { otherwise }\end{array}\right.$,
$\operatorname{pr}^{N}(x)= \begin{cases}x-1, & \text { if } 0<x \neq \infty \\ \text { undefined, } & \text { otherwise }\end{cases}$
- $\operatorname{Nat}^{T}=\{*\}, 0^{T}=*, \operatorname{suc}^{T}(*)=*, \operatorname{pre}^{T}(*)=*$
- $N a t^{K}=\mathbb{N}, 0^{N}=K, s u c^{K}(x)=x$,
$\operatorname{pre}^{K}(x)= \begin{cases}y, & \text { if TM } x \text { outputs } y \text { on input } x \\ \text { undefined, } & \text { otherwise }\end{cases}$
- $N a t^{F}=\mathbb{N} \rightarrow \mathbb{N}, 0^{F}(x)=0, s u c^{F}(f)(x)=f(x)+1$, $\operatorname{pr}^{F}(f)$ undefined for each f

$\Sigma^{N a t}$-models revisited

- $M \models(\{N a t\},\{0, s u c c\})$ because Nat ${ }^{M}$ consists solely of interpretations of successor terms $0, \operatorname{succ}(0), \operatorname{succ}(\operatorname{succ}(0)), \ldots$ ("no junk")

$\Sigma^{N a t}$-models revisited

- $M \models(\{N a t\},\{0, s u c c\})$ because $N a t^{M}$ consists solely of interpretations of successor terms $0, \operatorname{succ}(0), \operatorname{succ}(\operatorname{succ}(0)), \ldots$ ("no junk")
- $N \not \vDash(\{N a t\},\{0, s u c c\})$ because ∞ is not obtained by any successor term

$\Sigma^{N a t}$-models revisited

- $M \models(\{N a t\},\{0, s u c c\})$ because $N a t^{M}$ consists solely of interpretations of successor terms $0, \operatorname{succ}(0), \operatorname{succ}(\operatorname{succ}(0)), \ldots$ ("no junk")
- $N \not \vDash(\{N a t\},\{0, s u c c\})$ because ∞ is not obtained by any successor term
- $T \models(\{N a t\},\{0, s u c c\})$ because $*$ is $\emptyset^{\#}(0)$

$\Sigma^{N a t}$-models revisited

- $M \models(\{N a t\},\{0, s u c c\})$ because $N a t^{M}$ consists solely of interpretations of successor terms $0, \operatorname{succ}(0), \operatorname{succ}(\operatorname{succ}(0)), \ldots$ ("no junk")
- $N \not \vDash(\{N a t\},\{0, s u c c\})$ because ∞ is not obtained by any successor term
- $T \models(\{N a t\},\{0$, succ $\})$ because $*$ is $\emptyset^{\#}(0)$
- $K \not \vDash(\{N a t\},\{0, \operatorname{succ}\}): \emptyset^{\#}\left(\operatorname{suc}^{n}(0)\right)$ is 0 for any n

$\Sigma^{N a t}$-models revisited

- $M \models(\{N a t\},\{0, s u c c\})$ because $N a t^{M}$ consists solely of interpretations of successor terms $0, \operatorname{succ}(0), \operatorname{succ}(\operatorname{succ}(0)), \ldots$ ("no junk")
- $N \not \vDash(\{N a t\},\{0, s u c c\})$ because ∞ is not obtained by any successor term
- $T \models(\{N a t\},\{0$, succ $\})$ because $*$ is $\emptyset^{\#}(0)$
- $K \not \vDash(\{N a t\},\{0, s u c c\}): \emptyset \#\left(s u c^{n}(0)\right)$ is 0 for any n
- $F \not \vDash(\{N a t\},\{0, s u c c\})$ because $N a t^{F}$ is uncountable (but the set of terms is countable)

Semantics of basic specifications

- Basic specifications denote a signature and a set of sentences

Semantics of basic specifications

- Basic specifications denote a signature and a set of sentences
- Ultimatetly, the semantics of a basic specification consists of that signature together with the class of models satisfying the sentences

Format of semantic judgements

- $\Sigma \vdash$ BASIC-SPEC $\triangleright\left(\Sigma^{\prime}, \Psi\right)$

Format of semantic judgements

- $\Sigma \vdash$ BASIC-SPEC $\triangleright\left(\Sigma^{\prime}, \Psi\right)$
- Σ is the local environment of previously-declared symbols

Format of semantic judgements

- $\Sigma \vdash \operatorname{BASIC-SPEC} \triangleright\left(\Sigma^{\prime}, \Psi\right)$
- Σ is the local environment of previously-declared symbols
- Σ^{\prime} extends Σ with new symbols

Format of semantic judgements

- $\Sigma \vdash$ BASIC-SPEC $\triangleright\left(\Sigma^{\prime}, \Psi\right)$
- Σ is the local environment of previously-declared symbols
- Σ^{\prime} extends Σ with new symbols
- Ψ is a set of Σ-sentences

Example

- $(\{$ Elem $\}, \emptyset, \emptyset, \emptyset)$
\vdash free type List $::=N i l \mid C o n s(E l e m, L i s t) \triangleright\left(\Sigma^{\prime}, \Psi\right)$

Example

- $(\{$ Elem $\}, \emptyset, \emptyset, \emptyset)$ \vdash free type List $::=$ Nil \mid Cons $($ Elem, List $) \triangleright\left(\Sigma^{\prime}, \Psi\right)$
- $\Sigma^{\prime}=(\{$ Elem, List $\}$,
$\{$ Nil: Elem, Cons: Elem $*$ List \longrightarrow List $\}, \emptyset, \emptyset)$

Example

- $(\{$ Elem $\}, \emptyset, \emptyset, \emptyset)$ \vdash free type List $::=$ Nil \mid Cons $($ Elem, List $) \triangleright\left(\Sigma^{\prime}, \Psi\right)$
- $\Sigma^{\prime}=(\{$ Elem, List $\}$,

$$
\{\text { Nil : Elem, Cons: Elem } * \text { List } \longrightarrow \text { List }\}, \emptyset, \emptyset)
$$

- Ψ consists of axioms stating that

Example

- $(\{$ Elem $\}, \emptyset, \emptyset, \emptyset)$ \vdash free type List $::=$ Nil \mid Cons $($ Elem, List $) \triangleright\left(\Sigma^{\prime}, \Psi\right)$
- $\Sigma^{\prime}=(\{$ Elem, List $\}$,

$$
\{\text { Nil : Elem, Cons: Elem } * \text { List } \longrightarrow \text { List }\}, \emptyset, \emptyset)
$$

- Ψ consists of axioms stating that
- Cons is injective

Example

- $(\{$ Elem $\}, \emptyset, \emptyset, \emptyset)$ \vdash free type List $::=$ Nil \mid Cons $($ Elem, List $) \triangleright\left(\Sigma^{\prime}, \Psi\right)$
- $\Sigma^{\prime}=(\{$ Elem, List $\}$,
$\{$ Nil: Elem, Cons: Elem $*$ List \longrightarrow List $\}, \emptyset, \emptyset)$
- Ψ consists of axioms stating that
- Cons is injective
- the ranges of Nil and Cons are disjoint

Example

- $(\{$ Elem $\}, \emptyset, \emptyset, \emptyset)$
\vdash free type List $::=N i l \mid C o n s(E l e m, L i s t) \triangleright\left(\Sigma^{\prime}, \Psi\right)$
- $\Sigma^{\prime}=(\{$ Elem, List $\}$,

$$
\{\text { Nil : Elem, Cons: Elem } * \text { List } \longrightarrow \text { List }\}, \emptyset, \emptyset)
$$

- Ψ consists of axioms stating that
- Cons is injective
- the ranges of Nil and Cons are disjoint
- List is generated by Nil and Cons (i.e. (\{List $\},\{$ Nil : Elem, Cons: Elem $*$ List \longrightarrow List $\}$)

This means that the models

This means that the models

- may interpret Elem with any set

This means that the models

- may interpret Elem with any set
- must interpret List with lists over that set (up to isomorphism)

This means that the models

- may interpret Elem with any set
- must interpret List with lists over that set (up to isomorphism)
- i.e. terms Nil, Cons $(e, N i l)$ with $e \in E l e m^{M}$, . .

Proof system for the CASL institution

$$
[\varphi] \quad[\varphi \Rightarrow \text { false }]
$$

(Absurdity) $\frac{\text { false }}{\varphi}$
(Tertium non datur) $\frac{\psi \quad \psi}{\psi}$

$$
\begin{gathered}
{[\varphi]} \\
\vdots \\
(\Rightarrow \text {-intro }) \frac{\psi}{\varphi \Rightarrow \psi} \quad(\Rightarrow \text {-elim }) \frac{\varphi}{\varphi} \frac{\varphi}{\psi}
\end{gathered}
$$

(Reflexivity) $\overline{x_{s} \stackrel{e}{=} x_{s}}$ if x_{s} is a variable
(\forall-elim) $\frac{\forall x: s . \varphi}{\varphi}$
(\forall-intro) $\frac{\varphi}{\forall x: s . \varphi}$ where x_{s} occurs freely only in local assump.
(Congruence) $\frac{\varphi}{\left(\bigwedge_{x_{s} \in F V(\varphi)} x_{s} \stackrel{e}{=} \nu\left(x_{s}\right)\right) \Rightarrow \varphi[\nu]}$ if $\varphi[\nu]$ defined
(Totality) $\overline{d e f\left(f_{w, s}\left(x_{s_{1}}, \ldots, x_{s_{n}}\right)\right)}$ if $w=s_{1} \ldots s_{n}, f \in T F_{w, s}$

(Substitution) $\frac{\varphi}{\left(\bigwedge_{x_{s} \in F V(\varphi)} \operatorname{def}\left(\nu\left(x_{s}\right)\right)\right) \Rightarrow \varphi[\nu]}$

if $\varphi[\nu]$ defined and $F V(\varphi)$ occur freely only in local assumpt.
(Function Strictness) $\frac{t_{1} \stackrel{e}{=} t_{2}}{d e f(t)} t$ some subterm of t_{1} or t_{2}
(Predicate Strictness) $\frac{p_{w}\left(t_{1}, \ldots, t_{n}\right)}{d e f\left(t_{i}\right)} i \in\{1, \ldots, n\}$

$$
\left(S^{\prime}, F^{\prime}\right)
$$

(Induction)

$$
\varphi_{1} \wedge \cdots \wedge \varphi_{k}
$$

$$
F^{\prime}=\left\{f_{1}: s_{1}^{1} \ldots s_{m_{1} \in S^{\prime}} \forall x: s . \Psi_{s}(x), s^{1} ; \ldots ; f_{k}: s_{1}^{k} \ldots s_{m_{k}}^{k} \longrightarrow s^{k}\right\},
$$ Ψ_{s} is a formula with one free variable of sort s, for $s \in S^{\prime}$, $\varphi_{j}=\forall x_{1}: s_{1}^{j}, \ldots, x_{m_{j}}: s_{m_{j}}^{j}$.

$$
\begin{aligned}
& \left.\left(\operatorname{def} f_{j}\left(x_{1}, \ldots, x_{m_{j}}\right)\right) \wedge \bigwedge_{i \in\left\{1, \ldots, m_{j}\right\} ; s_{i}^{j} \in S^{\prime}} \Psi_{s_{i}^{j}}\left(x_{i}\right)\right) \\
& \quad \Rightarrow \Psi_{s_{j}}\left(f_{j}\left(x_{1}, \ldots, x_{m_{j}}\right)\right)
\end{aligned}
$$

(List-Induction)

$$
\begin{gathered}
(\{\text { List }\},\{\text { nil }: \text { List }, \text { cons: Elem } * \text { List } \longrightarrow \text { List }\}) \\
\Psi(\text { nil }) \wedge \forall e: \text { Elem } ; L: \text { List } . \Psi(L) \Rightarrow \Psi(\text { cons }(e, L)) \\
\forall x: \text { List } . \Psi(x)
\end{gathered}
$$

Ψ is a formula with one free variable of sort List

Start induction proof

(Sortgen-intro) $\underline{\varphi_{1} \wedge \cdots \wedge \varphi_{k} \Rightarrow \bigwedge_{s \in S^{\prime}} \forall x: s . p_{s}(x)}$
$\left(S^{\prime}, F^{\prime}\right)$
$F^{\prime}=\left\{f_{1}: s_{1}^{1} \ldots s_{m_{1}}^{1} \longrightarrow s^{1} ; \ldots ; f_{k}: s_{1}^{k} \ldots s_{m_{k}}^{k} \longrightarrow s^{k}\right\}$, the predicates $p_{s}: s\left(s \in S^{\prime}\right)$ occur only in local assumpt., $\varphi_{j}=\forall x_{1}: s_{1}^{j}, \ldots, x_{m_{j}}: s_{m_{j}}^{j}$.

$$
\begin{aligned}
& \left.\left(\operatorname{def} f_{j}\left(x_{1}, \ldots, x_{m_{j}}\right)\right) \wedge \bigwedge_{i \in\left\{1, \ldots, m_{j}\right\} ; s_{i}^{j} \in S^{\prime}} p_{s_{i}^{j}}\left(x_{i}\right)\right) \\
& \quad \Rightarrow p_{s_{j}}\left(f_{j}\left(x_{1}, \ldots, x_{m_{j}}\right)\right)
\end{aligned}
$$

List-Sortgen-intro

$$
\begin{gathered}
p(\text { nil }) \wedge(\forall e: \text { Elem; } L: \text { List. } p(L) \Rightarrow p(\operatorname{cons}(e, L))) \\
\Rightarrow \forall x: \text { List } p(x)
\end{gathered}
$$

($\{$ List $\},\{$ nil : List, cons: Elem $*$ List \longrightarrow List $\}$)
the predicate p : List occurs only in local assumptions

Exercise

- Prove that your favourite sorting algorithm actually computes a permutation, using induction on lists

Course on values-Induction

(List-Induction)

$$
\begin{aligned}
& (\{\text { List }\},\{\text { nil : List, cons: Elem } * \text { List } \longrightarrow \text { List }\}) \\
& \\
& \Psi(\text { nil }) \wedge \forall e: \text { Elem } ; L: \text { List } . \\
& (\forall L 1 . \# L 1<\# L \Rightarrow \Psi(L 1)) \Rightarrow \Psi(\operatorname{cons}(e, L))
\end{aligned}
$$

$$
\forall x: \text { List. } \Psi(x)
$$

Ψ is a formula with one free variable of sort List

Soundness and Completeness

Let Ψ be a set of Σ-sentences, φ be a Σ-sentence.

- $\Psi \vdash_{\Sigma} \varphi$ if φ can derived from Ψ using the calculus rules
- $\Psi \models_{\Sigma} \varphi$ if for every Σ-model, $M \models_{\Sigma} \Psi$ implies $M \models \varphi$
- The calculus is sound: $\Psi \vdash_{\Sigma} \varphi$ implies $\Psi \models_{\Sigma} \varphi$
- The calculus is complete: $\Psi \models_{\Sigma} \varphi$ implies $\Psi \vdash_{\Sigma} \varphi$ only if sort generation constraints are excluded

CASL subsorted signatures

A subsorted signature $\Sigma=(S, T F, P F, P, \leq)$ consists of

CASL subsorted signatures

A subsorted signature $\Sigma=(S, T F, P F, P, \leq)$ consists of

- a many-sorted signature $(S, T F, P F, P)$

CASL subsorted signatures

A subsorted signature $\Sigma=(S, T F, P F, P, \leq)$ consists of

- a many-sorted signature $(S, T F, P F, P)$
- a pre-oder (reflexive transitive relation) \leq on S

CASL subsorted signatures

A subsorted signature $\Sigma=(S, T F, P F, P, \leq)$ consists of

- a many-sorted signature $(S, T F, P F, P)$
- a pre-oder (reflexive transitive relation) \leq on S

Signature morphisms are many-sorted signature morphisms preserving the pre-order and the overloading relations

The overloading relations

$$
f_{w^{\prime}, s^{\prime}} \sim_{F} f_{w^{\prime \prime}, s^{\prime \prime}} \text { iff }
$$

The overloading relations

$f_{w^{\prime}, s^{\prime}} \sim_{F} f_{w^{\prime \prime}, s^{\prime \prime}}$ iff

- there exists w with $w \leq w^{\prime}$ and $w \leq w^{\prime \prime}$, and

The overloading relations

$f_{w^{\prime}, s^{\prime}} \sim_{F} f_{w^{\prime \prime}, s^{\prime \prime}}$ iff

- there exists w with $w \leq w^{\prime}$ and $w \leq w^{\prime \prime}$, and
- there exists s with $s^{\prime} \leq s$ and $s^{\prime \prime} \leq s$

The overloading relations

$f_{w^{\prime}, s^{\prime}} \sim_{F} f_{w^{\prime \prime}, s^{\prime \prime}}$ iff

- there exists w with $w \leq w^{\prime}$ and $w \leq w^{\prime \prime}$, and
- there exists s with $s^{\prime} \leq s$ and $s^{\prime \prime} \leq s$

Operation symbols that are in the overloading relation have to be interpreted in the "same" way.

The overloading relations

$f_{w^{\prime}, s^{\prime}} \sim_{F} f_{w^{\prime \prime}, s^{\prime \prime}}$ iff

- there exists w with $w \leq w^{\prime}$ and $w \leq w^{\prime \prime}$, and
- there exists s with $s^{\prime} \leq s$ and $s^{\prime \prime} \leq s$

Operation symbols that are in the overloading relation have to be interpreted in the "same" way. Similarly for predicate symbols.

Translation from subsorted to many-sorted signatures

Construct many-sorted $\Sigma^{\#}$ out of subsorted Σ as follows:

- Add injections emb: $s \longrightarrow s^{\prime}$ for $s \leq s^{\prime}$

Translation from subsorted to many-sorted signatures

Construct many-sorted $\Sigma^{\#}$ out of subsorted Σ as follows:

- Add injections emb: $s \longrightarrow s^{\prime}$ for $s \leq s^{\prime}$
- Add partial projections proj: $s^{\prime} \longrightarrow$? s for $s \leq s^{\prime}$

Translation from subsorted to many-sorted signatures

Construct many-sorted $\Sigma^{\#}$ out of subsorted Σ as follows:

- Add injections emb: $s \longrightarrow s^{\prime}$ for $s \leq s^{\prime}$
- Add partial projections proj: $s^{\prime} \longrightarrow$? s for $s \leq s^{\prime}$
- Add membership predicates elem ${ }^{s}: s^{\prime}$ for $s \leq s^{\prime}$

Translation from subsorted to many-sorted signatures

Construct many-sorted $\Sigma^{\#}$ out of subsorted Σ as follows:

- Add injections emb: $s \longrightarrow s^{\prime}$ for $s \leq s^{\prime}$
- Add partial projections proj: $s^{\prime} \longrightarrow$? s for $s \leq s^{\prime}$
- Add membership predicates elem ${ }^{s}: s^{\prime}$ for $s \leq s^{\prime}$
$\Sigma^{\#}$ is complemented by a set of axioms J, stating injectivity of embeddings and various compatibility conditions (including preservation of overloading)

Subsorted models and sentences

- are just many-sorted $\Sigma^{\#}$-models and -sentences
- satisfaction is just many-sorted satisfaction

