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The CASL logic (institution)
• Signatures: a signature provides the vocabulary

• Signature morphisms: for extending and renaming

signatures

• Models: interpret the vocabulary of a signature with

mathematical objects (sets, functions, relations)

• Sentences (formulae): for axiomatizing models

denote true or false in a given model

• Terms: parts of sentences, denote data values

• Satisfaction of sentences in models

T.Mossakowski, L. Schröder: Casl; October 2006



Semantics of CASL basic specifications 5

CASL many-sorted signatures

• a set S of sorts,

T.Mossakowski, L. Schröder: Casl; October 2006
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T.Mossakowski, L. Schröder: Casl; October 2006



Semantics of CASL basic specifications 5

CASL many-sorted signatures

• a set S of sorts,

• an S∗ × S-indexed set (TFw,s)w,s∈S∗×S of total operation

symbols,

• an S∗ × S-indexed set (PFw,s)w,s∈S∗×S of partial operation

symbols, such that TFw,s ∩ PFw,s = ∅,

• an S∗-indexed set (Pw)w∈S∗ of predicate symbols

Signature morphisms map these components in a compatible

way

T.Mossakowski, L. Schröder: Casl; October 2006
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Example signatures

• ΣNat = ({Nat}, {0 : Nat, succ:Nat−→Nat},
{pre:Nat−→?Nat}, ∅)

• ({Elem}, ∅, ∅, { < : Elem ∗ Elem})

• ({Elem,List},
{Nil : Elem,Cons:Elem ∗ List−→List}, ∅, ∅)

T.Mossakowski, L. Schröder: Casl; October 2006
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CASL many-sorted models

For a many-sorted signature Σ = (S,TF ,PF , P ) a

many-sorted model M ∈ Mod(Σ) consists of

• a non-empty carrier set sM for each sort s ∈ S (let wM

denote the Cartesian product sM1 × · · · × sMn when

w = s1 . . . sn),
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CASL many-sorted models

For a many-sorted signature Σ = (S,TF ,PF , P ) a

many-sorted model M ∈ Mod(Σ) consists of

• a non-empty carrier set sM for each sort s ∈ S (let wM

denote the Cartesian product sM1 × · · · × sMn when

w = s1 . . . sn),

• a partial function fM from wM to sM for each function

symbol f ∈ TFw,s or f ∈ PFw,s, the function being

required to be total in the former case,

• a predicate pM ⊆ wM for each predicate symbol p ∈ Pw.

T.Mossakowski, L. Schröder: Casl; October 2006
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Example ΣNat-models

• NatM = IN , 0M=0, sucM(x) = x+ 1,

preM(x) =
{
x− 1, x > 0
undefined, otherwise
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• NatK = IN , 0N = K, sucK(x) = x,

preK(x) =
{
y, if TM x outputs y on input x

undefined, otherwise
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• NatK = IN , 0N = K, sucK(x) = x,

preK(x) =
{
y, if TM x outputs y on input x

undefined, otherwise

• NatF = IN → IN , 0F(x) = 0, sucF(f)(x) = f(x) + 1,

preF(f) undefined for each f
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CASL many-sorted terms

Given a signature Σ and a variable system (Xs)s∈S, the set

of terms is defined inductively as follows:

• variables x ∈ Xs are terms of sort s

• applications fw,s(t1, . . . , tn) is a term of sort s, if

f ∈ TFw,s∪PFw,s and ti is a term of sort si, w = s1 . . . sn.
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Semantics of terms

Given a Σ-model and a variable valuation ν:X−→M , the

semantics ν# of terms is defined as follows:

• variables ν#(x) = ν(x)

• applications ν#(fw,s(t1, . . . , tn)) = fMw,s(ν
#(t1), . . . , ν#(tn))

if all components are defined (undefined otherwise)
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CASL formulae

The set of (Σ, X)-formulae is defined inductively as follows:

• strong equations t1 = t2

• existential equations t1
e= t2

• predications pw(t1, . . . , tn)

• definedness assertions def(t)

• conjunctions, disjunctions, implications, equivalences of

formulae

• universal, existential, unique-existential quantifications
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Satisfaction of atomic formulae

A formula ϕ is satisfied in a model M w.r.t. a valuation

ν:X−→M (short notation: M,ν |= ϕ), if

• M,ν |= t1 = t2 if ν#(t1) = ν#(t2) or both sides are

undefined,
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Satisfaction of atomic formulae

A formula ϕ is satisfied in a model M w.r.t. a valuation

ν:X−→M (short notation: M,ν |= ϕ), if

• M,ν |= t1 = t2 if ν#(t1) = ν#(t2) or both sides are

undefined,

• M,ν |= t1
e= t2 if ν#(t1) = ν#(t2) and both sides defined,

• M,ν |= pw(t1, . . . , tn)
if (ν#(t1), . . . , ν#(tn)) is defined and ∈ pMw ,

• M,ν |= def(t) if ν#(t) is defined
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Satisfaction of compound formulae

A standard in first-order logic, i.e.

• a conjuction is satisfied iff all the conjuncts are satisfied
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Satisfaction of compound formulae

A standard in first-order logic, i.e.

• a conjuction is satisfied iff all the conjuncts are satisfied

• similar for disjunction etc.

• a universal (existential) quantification is satisfied when all

(some) of the changes of the valuation for the quantified

variable lead to satisfcation in the model:

M,ν |= ∀x : s . φ iff M, ξ |= φ for all valuation ξ that

differ from ν only on x : s
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Satisfaction of closed formulae

A closed formula (sentences) is satisfied in a model iff it is

satisfied w.r.t. the empty valuation:

M |= ϕ iff M, ∅ |= ϕ

T.Mossakowski, L. Schröder: Casl; October 2006
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Sort generation constraints

A Σ-sort-generation constraint (S ′, F ′) consists of

• a set of sorts S ′ ⊆ S

• a set of (qualified) operation symbols F ′ ⊆ TF ∪ PF

M |= (S ′, F ′) iff the carriers of sorts in S ′ are generated by

terms in F ′ (with variables of sorts outside S ′)

i.e. for each s ∈ S ′, a ∈ sM , there is some term t (with

variables of sorts outside S ′) and some valuation ν with

ν#(t) = a.

T.Mossakowski, L. Schröder: Casl; October 2006



Semantics of CASL basic specifications 17

Example ΣNat-models

• NatM = IN , 0M=0, sucM(x) = x+ 1,

preM(x) =
{
x− 1, x > 0
undefined, otherwise

• NatN = IN ∪ {∞}, 0N=0,

sucN(x) =
{
∞, if x = ∞
x+ 1, otherwise

,

preN(x) =
{
x− 1, if 0 < x 6= ∞
undefined, otherwise

• NatT = {∗}, 0T = ∗, sucT(∗) = ∗, preT(∗) = ∗
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• NatK = IN , 0N = K, sucK(x) = x,

preK(x) =
{
y, if TM x outputs y on input x

undefined, otherwise

• NatF = IN → IN , 0F(x) = 0, sucF(f)(x) = f(x) + 1,

preF(f) undefined for each f
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ΣNat-models revisited
• M |= ({Nat}, {0, succ}) because

NatM consists solely of interpretations of successor terms

0, succ(0), succ(succ(0)), . . . (“no junk”)
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ΣNat-models revisited
• M |= ({Nat}, {0, succ}) because

NatM consists solely of interpretations of successor terms

0, succ(0), succ(succ(0)), . . . (“no junk”)

• N 6|= ({Nat}, {0, succ}) because ∞ is not obtained by

any successor term

• T |= ({Nat}, {0, succ}) because ∗ is ∅#(0)

• K 6|= ({Nat}, {0, succ}): ∅#(sucn(0)) is 0 for any n

• F 6|= ({Nat}, {0, succ}) because NatF is uncountable

(but the set of terms is countable)
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Semantics of basic specifications

• Basic specifications denote a signature and a set of

sentences
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Semantics of basic specifications

• Basic specifications denote a signature and a set of

sentences

• Ultimatetly, the semantics of a basic specification consists

of that signature together with the class of models

satisfying the sentences
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Format of semantic judgements

• Σ ` BASIC-SPEC � (Σ′,Ψ)

• Σ is the local environment of previously-declared symbols

• Σ′ extends Σ with new symbols

• Ψ is a set of Σ-sentences
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Example
• ({Elem}, ∅, ∅, ∅)

` free type List ::= Nil|Cons(Elem,List)�(Σ′,Ψ)
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Example
• ({Elem}, ∅, ∅, ∅)

` free type List ::= Nil|Cons(Elem,List)�(Σ′,Ψ)

• Σ′ = ({Elem,List},
{Nil : Elem,Cons:Elem ∗ List−→List}, ∅, ∅)

• Ψ consists of axioms stating that

◦ Cons is injective

◦ the ranges of Nil and Cons are disjoint

◦ List is generated by Nil and Cons (i.e.

({List}, {Nil : Elem,Cons:Elem ∗ List−→List})

T.Mossakowski, L. Schröder: Casl; October 2006
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This means that the models

• may interpret Elem with any set

• must interpret List with lists over that set (up to

isomorphism)

• i.e. terms Nil, Cons(e,Nil) with e ∈ ElemM , . . .

T.Mossakowski, L. Schröder: Casl; October 2006
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Proof system for the Casl institution

(Absurdity) false
ϕ (Tertium non datur)

[ϕ] [ϕ⇒ false]
... ...

ψ ψ
ψ

(⇒-intro)

[ϕ]
...

ψ
ϕ⇒ ψ

(⇒-elim)

ϕ

ϕ⇒ ψ
ψ

T.Mossakowski, L. Schröder: Casl; October 2006
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(Reflexivity)
xs

e= xs
if xs is a variable (∀-elim) ∀x :s . ϕ

ϕ

(∀-intro) ϕ
∀x :s . ϕ where xs occurs freely only in local assump.

(Congruence) ϕ

(
∧
xs∈FV (ϕ) xs

e= ν(xs)) ⇒ ϕ[ν]
if ϕ[ν] defined

(Totality)
def(fw,s(xs1, . . . , xsn))

if w = s1 . . . sn, f ∈ TFw,s
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(Substitution) ϕ
(
∧
xs∈FV (ϕ) def(ν(xs))) ⇒ ϕ[ν]

if ϕ[ν] defined and FV (ϕ) occur freely only in local assumpt.

(Function Strictness) t1
e= t2

def(t) t some subterm of t1 or t2

(Predicate Strictness)
pw(t1, . . . , tn)
def(ti)

i ∈ {1, . . . , n}

T.Mossakowski, L. Schröder: Casl; October 2006



Semantics of CASL basic specifications 27

(Induction)

(S ′, F ′)
ϕ1 ∧ · · · ∧ ϕk∧
s∈S′ ∀x : s . Ψs(x)

F ′ = {f1: s1
1 . . . s

1
m1
−→s1; . . . ; fk: sk1 . . . s

k
mk
−→sk},

Ψs is a formula with one free variable of sort s, for s ∈ S ′,
ϕj = ∀x1 : sj1, . . . , xmj

: sjmj
.(

deffj(x1, . . . , xmj
)) ∧

∧
i∈{1,...,mj}; s

j
i∈S′ Ψ

s
j
i
(xi)

)
⇒ Ψsj

(
fj(x1, . . . , xmj

)
)
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(List-Induction)

({List}, {nil : List, cons:Elem ∗ List−→List})
Ψ(nil) ∧ ∀e : Elem; L : List . Ψ(L) ⇒ Ψ(cons(e, L))

∀x : List . Ψ(x)

Ψ is a formula with one free variable of sort List

Start induction proof
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(Sortgen-intro)
ϕ1 ∧ · · · ∧ ϕk ⇒

∧
s∈S′ ∀x : s . ps(x)

(S ′, F ′)
F ′ = {f1: s1

1 . . . s
1
m1
−→s1; . . . ; fk: sk1 . . . s

k
mk
−→sk},

the predicates ps : s (s ∈ S ′) occur only in local assumpt.,

ϕj = ∀x1 : sj1, . . . , xmj
: sjmj

.(
deffj(x1, . . . , xmj

)) ∧
∧
i∈{1,...,mj}; s

j
i∈S′ psji

(xi)
)

⇒ psj
(
fj(x1, . . . , xmj

)
)
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List-Sortgen-intro

p(nil) ∧ (∀e : Elem; L : List . p(L) ⇒ p(cons(e, L)))
⇒ ∀x : List . p(x)

({List}, {nil : List, cons:Elem ∗ List−→List})

the predicate p : List occurs only in local assumptions
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Exercise

• Prove that your favourite sorting algorithm actually

computes a permutation, using induction on lists
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Course on values-Induction

(List-Induction)

({List}, {nil : List, cons:Elem ∗ List−→List})
Ψ(nil) ∧ ∀e : Elem; L : List .

(∀L1 . #L1 < #L⇒ Ψ(L1)) ⇒ Ψ(cons(e, L))

∀x : List . Ψ(x)

Ψ is a formula with one free variable of sort List
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Soundness and Completeness

Let Ψ be a set of Σ-sentences, ϕ be a Σ-sentence.

• Ψ `Σ ϕ if ϕ can derived from Ψ using the calculus rules

• Ψ |=Σ ϕ if for every Σ-model, M |=Σ Ψ implies M |= ϕ

• The calculus is sound: Ψ `Σ ϕ implies Ψ |=Σ ϕ

• The calculus is complete: Ψ |=Σ ϕ implies Ψ `Σ ϕ only if

sort generation constraints are excluded
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CASL subsorted signatures

A subsorted signature Σ = (S,TF ,PF , P,≤) consists of
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CASL subsorted signatures

A subsorted signature Σ = (S,TF ,PF , P,≤) consists of

• a many-sorted signature (S,TF ,PF , P )

• a pre-oder (reflexive transitive relation) ≤ on S

Signature morphisms are many-sorted signature morphisms

preserving the pre-order and the overloading relations
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The overloading relations

fw′,s′ ∼F fw′′,s′′ iff
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The overloading relations

fw′,s′ ∼F fw′′,s′′ iff

• there exists w with w ≤ w′ and w ≤ w′′, and

• there exists s with s′ ≤ s and s′′ ≤ s

Operation symbols that are in the overloading relation have

to be interpreted in the “same” way.
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The overloading relations

fw′,s′ ∼F fw′′,s′′ iff

• there exists w with w ≤ w′ and w ≤ w′′, and

• there exists s with s′ ≤ s and s′′ ≤ s

Operation symbols that are in the overloading relation have

to be interpreted in the “same” way.

Similarly for predicate symbols.
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Translation from subsorted to many-sorted
signatures

Construct many-sorted Σ# out of subsorted Σ as follows:

• Add injections emb: s−→s′ for s ≤ s′
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Translation from subsorted to many-sorted
signatures

Construct many-sorted Σ# out of subsorted Σ as follows:

• Add injections emb: s−→s′ for s ≤ s′

• Add partial projections proj: s′−→?s for s ≤ s′

• Add membership predicates elems : s′ for s ≤ s′

Σ# is complemented by a set of axioms J , stating injectivity

of embeddings and various compatibility conditions

(including preservation of overloading)
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Subsorted models and sentences

• are just many-sorted Σ#-models and -sentences

• satisfaction is just many-sorted satisfaction
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