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T.Mossakowski, L. Schröder: Casl; January 2007



Semantics of CASL basic specifications (recalled) 3

The CASL logic (institution)
• Signatures: a signature provides the vocabulary

• Signature morphisms: for extending and renaming

signatures

• Models: interpret the vocabulary of a signature with

mathematical objects (sets, functions, relations)

• Sentences (formulae): for axiomatizing models

denote true or false in a given model

• Terms: parts of sentences, denote data values

T.Mossakowski, L. Schröder: Casl; January 2007
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The CASL logic (institution)
• Signatures: a signature provides the vocabulary

• Signature morphisms: for extending and renaming

signatures

• Models: interpret the vocabulary of a signature with

mathematical objects (sets, functions, relations)

• Sentences (formulae): for axiomatizing models

denote true or false in a given model

• Terms: parts of sentences, denote data values

• Satisfaction of sentences in models

T.Mossakowski, L. Schröder: Casl; January 2007



Semantics of CASL basic specifications (recalled) 4

CASL many-sorted signatures

• a set S of sorts,

T.Mossakowski, L. Schröder: Casl; January 2007
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• an S∗ × S-indexed set (TFw,s)w,s∈S∗×S of total operation

symbols,

• an S∗ × S-indexed set (PFw,s)w,s∈S∗×S of partial operation

symbols, such that TFw,s ∩ PFw,s = ∅,

• an S∗-indexed set (Pw)w∈S∗ of predicate symbols

Signature morphisms map these components in a compatible

way
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Example signatures

• ΣNat = ({Nat}, {0 : Nat, succ:Nat−→Nat},
{pre:Nat−→?Nat}, ∅)

• ({Elem}, ∅, ∅, { < : Elem ∗ Elem})

• ({Elem,List},
{Nil : Elem,Cons:Elem ∗ List−→List}, ∅, ∅)
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CASL many-sorted models

For a many-sorted signature Σ = (S,TF ,PF , P ) a

many-sorted model M ∈ Mod(Σ) consists of

• a non-empty carrier set sM for each sort s ∈ S (let wM

denote the Cartesian product sM
1 × · · · × sM

n when

w = s1 . . . sn),
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CASL many-sorted models

For a many-sorted signature Σ = (S,TF ,PF , P ) a

many-sorted model M ∈ Mod(Σ) consists of

• a non-empty carrier set sM for each sort s ∈ S (let wM

denote the Cartesian product sM
1 × · · · × sM

n when

w = s1 . . . sn),

• a partial function fM from wM to sM for each function

symbol f ∈ TFw,s or f ∈ PFw,s, the function being

required to be total in the former case,

• a predicate pM ⊆ wM for each predicate symbol p ∈ Pw.
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Example ΣNat-models

• NatM = IN , 0M=0, sucM(x) = x + 1,

preM(x) =
{

x− 1, x > 0
undefined, otherwise
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• NatK = IN , 0N = K, sucK(x) = x,

preK(x) =
{

y, if TM x outputs y on input x

undefined, otherwise
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• NatK = IN , 0N = K, sucK(x) = x,

preK(x) =
{

y, if TM x outputs y on input x

undefined, otherwise

• NatF = IN → IN , 0F(x) = 0, sucF(f)(x) = f(x) + 1,

preF(f) undefined for each f
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CASL many-sorted terms

Given a signature Σ and a variable system (Xs)s∈S, the set

of terms is defined inductively as follows:

• variables x ∈ Xs are terms of sort s

• applications fw,s(t1, . . . , tn) is a term of sort s, if

f ∈ TFw,s∪PFw,s and ti is a term of sort si, w = s1 . . . sn.
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Semantics of terms

Given a Σ-model and a variable valuation ν:X−→M , the

semantics ν# of terms is defined as follows:

• variables ν#(x) = ν(x)

• applications ν#(fw,s(t1, . . . , tn)) = fM
w,s(ν

#(t1), . . . , ν#(tn))
if all components are defined (undefined otherwise)
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CASL formulae

The set of (Σ, X)-formulae is defined inductively as follows:

• strong equations t1 = t2

• existential equations t1
e= t2

• predications pw(t1, . . . , tn)

• definedness assertions def(t)

• conjunctions, disjunctions, implications, equivalences of

formulae

• universal, existential, unique-existential quantifications

T.Mossakowski, L. Schröder: Casl; January 2007
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Satisfaction of atomic formulae

A formula ϕ is satisfied in a model M w.r.t. a valuation

ν:X−→M (short notation: M,ν |= ϕ), if

• M,ν |= t1 = t2 if ν#(t1) = ν#(t2) or both sides are

undefined,

T.Mossakowski, L. Schröder: Casl; January 2007
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Satisfaction of atomic formulae

A formula ϕ is satisfied in a model M w.r.t. a valuation

ν:X−→M (short notation: M,ν |= ϕ), if

• M,ν |= t1 = t2 if ν#(t1) = ν#(t2) or both sides are

undefined,

• M,ν |= t1
e= t2 if ν#(t1) = ν#(t2) and both sides defined,

• M,ν |= pw(t1, . . . , tn)
if (ν#(t1), . . . , ν#(tn)) is defined and ∈ pM

w ,

• M,ν |= def(t) if ν#(t) is defined
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Satisfaction of compound formulae

A standard in first-order logic, i.e.

• a conjuction is satisfied iff all the conjuncts are satisfied
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Satisfaction of compound formulae

A standard in first-order logic, i.e.

• a conjuction is satisfied iff all the conjuncts are satisfied

• similar for disjunction etc.

• a universal (existential) quantification is satisfied when all

(some) of the changes of the valuation for the quantified

variable lead to satisfcation in the model:

M,ν |= ∀x : s . φ iff M, ξ |= φ for all valuation ξ that

differ from ν only on x : s
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Satisfaction of closed formulae

A closed formula (sentences) is satisfied in a model iff it is

satisfied w.r.t. the empty valuation:

M |= ϕ iff M, ∅ |= ϕ
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Sort generation constraints

A Σ-sort-generation constraint (S ′, F ′) consists of

• a set of sorts S ′ ⊆ S

• a set of (qualified) operation symbols F ′ ⊆ TF ∪ PF

M |= (S ′, F ′) iff the carriers of sorts in S ′ are generated by

terms in F ′ (with variables of sorts outside S ′)

i.e. for each s ∈ S ′, a ∈ sM , there is some term t (with

variables of sorts outside S ′) and some valuation ν with

ν#(t) = a.
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Example ΣNat-models

• NatM = IN , 0M=0, sucM(x) = x + 1,

preM(x) =
{

x− 1, x > 0
undefined, otherwise

• NatN = IN ∪ {∞}, 0N=0,

sucN(x) =
{
∞, if x = ∞
x + 1, otherwise

,

preN(x) =
{

x− 1, if 0 < x 6= ∞
undefined, otherwise

• NatT = {∗}, 0T = ∗, sucT(∗) = ∗, preT(∗) = ∗
T.Mossakowski, L. Schröder: Casl; January 2007
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• NatK = IN , 0N = K, sucK(x) = x,

preK(x) =
{

y, if TM x outputs y on input x

undefined, otherwise

• NatF = IN → IN , 0F(x) = 0, sucF(f)(x) = f(x) + 1,

preF(f) undefined for each f
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Institutions

• Basic idea: abstract away from the details of signature,

model, sentence, satisfaction.

• The semantics of Casl structured specifications is defined

for an arbitrary institution.

• first-order, higher-order, polymorphic, modal, temporal,

process, behavioural, ASM- und Z-like and object-oriented

logics have been shown to be institutions.

• Hence, you may replace the Casl institution with your

favourite institution.
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The CASL institution revisited

Given a signature morphism σ: Σ−→Σ′, Σ = (S,TF ,PF , P )
and a Σ′-model M ′, the reduct M ′|σ is defined as follows

• sM := σ(s)M ′
for s ∈ S,

• fM
w,s := σ(fw,s)M ′

for f ∈ TFw,s ∪ PFw,s,

• pM
w := σ(pw)M ′

for p ∈ Pw.

A Σ-formula ϕ is translated along σ by just replacing the

symbols in ϕ according to σ.

T.Mossakowski, L. Schröder: Casl; January 2007
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The Satisfaction Condition

Theorem

M ′ |= σ(ϕ) iff M ′|σ |= ϕ

That is:

Truth is invariant under change of notation and

enlargement of context.

T.Mossakowski, L. Schröder: Casl; January 2007
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Σ → Σ’

Sen Σ

σ

Sen Σ’

Mod Σ Mod Σ’

Sen σ

Mod σ

|=Σ |=Σ’

Signatures

Sentences

Satisfaction

Models

Institutions
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Institutions, formally
• category Sign of signatures,

• a sentence functor Sen:Sign−→Set,
• a model functor Mod:Signop−→CAT ,

• a satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ),
such that the following satisfaction condition holds:

M ′ |=Σ′ Sen(σ)(ϕ) ⇔ Mod(σ)(M)′ |=Σ ϕ

or shortly

M ′ |=Σ′ σ(ϕ) ⇔ M ′|σ |=Σ ϕ.

T.Mossakowski, L. Schröder: Casl; January 2007
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Benefits of institutions

• Institution independent semantics (and proof system) of

structured specifications, architectural specifications,

refinement, behavioural abstraction etc.

• ASMs over arbitrary institutions (Zucca 1999, TCS 216)

• Borrowing of parts of a logic from other logics

• Combination of logics

• Heterogeneous specification and tools

• Abstract model theory with deep results (Diaconescu)

T.Mossakowski, L. Schröder: Casl; January 2007
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Semantics of basic specifications

Σ ` BASIC-SPEC � (Σ′,Ψ)
Σ ` BASIC-SPEC qua SPEC � Σ′

Σ ` BASIC-SPEC � (Σ′,Ψ)
M′ = {M ∈ Mod(Σ′) | M |Σ ∈M,M |= Ψ}

Σ,M ` BASIC-SPEC qua SPEC⇒ Σ′,M′

T.Mossakowski, L. Schröder: Casl; January 2007
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Semantics of translations

Σ ` SPEC � Σ′

Σ ` SPEC with σ: Σ′−→Σ′′ � Σ′′

Σ,M ` SPEC⇒ Σ′,M′

M′′ = {M ∈ Mod(Σ′′) | M |σ ∈M′}
Σ,M ` SPEC with σ: Σ′−→Σ′′ ⇒ Σ′′,M′′

T.Mossakowski, L. Schröder: Casl; January 2007
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Semantics of reductions

Σ ` SPEC � Σ′

Σ ` SPEC hide σ: Σ′′−→Σ′ � Σ′′

Σ,M ` SPEC⇒ Σ′,M′

M′′ = {M |σ | M ∈M′}
Σ,M ` SPEC hide σ: Σ′′−→Σ′ ⇒ Σ′′,M′′

T.Mossakowski, L. Schröder: Casl; January 2007
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Semantics of extensions

Σ ` SPEC1 � Σ′

Σ′ ` SPEC2 � Σ′′

Σ ` SPEC1 then SPEC2 � Σ′′

Σ,M ` SPEC1 ⇒ Σ′,M′

Σ′,M′ ` SPEC2 ⇒ Σ′′,M′′

Σ,M ` SPEC1 then SPEC2 ⇒ Σ′′,M′′

T.Mossakowski, L. Schröder: Casl; January 2007
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Semantics of views

∅,M⊥ ` SPEC1 ⇒ Σ1,M1

∅,M⊥ ` SPEC2 ⇒ Σ2,M2

for each M ∈M2, M |σ ∈M1

` view SPEC1 to SPEC2 = σ ⇒ σ,M1,M2

T.Mossakowski, L. Schröder: Casl; January 2007
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Semantics of parameterization (simplified)
Import⊂ IFormal Parameter⊂ IBody

Import

wwwwwwwwww
⊂ IActual Parameter

σ ∪ id

H
⊂ IInstantiation

σ ∪ incl

H

The right square is required to be a pushout, that is, all

symbols shared between the body and the actual parameter

must occur also in the formal parameter.

Models: those models of the instantiation whose reducts are

models of the body and of the actual parameter.

T.Mossakowski, L. Schröder: Casl; January 2007
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Development graphs S = 〈N ,L〉
Nodes in N : (ΣN ,ΓN) with

• ΣN signature,

• ΓN ⊆ Sen(ΣN) set of local axioms.

Links in L:

• global M
σ

IN , where σ : ΣM → ΣN ,

• local M ....................
σ

IN where σ : ΣM → ΣN , or

• hiding M
σ

h
IN where σ : ΣN → ΣM

going against the direction of the link.

T.Mossakowski, L. Schröder: Casl; January 2007
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Semantics of development graphs

ModS(N) consists of those ΣN-models n for which

1. n satisfies the local axioms ΓN ,

2. for each K
σ

IN ∈ S, n|σ is a K-model,

3. for each K ....................
σ

IN ∈ S,

n|σ satisfies the local axioms ΓK,

4. for each K
σ

h
IN ∈ S,

n has a σ-expansion k (i.e. k|σ = n) that is a K-model.

T.Mossakowski, L. Schröder: Casl; January 2007
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Theorem links
Theorem links come in two versions:

• global theorem links M
σ

>N , where σ: ΣM−→ΣN ,

◦ S |= M
σ

>N iff for all n ∈ ModS(N), n|σ ∈ ModS(M).

• local theorem links M .........
σ

>N , where σ: ΣM−→ΣN ,

◦ S |= M ...........
σ

>N iff for all n ∈ ModS(N), n|σ |= ΓM .

• the calculus reduces these to local proof obligations.

T.Mossakowski, L. Schröder: Casl; January 2007
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