Software specification in CASL -The Common Algebraic Specification Language

Till Mossakowski, Lutz Schröder

January 2007

Semantics of CASL basic specifications (recalled)

• Signatures: a signature provides the vocabulary

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures
- Models: interpret the vocabulary of a signature with mathematical objects (sets, functions, relations)

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures
- Models: interpret the vocabulary of a signature with mathematical objects (sets, functions, relations)
- Sentences (formulae): for axiomatizing models denote true or false in a given model

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures
- Models: interpret the vocabulary of a signature with mathematical objects (sets, functions, relations)
- Sentences (formulae): for axiomatizing models denote true or false in a given model
- Terms: parts of sentences, denote data values

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures
- Models: interpret the vocabulary of a signature with mathematical objects (sets, functions, relations)
- Sentences (formulae): for axiomatizing models denote true or false in a given model
- Terms: parts of sentences, denote data values
- Satisfaction of sentences in models

• a set S of sorts,

- \bullet a set S of ${\rm sorts},$
- an $S^* \times S$ -indexed set $(TF_{w,s})_{w,s \in S^* \times S}$ of total operation symbols,

- \bullet a set S of ${\rm sorts},$
- an $S^* \times S$ -indexed set $(TF_{w,s})_{w,s \in S^* \times S}$ of total operation symbols,
- an $S^* \times S$ -indexed set $(PF_{w,s})_{w,s \in S^* \times S}$ of partial operation symbols, such that $TF_{w,s} \cap PF_{w,s} = \emptyset$,

- \bullet a set S of ${\rm sorts},$
- an $S^* \times S$ -indexed set $(TF_{w,s})_{w,s \in S^* \times S}$ of total operation symbols,
- an $S^* \times S$ -indexed set $(PF_{w,s})_{w,s \in S^* \times S}$ of partial operation symbols, such that $TF_{w,s} \cap PF_{w,s} = \emptyset$,
- an S^* -indexed set $(P_w)_{w \in S^*}$ of predicate symbols

Signature morphisms map these components in a compatible way

Example signatures

•
$$\Sigma^{Nat} = (\{Nat\}, \{0 : Nat, succ: Nat \longrightarrow Nat\}, \{pre: Nat \longrightarrow ?Nat\}, \emptyset)$$

•
$$(\{Elem\}, \emptyset, \emptyset, \{_- < _- : Elem * Elem\})$$

• $(\{Elem, List\}, \{Nil: Elem, Cons: Elem * List \longrightarrow List\}, \emptyset, \emptyset)$

CASL many-sorted models

For a many-sorted signature $\Sigma = (S, TF, PF, P)$ a many-sorted model $M \in Mod(\Sigma)$ consists of

• a non-empty carrier set s^M for each sort $s \in S$ (let w^M denote the Cartesian product $s_1^M \times \cdots \times s_n^M$ when $w = s_1 \dots s_n$),

CASL many-sorted models

For a many-sorted signature $\Sigma = (S, TF, PF, P)$ a many-sorted model $M \in Mod(\Sigma)$ consists of

- a non-empty carrier set s^M for each sort $s \in S$ (let w^M denote the Cartesian product $s_1^M \times \cdots \times s_n^M$ when $w = s_1 \dots s_n$),
- a partial function f^M from w^M to s^M for each function symbol $f \in TF_{w,s}$ or $f \in PF_{w,s}$, the function being required to be total in the former case,

CASL many-sorted models

For a many-sorted signature $\Sigma=(S,\,TF,\,PF,\,P)$ a many-sorted model $M\in\mathbf{Mod}(\Sigma)$ consists of

- a non-empty carrier set s^M for each sort $s \in S$ (let w^M denote the Cartesian product $s_1^M \times \cdots \times s_n^M$ when $w = s_1 \dots s_n$),
- a partial function f^M from w^M to s^M for each function symbol $f \in TF_{w,s}$ or $f \in PF_{w,s}$, the function being required to be total in the former case,

• a predicate $p^M \subseteq w^M$ for each predicate symbol $p \in P_w$.

•
$$Nat^M = I\!N$$
, $0^M = 0$, $suc^M(x) = x + 1$,
 $pre^M(x) = \begin{cases} x - 1, x > 0 \\ undefined, otherwise \end{cases}$

•
$$Nat^M = I\!N$$
, $0^M = 0$, $suc^M(x) = x + 1$,
 $pre^M(x) = \begin{cases} x - 1, x > 0 \\ undefined, otherwise \end{cases}$

•
$$Nat^N = I\!N \cup \{\infty\}, 0^N = 0,$$

 $suc^N(x) = \begin{cases} \infty, & \text{if } x = \infty \\ x+1, & \text{otherwise} \end{cases}$
 $pre^N(x) = \begin{cases} x-1, & \text{if } 0 < x \neq \infty \\ \text{undefined, otherwise} \end{cases}$

•
$$Nat^M = I\!N$$
, $0^M = 0$, $suc^M(x) = x + 1$,
 $pre^M(x) = \begin{cases} x - 1, x > 0 \\ undefined, otherwise \end{cases}$

•
$$Nat^N = I\!N \cup \{\infty\}, 0^N = 0,$$

 $suc^N(x) = \begin{cases} \infty, & \text{if } x = \infty \\ x+1, & \text{otherwise} \end{cases}$
 $pre^N(x) = \begin{cases} x-1, & \text{if } 0 < x \neq \infty \\ \text{undefined, otherwise} \end{cases}$

• $Nat^T = \{*\}, 0^T = *, suc^T(*) = *, pre^T(*) = *$

•
$$Nat^M = I\!N$$
, $0^M = 0$, $suc^M(x) = x + 1$,
 $pre^M(x) = \begin{cases} x - 1, x > 0 \\ undefined, otherwise \end{cases}$

•
$$Nat^N = I\!N \cup \{\infty\}, 0^N = 0,$$

 $suc^N(x) = \begin{cases} \infty, & \text{if } x = \infty \\ x+1, & \text{otherwise} \end{cases}$
 $pre^N(x) = \begin{cases} x-1, & \text{if } 0 < x \neq \infty \\ \text{undefined, otherwise} \end{cases}$

• $Nat^T = \{*\}, 0^T = *, suc^T(*) = *, pre^T(*) = *$

•
$$Nat^{K} = I\!N$$
, $0^{N} = K$, $suc^{K}(x) = x$,
 $pre^{K}(x) = \begin{cases} y, & \text{if TM } x \text{ outputs } y \text{ on input } x \\ undefined, & \text{otherwise} \end{cases}$

•
$$Nat^{K} = I\!N$$
, $0^{N} = K$, $suc^{K}(x) = x$,
 $pre^{K}(x) = \begin{cases} y, & \text{if TM } x \text{ outputs } y \text{ on input } x \\ undefined, & \text{otherwise} \end{cases}$

• $Nat^F = I\!N \to I\!N$, $0^F(x) = 0$, $suc^F(f)(x) = f(x) + 1$, $pre^F(f)$ undefined for each f

8

CASL many-sorted terms

Given a signature Σ and a variable system $(X_s)_{s \in S}$, the set of terms is defined inductively as follows:

• variables $x \in X_s$ are terms of sort s

CASL many-sorted terms

Given a signature Σ and a variable system $(X_s)_{s \in S}$, the set of terms is defined inductively as follows:

- variables $x \in X_s$ are terms of sort s
- applications $f_{w,s}(t_1, \ldots, t_n)$ is a term of sort s, if $f \in TF_{w,s} \cup PF_{w,s}$ and t_i is a term of sort s_i , $w = s_1 \ldots s_n$.

Semantics of terms

Given a Σ -model and a variable valuation $\nu\colon X \longrightarrow M$, the semantics $\nu^{\#}$ of terms is defined as follows:

• variables
$$\nu^{\#}(x) = \nu(x)$$

Semantics of terms

Given a Σ -model and a variable valuation $\nu: X \longrightarrow M$, the semantics $\nu^{\#}$ of terms is defined as follows:

- variables $\nu^{\#}(x) = \nu(x)$
- applications $\nu^{\#}(f_{w,s}(t_1, \ldots, t_n)) = f_{w,s}^M(\nu^{\#}(t_1), \ldots, \nu^{\#}(t_n))$ if all components are defined (undefined otherwise)

The set of (Σ, X) -formulae is defined inductively as follows:

• strong equations $t_1 = t_2$

- strong equations $t_1 = t_2$
- existential equations $t_1 \stackrel{\text{e}}{=} t_2$

- strong equations $t_1 = t_2$
- existential equations $t_1 \stackrel{\text{e}}{=} t_2$
- predications $p_w(t_1, \ldots, t_n)$

- strong equations $t_1 = t_2$
- existential equations $t_1 \stackrel{\text{e}}{=} t_2$
- predications $p_w(t_1, \ldots, t_n)$
- definedness assertions def(t)

- strong equations $t_1 = t_2$
- existential equations $t_1 \stackrel{\text{e}}{=} t_2$
- predications $p_w(t_1, \ldots, t_n)$
- definedness assertions def(t)
- conjunctions, disjunctions, implications, equivalences of formulae

- strong equations $t_1 = t_2$
- existential equations $t_1 \stackrel{\text{e}}{=} t_2$
- predications $p_w(t_1,\ldots,t_n)$
- definedness assertions def(t)
- conjunctions, disjunctions, implications, equivalences of formulae
- universal, existential, unique-existential quantifications

A formula φ is satisfied in a model M w.r.t. a valuation $\nu: X \longrightarrow M$ (short notation: $M, \nu \models \varphi$), if

M, ν ⊨ t₁ = t₂ if ν[#](t₁) = ν[#](t₂) or both sides are undefined,

A formula φ is satisfied in a model M w.r.t. a valuation $\nu: X \longrightarrow M$ (short notation: $M, \nu \models \varphi$), if

- M, ν ⊨ t₁ = t₂ if ν[#](t₁) = ν[#](t₂) or both sides are undefined,
- $M, \nu \models t_1 \stackrel{e}{=} t_2$ if $\nu^{\#}(t_1) = \nu^{\#}(t_2)$ and both sides defined,

A formula φ is satisfied in a model M w.r.t. a valuation $\nu: X \longrightarrow M$ (short notation: $M, \nu \models \varphi$), if

- $M, \nu \models t_1 = t_2$ if $\nu^{\#}(t_1) = \nu^{\#}(t_2)$ or both sides are undefined,
- $M, \nu \models t_1 \stackrel{e}{=} t_2$ if $\nu^{\#}(t_1) = \nu^{\#}(t_2)$ and both sides defined,
- $M, \nu \models p_w(t_1, \dots, t_n)$ if $(\nu^{\#}(t_1), \dots, \nu^{\#}(t_n))$ is defined and $\in p_w^M$,

A formula φ is satisfied in a model M w.r.t. a valuation $\nu: X \longrightarrow M$ (short notation: $M, \nu \models \varphi$), if

- $M, \nu \models t_1 = t_2$ if $\nu^{\#}(t_1) = \nu^{\#}(t_2)$ or both sides are undefined,
- $M, \nu \models t_1 \stackrel{e}{=} t_2$ if $\nu^{\#}(t_1) = \nu^{\#}(t_2)$ and both sides defined,
- $M, \nu \models p_w(t_1, \dots, t_n)$ if $(\nu^{\#}(t_1), \dots, \nu^{\#}(t_n))$ is defined and $\in p_w^M$,
- $M, \nu \models def(t)$ if $\nu^{\#}(t)$ is defined

12

Satisfaction of compound formulae

A standard in first-order logic, i.e.

• a conjuction is satisfied iff all the conjuncts are satisfied

Satisfaction of compound formulae

A standard in first-order logic, i.e.

- a conjuction is satisfied iff all the conjuncts are satisfied
- similar for disjunction etc.

Satisfaction of compound formulae

A standard in first-order logic, i.e.

- a conjuction is satisfied iff all the conjuncts are satisfied
- similar for disjunction etc.
- a universal (existential) quantification is satisfied when all (some) of the changes of the valuation for the quantified variable lead to satisfcation in the model:
 M, ν ⊨ ∀x : s. φ iff M, ξ ⊨ φ for all valuation ξ that differ from ν only on x : s

Satisfaction of closed formulae

A closed formula (sentences) is satisfied in a model iff it is satisfied w.r.t. the empty valuation:

$$M\models\varphi \text{ iff }M,\emptyset\models\varphi$$

A $\Sigma\text{-}\mathsf{sort-generation}$ constraint (S',F') consists of

A $\Sigma\text{-}\mathsf{sort-generation}$ constraint (S',F') consists of

 \bullet a set of sorts $S'\subseteq S$

A $\Sigma\text{-}\mathsf{sort-generation}$ constraint (S',F') consists of

- \bullet a set of sorts $S'\subseteq S$
- a set of (qualified) operation symbols $F' \subseteq TF \cup PF$

A $\Sigma\text{-}\mathsf{sort-generation}$ constraint (S',F') consists of

- \bullet a set of sorts $S'\subseteq S$
- a set of (qualified) operation symbols $F' \subseteq TF \cup PF$

 $M \models (S', F')$ iff the carriers of sorts in S' are generated by terms in F' (with variables of sorts outside S')

A $\Sigma\text{-}\mathsf{sort-generation}$ constraint (S',F') consists of

- \bullet a set of sorts $S'\subseteq S$
- a set of (qualified) operation symbols $F' \subseteq TF \cup PF$

 $M \models (S', F')$ iff the carriers of sorts in S' are generated by terms in F' (with variables of sorts outside S') i.e. for each $s \in S'$, $a \in s^M$, there is some term t (with variables of sorts outside S') and some valuation ν with $\nu^{\#}(t) = a$.

•
$$Nat^M = I\!N$$
, $0^M = 0$, $suc^M(x) = x + 1$,
 $pre^M(x) = \begin{cases} x - 1, x > 0 \\ undefined, otherwise \end{cases}$

•
$$Nat^N = I\!N \cup \{\infty\}, 0^N = 0,$$

 $suc^N(x) = \begin{cases} \infty, & \text{if } x = \infty \\ x+1, & \text{otherwise} \end{cases}$
 $pre^N(x) = \begin{cases} x-1, & \text{if } 0 < x \neq \infty \\ \text{undefined, otherwise} \end{cases}$

•
$$Nat^{T} = \{*\}, 0^{T} = *, suc^{T}(*) = *, pre^{T}(*) = *$$

•
$$Nat^{K} = I\!N$$
, $0^{N} = K$, $suc^{K}(x) = x$,
 $pre^{K}(x) = \begin{cases} y, & \text{if TM } x \text{ outputs } y \text{ on input } x \\ undefined, & \text{otherwise} \end{cases}$

• $Nat^F = I\!\!N \to I\!\!N$, $0^F(x) = 0$, $suc^F(f)(x) = f(x) + 1$, $pre^F(f)$ undefined for each f

Semantics of CASL Structured Specifications

Institutions

- Basic idea: abstract away from the details of signature, model, sentence, satisfaction.
- The semantics of CASL structured specifications is defined for an arbitrary institution.
- first-order, higher-order, polymorphic, modal, temporal, process, behavioural, ASM- und Z-like and object-oriented logics have been shown to be institutions.
- Hence, you may replace the CASL institution with your favourite institution.

The CASL institution revisited

Given a signature morphism $\sigma: \Sigma \longrightarrow \Sigma'$, $\Sigma = (S, TF, PF, P)$ and a Σ' -model M', the reduct $M'|_{\sigma}$ is defined as follows

•
$$s^M:=\sigma(s)^{M'}$$
 for $s\in S$,

•
$$f_{w,s}^M := \sigma(f_{w,s})^{M'}$$
 for $f \in TF_{w,s} \cup PF_{w,s}$,

•
$$p_w^M := \sigma(p_w)^{M'}$$
 for $p \in P_w$.

A Σ -formula φ is translated along σ by just replacing the symbols in φ according to σ .

The Satisfaction Condition

Theorem

$$M'\models\sigma(\varphi) \text{ iff } M'|_{\sigma}\models\varphi$$

That is:

Truth is invariant under change of notation and enlargement of context.

21

Institutions, formally

- category Sign of signatures,
- a sentence functor $\mathbf{Sen}: \mathbf{Sign} \longrightarrow \mathbf{Set}$,
- a model functor $\mathbf{Mod}: \mathbf{Sign}^{op} \longrightarrow \mathcal{CAT}$,
- a satisfaction relation $\models_{\Sigma} \subseteq |\mathbf{Mod}(\Sigma)| \times \mathbf{Sen}(\Sigma)$,

such that the following satisfaction condition holds:

 $M' \models_{\Sigma'} \mathbf{Sen}(\sigma)(\varphi) \Leftrightarrow \mathbf{Mod}(\sigma)(M)' \models_{\Sigma} \varphi$

or shortly

$$M'\models_{\Sigma'} \sigma(\varphi) \Leftrightarrow M'|_{\sigma}\models_{\Sigma} \varphi.$$

Benefits of institutions

- Institution independent semantics (and proof system) of structured specifications, architectural specifications, refinement, behavioural abstraction etc.
- ASMs over arbitrary institutions (Zucca 1999, TCS 216)
- Borrowing of parts of a logic from other logics
- Combination of logics
- Heterogeneous specification and tools
- Abstract model theory with deep results (Diaconescu)

Semantics of basic specifications

$\Sigma \vdash \mathsf{BASIC-SPEC} \vartriangleright (\Sigma', \Psi)$

 $\Sigma \vdash \texttt{BASIC-SPEC} \ qua \ \texttt{SPEC} \vartriangleright \Sigma'$

$$\begin{split} \Sigma \vdash \texttt{BASIC-SPEC} \succ (\Sigma', \Psi) \\ \mathcal{M}' &= \{ M \in \mathbf{Mod}(\Sigma') \mid M|_{\Sigma} \in \mathcal{M}, M \models \Psi \} \\ \\ \overline{\Sigma, \mathcal{M} \vdash \texttt{BASIC-SPEC} \; qua \; \texttt{SPEC} \Rightarrow \Sigma', \mathcal{M}'} \end{split}$$

Semantics of translations

$$\frac{\Sigma \vdash \text{SPEC} \vartriangleright \Sigma'}{\Sigma \vdash \text{SPEC with } \sigma \colon \Sigma' \longrightarrow \Sigma'' \vartriangleright \Sigma''}$$

$$\Sigma, \mathcal{M} \vdash \mathsf{SPEC} \Rightarrow \Sigma', \mathcal{M}'$$
$$\mathcal{M}'' = \{ M \in \mathbf{Mod}(\Sigma'') \mid M|_{\sigma} \in \mathcal{M}' \}$$
$$\overline{\Sigma, \mathcal{M} \vdash \mathsf{SPEC} \text{ with } \sigma: \Sigma' \longrightarrow \Sigma'' \Rightarrow \Sigma'', \mathcal{M}''}$$

Semantics of reductions

$$\frac{\Sigma \vdash \text{SPEC} \vartriangleright \Sigma'}{\Sigma \vdash \text{SPEC hide } \sigma : \Sigma'' \longrightarrow \Sigma' \vartriangleright \Sigma''}$$

$$\begin{split} \Sigma, \mathcal{M} \vdash \mathsf{SPEC} \Rightarrow \Sigma', \mathcal{M}' \\ \mathcal{M}'' &= \{ M|_{\sigma} \mid M \in \mathcal{M}' \} \\ \hline \Sigma, \mathcal{M} \vdash \mathsf{SPEC} \text{ hide } \sigma : \Sigma'' \longrightarrow \Sigma' \Rightarrow \Sigma'', \mathcal{M}'' \end{split}$$

Semantics of extensions

 $\Sigma \vdash \mathsf{SPEC}_1 \vartriangleright \Sigma'$ $\Sigma' \vdash \mathsf{SPEC}_2 \vartriangleright \Sigma''$

 $\Sigma \vdash \text{SPEC}_1$ then $\text{SPEC}_2 \triangleright \Sigma''$

$$\Sigma, \mathcal{M} \vdash \operatorname{SPEC}_1 \Rightarrow \Sigma', \mathcal{M}'$$
$$\Sigma', \mathcal{M}' \vdash \operatorname{SPEC}_2 \Rightarrow \Sigma'', \mathcal{M}''$$
$$\overline{\Sigma, \mathcal{M} \vdash \operatorname{SPEC}_1 \text{ then } \operatorname{SPEC}_2 \Rightarrow \Sigma'', \mathcal{M}''}$$

Semantics of views

$$\begin{split} \emptyset, \mathcal{M}_{\perp} \vdash \mathtt{SPEC}_1 \Rightarrow \Sigma_1, \mathcal{M}_1 \\ \emptyset, \mathcal{M}_{\perp} \vdash \mathtt{SPEC}_2 \Rightarrow \Sigma_2, \mathcal{M}_2 \\ \texttt{for each } M \in \mathcal{M}_2, \ M|_{\sigma} \in \mathcal{M}_1 \end{split}$$

 \vdash view SPEC₁ to SPEC₂ = $\sigma \Rightarrow \sigma, \mathcal{M}_1, \mathcal{M}_2$

The right square is required to be a pushout, that is, all symbols shared between the body and the actual parameter must occur also in the formal parameter.

Models: those models of the instantiation whose reducts are models of the body and of the actual parameter.

Development graphs $\mathcal{S} = \langle \mathcal{N}, \mathcal{L} \rangle$

Nodes in $\mathcal{N} \colon (\Sigma^N, \Gamma^N)$ with

- Σ^N signature,
- $\Gamma^N \subseteq \mathbf{Sen}(\Sigma^N)$ set of local axioms.

Links in \mathcal{L} :

• global
$$M \longrightarrow N$$
, where $\sigma : \Sigma^M \to \Sigma^N$,

• local M $\blacktriangleright N$ where $\sigma: \Sigma^M \to \Sigma^N$, or

• hiding $M \xrightarrow{\sigma} N$ where $\sigma : \Sigma^N \to \Sigma^M$ going against the direction of the link.

Semantics of development graphs

 $\mathbf{Mod}_{S}(N)$ consists of those Σ^{N} -models n for which

1. n satisfies the local axioms Γ^N ,

2. for each $K \longrightarrow N \in S$, $n|_{\sigma}$ is a K-model,

3. for each
$$K$$
 $\longrightarrow N \in S$,
 $n|_{\sigma}$ satisfies the local axioms Γ^{K} ,
4. for each $K \xrightarrow{\sigma}{h} N \in S$,

n has a σ -expansion k (i.e. $k|_{\sigma} = n$) that is a K-model.

Theorem links

Theorem links come in two versions:

• global theorem links $M \xrightarrow{\sigma} N$, where $\sigma: \Sigma^M \longrightarrow \Sigma^N$,

 $\circ \mathcal{S} \models M \xrightarrow{\sigma} N \text{ iff for all } n \in \mathbf{Mod}_S(N), \ n|_{\sigma} \in \mathbf{Mod}_S(M).$

• local theorem links $M \xrightarrow{\sigma} N$, where $\sigma: \Sigma^M \longrightarrow \Sigma^N$,

 $\circ \mathcal{S} \models M \xrightarrow{\sigma} N \text{ iff for all } n \in \mathbf{Mod}_S(N), \ n|_{\sigma} \models \Gamma^M.$

• the calculus reduces these to local proof obligations.