Software specification in CASL -The Common Algebraic Specification Language

Till Mossakowski, Lutz Schröder

October 2006

Semantics of CASL basic specifications

• Who knows what first-order logic is?

- Who knows what first-order logic is?
- Who knows what a first-order structure (model) is?

• Signatures: a signature provides the vocabulary

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures
- Models: interpret the vocabulary of a signature with mathematical objects (sets, functions, relations)

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures
- Models: interpret the vocabulary of a signature with mathematical objects (sets, functions, relations)
- Sentences (formulae): for axiomatizing models denote true or false in a given model

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures
- Models: interpret the vocabulary of a signature with mathematical objects (sets, functions, relations)
- Sentences (formulae): for axiomatizing models denote true or false in a given model
- Terms: parts of sentences, denote data values

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures
- Models: interpret the vocabulary of a signature with mathematical objects (sets, functions, relations)
- Sentences (formulae): for axiomatizing models denote true or false in a given model
- Terms: parts of sentences, denote data values
- Satisfaction of sentences in models

• a set S of sorts,

- \bullet a set S of ${\rm sorts},$
- an $S^* \times S$ -indexed set $(TF_{w,s})_{w,s \in S^* \times S}$ of total operation symbols,

- \bullet a set S of ${\rm sorts},$
- an $S^* \times S$ -indexed set $(TF_{w,s})_{w,s \in S^* \times S}$ of total operation symbols,
- an $S^* \times S$ -indexed set $(PF_{w,s})_{w,s \in S^* \times S}$ of partial operation symbols, such that $TF_{w,s} \cap PF_{w,s} = \emptyset$,

- \bullet a set S of ${\rm sorts},$
- an $S^* \times S$ -indexed set $(TF_{w,s})_{w,s \in S^* \times S}$ of total operation symbols,
- an $S^* \times S$ -indexed set $(PF_{w,s})_{w,s \in S^* \times S}$ of partial operation symbols, such that $TF_{w,s} \cap PF_{w,s} = \emptyset$,
- an S^* -indexed set $(P_w)_{w \in S^*}$ of predicate symbols

Signature morphisms map these components in a compatible way

Example signatures

•
$$\Sigma^{Nat} = (\{Nat\}, \{0 : Nat, succ: Nat \longrightarrow Nat\}, \{pre: Nat \longrightarrow ?Nat\}, \emptyset)$$

•
$$(\{Elem\}, \emptyset, \emptyset, \{_ < _ : Elem * Elem\})$$

• $(\{Elem, List\}, \{Nil: Elem, Cons: Elem * List \longrightarrow List\}, \emptyset, \emptyset)$

CASL many-sorted models

For a many-sorted signature $\Sigma = (S, TF, PF, P)$ a many-sorted model $M \in Mod(\Sigma)$ consists of

• a non-empty carrier set s^M for each sort $s \in S$ (let w^M denote the Cartesian product $s_1^M \times \cdots \times s_n^M$ when $w = s_1 \dots s_n$),

CASL many-sorted models

For a many-sorted signature $\Sigma = (S, TF, PF, P)$ a many-sorted model $M \in Mod(\Sigma)$ consists of

- a non-empty carrier set s^M for each sort $s \in S$ (let w^M denote the Cartesian product $s_1^M \times \cdots \times s_n^M$ when $w = s_1 \dots s_n$),
- a partial function f^M from w^M to s^M for each function symbol $f \in TF_{w,s}$ or $f \in PF_{w,s}$, the function being required to be total in the former case,

CASL many-sorted models

For a many-sorted signature $\Sigma=(S,\,TF,\,PF,\,P)$ a many-sorted model $M\in\mathbf{Mod}(\Sigma)$ consists of

- a non-empty carrier set s^M for each sort $s \in S$ (let w^M denote the Cartesian product $s_1^M \times \cdots \times s_n^M$ when $w = s_1 \dots s_n$),
- a partial function f^M from w^M to s^M for each function symbol $f \in TF_{w,s}$ or $f \in PF_{w,s}$, the function being required to be total in the former case,

• a predicate $p^M \subseteq w^M$ for each predicate symbol $p \in P_w$.

•
$$Nat^M = I\!N$$
, $0^M = 0$, $suc^M(x) = x + 1$,
 $pre^M(x) = \begin{cases} x - 1, x > 0 \\ undefined, otherwise \end{cases}$

•
$$Nat^M = I\!N$$
, $0^M = 0$, $suc^M(x) = x + 1$,
 $pre^M(x) = \begin{cases} x - 1, x > 0 \\ undefined, otherwise \end{cases}$

•
$$Nat^N = I\!N \cup \{\infty\}, 0^N = 0,$$

 $suc^N(x) = \begin{cases} \infty, & \text{if } x = \infty \\ x+1, & \text{otherwise} \end{cases}$
 $pre^N(x) = \begin{cases} x-1, & \text{if } 0 < x \neq \infty \\ \text{undefined, otherwise} \end{cases}$

•
$$Nat^M = I\!N$$
, $0^M = 0$, $suc^M(x) = x + 1$,
 $pre^M(x) = \begin{cases} x - 1, x > 0 \\ undefined, otherwise \end{cases}$

•
$$Nat^N = I\!N \cup \{\infty\}, 0^N = 0,$$

 $suc^N(x) = \begin{cases} \infty, & \text{if } x = \infty \\ x+1, & \text{otherwise} \end{cases}$
 $pre^N(x) = \begin{cases} x-1, & \text{if } 0 < x \neq \infty \\ \text{undefined, otherwise} \end{cases}$

•
$$Nat^{T} = \{*\}, 0^{T} = *, suc^{T}(*) = *, pre^{T}(*) = *$$

•
$$Nat^M = I\!N$$
, $0^M = 0$, $suc^M(x) = x + 1$,
 $pre^M(x) = \begin{cases} x - 1, x > 0 \\ undefined, otherwise \end{cases}$

•
$$Nat^N = I\!N \cup \{\infty\}, 0^N = 0,$$

 $suc^N(x) = \begin{cases} \infty, & \text{if } x = \infty \\ x+1, & \text{otherwise} \end{cases}$
 $pre^N(x) = \begin{cases} x-1, & \text{if } 0 < x \neq \infty \\ \text{undefined, otherwise} \end{cases}$

•
$$Nat^{T} = \{*\}, 0^{T} = *, suc^{T}(*) = *, pre^{T}(*) = *$$

•
$$Nat^{K} = I\!N$$
, $0^{N} = K$, $suc^{K}(x) = x$,
 $pre^{K}(x) = \begin{cases} y, & \text{if TM } x \text{ outputs } y \text{ on input } x \\ undefined, & \text{otherwise} \end{cases}$

•
$$Nat^{K} = I\!N$$
, $0^{N} = K$, $suc^{K}(x) = x$,
 $pre^{K}(x) = \begin{cases} y, & \text{if TM } x \text{ outputs } y \text{ on input } x \\ undefined, & \text{otherwise} \end{cases}$

• $Nat^F = I\!\!N \to I\!\!N$, $0^F(x) = 0$, $suc^F(f)(x) = f(x) + 1$, $pre^F(f)$ undefined for each f

CASL many-sorted terms

Given a signature Σ and a variable system $(X_s)_{s \in S}$, the set of terms is defined inductively as follows:

• variables $x \in X_s$ are terms of sort s

CASL many-sorted terms

Given a signature Σ and a variable system $(X_s)_{s \in S}$, the set of terms is defined inductively as follows:

- variables $x \in X_s$ are terms of sort s
- applications $f_{w,s}(t_1, \ldots, t_n)$ is a term of sort s, if $f \in TF_{w,s} \cup PF_{w,s}$ and t_i is a term of sort s_i , $w = s_1 \ldots s_n$.

Semantics of terms

Given a Σ -model and a variable valuation $\nu\colon X \longrightarrow M$, the semantics $\nu^{\#}$ of terms is defined as follows:

• variables
$$\nu^{\#}(x) = \nu(x)$$

Semantics of terms

Given a Σ -model and a variable valuation $\nu: X \longrightarrow M$, the semantics $\nu^{\#}$ of terms is defined as follows:

- variables $\nu^{\#}(x) = \nu(x)$
- applications $\nu^{\#}(f_{w,s}(t_1, \ldots, t_n)) = f_{w,s}^M(\nu^{\#}(t_1), \ldots, \nu^{\#}(t_n))$ if all components are defined (undefined otherwise)

The set of (Σ, X) -formulae is defined inductively as follows:

• strong equations $t_1 = t_2$

The set of (Σ, X) -formulae is defined inductively as follows:

- strong equations $t_1 = t_2$
- existential equations $t_1 \stackrel{\text{e}}{=} t_2$

The set of (Σ, X) -formulae is defined inductively as follows:

- strong equations $t_1 = t_2$
- existential equations $t_1 \stackrel{\text{e}}{=} t_2$
- predications $p_w(t_1, \ldots, t_n)$

12

The set of (Σ, X) -formulae is defined inductively as follows:

- strong equations $t_1 = t_2$
- existential equations $t_1 \stackrel{\text{e}}{=} t_2$
- predications $p_w(t_1, \ldots, t_n)$
- definedness assertions def(t)

The set of (Σ, X) -formulae is defined inductively as follows:

- strong equations $t_1 = t_2$
- existential equations $t_1 \stackrel{\text{e}}{=} t_2$
- predications $p_w(t_1, \ldots, t_n)$
- definedness assertions def(t)
- conjunctions, disjunctions, implications, equivalences of formulae

12

The set of (Σ, X) -formulae is defined inductively as follows:

- strong equations $t_1 = t_2$
- existential equations $t_1 \stackrel{\text{e}}{=} t_2$
- predications $p_w(t_1, \ldots, t_n)$
- definedness assertions def(t)
- conjunctions, disjunctions, implications, equivalences of formulae
- universal, existential, unique-existential quantifications

Satisfaction of atomic formulae

A formula φ is satisfied in a model M w.r.t. a valuation $\nu: X \longrightarrow M$ (short notation: $M, \nu \models \varphi$), if

M, ν ⊨ t₁ = t₂ if ν[#](t₁) = ν[#](t₂) or both sides are undefined,

Satisfaction of atomic formulae

A formula φ is satisfied in a model M w.r.t. a valuation $\nu: X \longrightarrow M$ (short notation: $M, \nu \models \varphi$), if

- M, ν ⊨ t₁ = t₂ if ν[#](t₁) = ν[#](t₂) or both sides are undefined,
- $M, \nu \models t_1 \stackrel{e}{=} t_2$ if $\nu^{\#}(t_1) = \nu^{\#}(t_2)$ and both sides defined,

Satisfaction of atomic formulae

A formula φ is satisfied in a model M w.r.t. a valuation $\nu: X \longrightarrow M$ (short notation: $M, \nu \models \varphi$), if

- $M, \nu \models t_1 = t_2$ if $\nu^{\#}(t_1) = \nu^{\#}(t_2)$ or both sides are undefined,
- $M, \nu \models t_1 \stackrel{e}{=} t_2$ if $\nu^{\#}(t_1) = \nu^{\#}(t_2)$ and both sides defined,
- $M, \nu \models p_w(t_1, \dots, t_n)$ if $(\nu^{\#}(t_1), \dots, \nu^{\#}(t_n))$ is defined and $\in p_w^M$,

Satisfaction of atomic formulae

A formula φ is satisfied in a model M w.r.t. a valuation $\nu: X \longrightarrow M$ (short notation: $M, \nu \models \varphi$), if

- M, ν ⊨ t₁ = t₂ if ν[#](t₁) = ν[#](t₂) or both sides are undefined,
- $M, \nu \models t_1 \stackrel{\mathsf{e}}{=} t_2$ if $\nu^{\#}(t_1) = \nu^{\#}(t_2)$ and both sides defined,
- $M, \nu \models p_w(t_1, \dots, t_n)$ if $(\nu^{\#}(t_1), \dots, \nu^{\#}(t_n))$ is defined and $\in p_w^M$,
- $M, \nu \models def(t)$ if $\nu^{\#}(t)$ is defined

Satisfaction of compound formulae

A standard in first-order logic, i.e.

• a conjuction is satisfied iff all the conjuncts are satisfied

Satisfaction of compound formulae

A standard in first-order logic, i.e.

- a conjuction is satisfied iff all the conjuncts are satisfied
- similar for disjunction etc.

Satisfaction of compound formulae

A standard in first-order logic, i.e.

- a conjuction is satisfied iff all the conjuncts are satisfied
- similar for disjunction etc.
- a universal (existential) quantification is satisfied when all (some) of the changes of the valuation for the quantified variable lead to satisfcation in the model:
 M, ν ⊨ ∀x : s. φ iff M, ξ ⊨ φ for all valuation ξ that differ from ν only on x : s

Satisfaction of closed formulae

A closed formula (sentences) is satisfied in a model iff it is satisfied w.r.t. the empty valuation:

$$M\models\varphi \text{ iff }M,\emptyset\models\varphi$$

A $\Sigma\text{-}\mathsf{sort-generation}$ constraint (S',F') consists of

A $\Sigma\text{-}\mathsf{sort-generation}$ constraint (S',F') consists of

 \bullet a set of sorts $S'\subseteq S$

A $\Sigma\text{-}\mathsf{sort-generation}$ constraint (S',F') consists of

- \bullet a set of sorts $S'\subseteq S$
- a set of (qualified) operation symbols $F' \subseteq TF \cup PF$

A $\Sigma\text{-}\mathsf{sort-generation}$ constraint (S',F') consists of

- \bullet a set of sorts $S'\subseteq S$
- a set of (qualified) operation symbols $F' \subseteq TF \cup PF$

 $M \models (S', F')$ iff the carriers of sorts in S' are generated by terms in F' (with variables of sorts outside S')

A $\Sigma\text{-}\mathsf{sort-generation}$ constraint (S',F') consists of

- \bullet a set of sorts $S'\subseteq S$
- a set of (qualified) operation symbols $F' \subseteq TF \cup PF$

 $M \models (S', F')$ iff the carriers of sorts in S' are generated by terms in F' (with variables of sorts outside S') i.e. for each $s \in S'$, $a \in s^M$, there is some term t (with variables of sorts outside S') and some valuation ν with $\nu^{\#}(t) = a$.

Example Σ^{Nat} -models

•
$$Nat^M = I\!N$$
, $0^M = 0$, $suc^M(x) = x + 1$,
 $pre^M(x) = \begin{cases} x - 1, x > 0 \\ undefined, otherwise \end{cases}$

•
$$Nat^N = I\!N \cup \{\infty\}, 0^N = 0,$$

 $suc^N(x) = \begin{cases} \infty, & \text{if } x = \infty \\ x+1, & \text{otherwise} \end{cases}$
 $pre^N(x) = \begin{cases} x-1, & \text{if } 0 < x \neq \infty \\ \text{undefined, otherwise} \end{cases}$

•
$$Nat^{T} = \{*\}, 0^{T} = *, suc^{T}(*) = *, pre^{T}(*) = *$$

•
$$Nat^{K} = I\!N$$
, $0^{N} = K$, $suc^{K}(x) = x$,
 $pre^{K}(x) = \begin{cases} y, & \text{if TM } x \text{ outputs } y \text{ on input } x \\ undefined, & \text{otherwise} \end{cases}$

• $Nat^F = I\!\!N \to I\!\!N$, $0^F(x) = 0$, $suc^F(f)(x) = f(x) + 1$, $pre^F(f)$ undefined for each f

 M = ({Nat}, {0, succ}) because Nat^M consists solely of interpretations of successor terms 0, succ(0), succ(succ(0)), ... ("no junk")

- M = ({Nat}, {0, succ}) because Nat^M consists solely of interpretations of successor terms 0, succ(0), succ(succ(0)), ... ("no junk")
- $N \not\models (\{Nat\}, \{0, succ\})$ because ∞ is not obtained by any successor term

- M = ({Nat}, {0, succ}) because Nat^M consists solely of interpretations of successor terms 0, succ(0), succ(succ(0)), ... ("no junk")
- $N \not\models (\{Nat\}, \{0, succ\})$ because ∞ is not obtained by any successor term
- $T \models ({Nat}, {0, succ})$ because $* is \emptyset^{\#}(0)$

- M = ({Nat}, {0, succ}) because Nat^M consists solely of interpretations of successor terms 0, succ(0), succ(succ(0)), ... ("no junk")
- $N \not\models (\{Nat\}, \{0, succ\})$ because ∞ is not obtained by any successor term
- $T \models (\{Nat\}, \{0, succ\})$ because * is $\emptyset^{\#}(0)$
- $K \not\models (\{Nat\}, \{0, succ\})$: $\emptyset^{\#}(suc^n(0))$ is 0 for any n

- M = ({Nat}, {0, succ}) because Nat^M consists solely of interpretations of successor terms 0, succ(0), succ(succ(0)), ... ("no junk")
- $N \not\models (\{Nat\}, \{0, succ\})$ because ∞ is not obtained by any successor term
- $T \models ({Nat}, {0, succ})$ because $* is \emptyset^{\#}(0)$
- $K \not\models (\{Nat\}, \{0, succ\})$: $\emptyset^{\#}(suc^n(0))$ is 0 for any n
- *F* ⊭ ({*Nat*}, {0, *succ*}) because *Nat^F* is uncountable (but the set of terms is countable)

Semantics of basic specifications

 Basic specifications denote a signature and a set of sentences

Semantics of basic specifications

- Basic specifications denote a signature and a set of sentences
- Ultimatetly, the semantics of a basic specification consists of that signature together with the class of models satisfying the sentences

• $\Sigma \vdash \texttt{BASIC-SPEC} \vartriangleright (\Sigma', \Psi)$

- $\Sigma \vdash \texttt{BASIC-SPEC} \vartriangleright (\Sigma', \Psi)$
- Σ is the local environment of previously-declared symbols

- $\Sigma \vdash \texttt{BASIC-SPEC} \vartriangleright (\Sigma', \Psi)$
- Σ is the local environment of previously-declared symbols
- Σ' extends Σ with new symbols

- $\Sigma \vdash \mathsf{BASIC-SPEC} \vartriangleright (\Sigma', \Psi)$
- Σ is the local environment of previously-declared symbols
- Σ' extends Σ with new symbols
- Ψ is a set of $\Sigma\text{-}\mathsf{sentences}$

• $(\{Elem\}, \emptyset, \emptyset, \emptyset)$ \vdash free type $List ::= Nil|Cons(Elem, List) \triangleright (\Sigma', \Psi)$

• $(\{Elem\}, \emptyset, \emptyset, \emptyset)$ \vdash free type $List ::= Nil|Cons(Elem, List) \triangleright (\Sigma', \Psi)$

• $\Sigma' = (\{Elem, List\}, \{Nil : Elem, Cons: Elem * List \longrightarrow List\}, \emptyset, \emptyset)$

- $(\{Elem\}, \emptyset, \emptyset, \emptyset)$ \vdash free type $List ::= Nil|Cons(Elem, List) \triangleright (\Sigma', \Psi)$
- $\Sigma' = (\{Elem, List\}, \{Nil : Elem, Cons: Elem * List \longrightarrow List\}, \emptyset, \emptyset)$
- $\bullet~\Psi$ consists of axioms stating that

- $(\{Elem\}, \emptyset, \emptyset, \emptyset)$ \vdash free type $List ::= Nil|Cons(Elem, List) \triangleright (\Sigma', \Psi)$
- $\Sigma' = (\{Elem, List\}, \{Nil : Elem, Cons: Elem * List \longrightarrow List\}, \emptyset, \emptyset)$
- $\bullet~\Psi$ consists of axioms stating that

• *Cons* is injective

- $(\{Elem\}, \emptyset, \emptyset, \emptyset)$ \vdash free type $List ::= Nil|Cons(Elem, List) \triangleright (\Sigma', \Psi)$
- $\Sigma' = (\{Elem, List\}, \{Nil : Elem, Cons: Elem * List \longrightarrow List\}, \emptyset, \emptyset)$
- $\bullet~\Psi$ consists of axioms stating that

• *Cons* is injective

 \circ the ranges of Nil and Cons are disjoint

- $(\{Elem\}, \emptyset, \emptyset, \emptyset)$ \vdash free type $List ::= Nil|Cons(Elem, List) \triangleright (\Sigma', \Psi)$
- $\Sigma' = (\{Elem, List\}, \{Nil : Elem, Cons: Elem * List \longrightarrow List\}, \emptyset, \emptyset)$
- $\bullet~\Psi$ consists of axioms stating that

• *Cons* is injective

- \circ the ranges of Nil and Cons are disjoint
- *List* is generated by *Nil* and *Cons* (i.e. $({List}, {Nil : Elem, Cons: Elem * List → List})$

22

 \bullet may interpret Elem with any set

- may interpret Elem with any set
- must interpret *List* with lists over that set (up to isomorphism)

- may interpret Elem with any set
- must interpret *List* with lists over that set (up to isomorphism)
- i.e. terms Nil, Cons(e, Nil) with $e \in Elem^M$, ...

Proof system for the CASL institution

$$\begin{split} & [\varphi] \quad [\varphi \Rightarrow false] \\ & \vdots & \vdots \\ & (\text{Absurdity}) \ \frac{false}{\varphi} \qquad (\text{Tertium non datur}) \ \frac{\psi \qquad \psi}{\psi} \\ & [\varphi] \\ & \vdots \\ & (\Rightarrow\text{-intro}) \ \frac{\psi}{\varphi \Rightarrow \psi} \qquad (\Rightarrow\text{-elim}) \ \frac{\varphi \Rightarrow \psi}{\psi} \end{split}$$

(**Reflexivity**)
$$\frac{1}{x_s \stackrel{e}{=} x_s}$$
 if x_s is a variable (\forall -elim) $\frac{\forall x:s \cdot \varphi}{\varphi}$

(\forall -intro) $\frac{\varphi}{\forall x:s:\varphi}$ where x_s occurs freely only in local assumption.

(Congruence)
$$\frac{\varphi}{(\bigwedge_{x_s \in FV(\varphi)} x_s \stackrel{e}{=} \nu(x_s)) \Rightarrow \varphi[\nu]}$$
 if $\varphi[\nu]$ defined

(Totality)
$$\overline{def(f_{w,s}(x_{s_1},\ldots,x_{s_n}))}$$
 if $w = s_1\ldots s_n, f \in TF_{w,s}$

(Substitution) $\frac{\varphi}{(\bigwedge_{x_s \in FV(\varphi)} def(\nu(x_s))) \Rightarrow \varphi[\nu]}$ if $\varphi[\nu]$ defined and $FV(\varphi)$ occur freely only in local assumpt.

(Function Strictness) $\frac{t_1 \stackrel{e}{=} t_2}{def(t)} t$ some subterm of t_1 or t_2

(Predicate Strictness)

)
$$\frac{p_w(t_1,\ldots,t_n)}{def(t_i)} \ i \in \{1,\ldots,n\}$$

T.Mossakowski, L. Schröder: CASL; October 2006

$$(S', F')$$
(Induction)
$$\begin{array}{c} \varphi_1 \wedge \dots \wedge \varphi_k \\ & \bigwedge_{s \in S'} \forall x : s . \ \Psi_s(x) \\ F' = \{f_1: s_1^1 \dots s_{m_1}^1 \longrightarrow s^1; \ \dots; \ f_k: s_1^k \dots s_{m_k}^k \longrightarrow s^k\}, \\ \Psi_s \text{ is a formula with one free variable of sort } s, \text{ for } s \in S', \\ \varphi_j = \forall x_1 : s_1^j, \dots, x_{m_j} : s_{m_j}^j. \\ & \left(deff_j(x_1, \dots, x_{m_j})) \wedge \bigwedge_{i \in \{1, \dots, m_j\}; \ s_i^j \in S'} \ \Psi_{s_i^j}(x_i) \right) \\ & \Rightarrow \Psi_{s_j} \left(f_j(x_1, \dots, x_{m_j}) \right) \end{array}$$

(List-Induction)

 $({List}, {nil : List, cons: Elem * List \longrightarrow List})$ $\Psi(nil) \land \forall e : Elem; \ L : List . \ \Psi(L) \Rightarrow \Psi(cons(e, L))$

 $\forall x : List . \Psi(x)$

 Ψ is a formula with one free variable of sort List

Start induction proof

$$\begin{array}{l} \textbf{(Sortgen-intro)} & \frac{\varphi_1 \wedge \dots \wedge \varphi_k \Rightarrow \bigwedge_{s \in S'} \forall x : s . \ p_s(x)}{(S', F')} \\ F' = \{f_1: s_1^1 \dots s_{m_1}^1 \longrightarrow s^1; \ \dots; \ f_k: s_1^k \dots s_{m_k}^k \longrightarrow s^k\}, \\ \text{the predicates } p_s: s \ (s \in S') \text{ occur only in local assumpt.}, \\ \varphi_j = \forall x_1 : s_1^j, \dots, x_{m_j} : s_{m_j}^j. \\ & \left(deff_j(x_1, \dots, x_{m_j})) \wedge \bigwedge_{i \in \{1, \dots, m_j\}; \ s_i^j \in S'} \ p_{s_i^j}(x_i) \right) \\ \Rightarrow p_{s_j} \left(f_j(x_1, \dots, x_{m_j}) \right) \end{aligned}$$

List-Sortgen-intro

 $\begin{array}{l} p(nil) \land (\forall e: Elem; \ L: List . \ p(L) \Rightarrow p(cons(e,L))) \\ \Rightarrow \forall x: List . \ p(x) \end{array}$

 $({List}, {nil : List, cons: Elem * List \longrightarrow List})$

the predicate p: List occurs only in local assumptions

Exercise

• Prove that your favourite sorting algorithm actually computes a permutation, using induction on lists

Course on values-Induction

(List-Induction)

$$\begin{split} (\{List\}, \{nil: List, cons: Elem * List \longrightarrow List\}) \\ \Psi(nil) \land \forall e: Elem; \ L: List . \\ (\forall L1. \ \#L1 < \#L \Rightarrow \Psi(L1)) \Rightarrow \Psi(cons(e, L)) \end{split}$$

 $\forall x : List . \Psi(x)$

 Ψ is a formula with one free variable of sort List

Soundness and Completeness

Let Ψ be a set of $\Sigma\text{-sentences}, \, \varphi$ be a $\Sigma\text{-sentence}.$

- $\Psi \vdash_{\Sigma} \varphi$ if φ can derived from Ψ using the calculus rules
- $\Psi \models_{\Sigma} \varphi$ if for every Σ -model, $M \models_{\Sigma} \Psi$ implies $M \models \varphi$
- The calculus is sound: $\Psi \vdash_{\Sigma} \varphi$ implies $\Psi \models_{\Sigma} \varphi$
- The calculus is complete: $\Psi \models_{\Sigma} \varphi$ implies $\Psi \vdash_{\Sigma} \varphi$ only if sort generation constraints are excluded

A subsorted signature $\Sigma = (S, \mathit{TF}, \mathit{PF}, \mathit{P}, \leq)$ consists of

A subsorted signature $\Sigma = (S, \mathit{TF}, \mathit{PF}, \mathit{P}, \leq)$ consists of

• a many-sorted signature (S, TF, PF, P)

A subsorted signature $\Sigma = (S, TF, PF, P, \leq)$ consists of

- a many-sorted signature (S, TF, PF, P)
- a pre-oder (reflexive transitive relation) \leq on S

A subsorted signature $\Sigma = (S, \mathit{TF}, \mathit{PF}, \mathit{P}, \leq)$ consists of

- a many-sorted signature (S, TF, PF, P)
- a pre-oder (reflexive transitive relation) \leq on S

Signature morphisms are many-sorted signature morphisms preserving the pre-order and the overloading relations

 $f_{w',s'} \sim_F f_{w'',s''}$ iff

 $f_{w',s'} \sim_F f_{w'',s''}$ iff

 \bullet there exists w with $w \leq w'$ and $w \leq w'',$ and

 $f_{w',s'} \sim_F f_{w'',s''}$ iff

- \bullet there exists w with $w \leq w'$ and $w \leq w''$, and
- \bullet there exists s with $s' \leq s$ and $s'' \leq s$

 $f_{w',s'} \sim_F f_{w'',s''}$ iff

- \bullet there exists w with $w \leq w'$ and $w \leq w''$, and
- there exists s with $s' \leq s$ and $s'' \leq s$

Operation symbols that are in the overloading relation have to be interpreted in the "same" way.

 $f_{w',s'} \sim_F f_{w'',s''}$ iff

- \bullet there exists w with $w \leq w'$ and $w \leq w''$, and
- \bullet there exists s with $s' \leq s$ and $s'' \leq s$

Operation symbols that are in the overloading relation have to be interpreted in the "same" way. Similarly for predicate symbols.

Construct many-sorted $\Sigma^{\#}$ out of subsorted Σ as follows:

 \bullet Add injections $emb{:}\,s{\,\longrightarrow\,}s'$ for $s{\,\leq\,}s'$

Construct many-sorted $\Sigma^{\#}$ out of subsorted Σ as follows:

- \bullet Add injections $emb{:}\,s{\,\longrightarrow\,}s'$ for $s{\,\leq\,}s'$
- Add partial projections $proj: s' \longrightarrow ?s$ for $s \leq s'$

Construct many-sorted $\Sigma^{\#}$ out of subsorted Σ as follows:

- \bullet Add injections $emb{:}\,s{\,\longrightarrow\,}s'$ for $s{\,\leq\,}s'$
- Add partial projections $proj: s' \longrightarrow ?s$ for $s \leq s'$
- \bullet Add membership predicates $elem^s:s'$ for $s\leq s'$

Construct many-sorted $\Sigma^{\#}$ out of subsorted Σ as follows:

- \bullet Add injections $emb{:}\,s{\,\longrightarrow\,}s'$ for $s{\,\leq\,}s'$
- Add partial projections $proj: s' \longrightarrow ?s$ for $s \leq s'$
- \bullet Add membership predicates $elem^s:s'$ for $s\leq s'$

 $\Sigma^{\#}$ is complemented by a set of axioms J, stating injectivity of embeddings and various compatibility conditions (including preservation of overloading)

Subsorted models and sentences

• are just many-sorted $\Sigma^{\#}\text{-models}$ and -sentences

• satisfaction is just many-sorted satisfaction

