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Semantics of CASL basic specifications (recalled)

The CASL logic (institution)

e Signatures: a signature provides the vocabulary

e Signature morphisms: for extending and renaming
signatures

e Models: interpret the vocabulary of a signature with
mathematical objects (sets, functions, relations)

e Sentences (formulae): for axiomatizing models
denote true or false in a given model

e [erms: parts of sentences, denote data values

e Satisfaction of sentences in models
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Semantics of CASL basic specifications (recalled) 4

CASL many-sorted signatures

® a set S of sorts,

e an S* x S-indexed set (T'F, s)w scs*xs of total operation
symbols,

e an S* x S-indexed set (PFy, s)w ses*xs Of partial operation
symbols, such that TF, ;N PF, ; =0,

e an S*-indexed set (P,),cs+ of predicate symbols

Signature morphisms map these components in a compatible
way

T.MossakOWSki, L. Schroder: CASL, January 2007 ’.smmcocumou



Semantics of CASL basic specifications (recalled)

Example signatures

o YN — (fNat}, {0 : Nat, succ: Nat — Nat},
{pre: Nat —?Nat}, ()

e ({Elem},0,0,{__ < __: Elem x Elem})

o ({Flem, List},
{Nil : Elem,Cons: Elem * List — List}, (), D)
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CASL many-sorted models

For a many-sorted signature > = (S, TF, PF, P) a
many-sorted model M € Mod(>) consists of

e a non-empty carrier set s for each sort s € S (let w¥

denote the Cartesian product s x --- x s when

W= 81...5),
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CASL many-sorted models

For a many-sorted signature > = (S, TF, PF, P) a
many-sorted model M € Mod(>) consists of

e a non-empty carrier set s for each sort s € S (let w¥

denote the Cartesian product s x --- x s when

W= 81...5),

e a partial function fM from w™ to s™ for each function
symbol f € TF,, s or f € PF, ;, the function being
required to be total in the former case,

e a predicate p™ C w for each predicate symbol p € P,,.
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Example X"“-models
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vy Jx—1,2>0
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o Nath = IN, 0 = K, suct(z) = «,
Y, if TM x outputs y on input x

K(.\ _
prev(z) = undefined, otherwise
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Semantics of CASL basic specifications (recalled)

o Nath = IN, 0 = K, suct(z) = «,

K/ )Y, if TM x outputs y on input x
pret(z) = { undefined, otherwise

e Nat! = IN — IN, 0/ (z) =0, suc” (f)(z) = f(x) + 1,
pref’ (f) undefined for each f
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CASL many-sorted terms

Given a signature X and a variable system (X;)cg, the set
of terms is defined inductively as follows:

e variables x € X, are terms of sort s
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CASL many-sorted terms

Given a signature X and a variable system (X;)cg, the set
of terms is defined inductively as follows:

e variables x € X, are terms of sort s

e applications fy, s(t1,...,t,) is a term of sort s, if
feTF,;UPF,andt;is aterm of sort s;, w =51 ...85),.
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10

Semantics of terms

Given a Y-model and a variable valuation v: X — M, the
semantics v# of terms is defined as follows:

e variables v (z) = v(z)
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Semantics of terms

Given a Y-model and a variable valuation v: X — M, the
semantics v# of terms is defined as follows:

e variables v (z) = v(z)

e applications V#(fw,s(tl, o tn)) = %S(V#(tl), LU (t))
if all components are defined (undefined otherwise)
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11

CASL formulae

The set of (3, X )-formulae is defined inductively as follows:

e strong equations t1 = 9
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CASL formulae

The set of (3, X )-formulae is defined inductively as follows:
e strong equations t1 = 9

e existential equations t; = 5

e predications py(t1,...,t,)

e definedness assertions def(t)

e conjunctions, disjunctions, implications, equivalences of
formulae
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CASL formulae

The set of (3, X )-formulae is defined inductively as follows:
e strong equations t1 = 9

e existential equations t; = 5

e predications py(t1,...,t,)

e definedness assertions def(t)

e conjunctions, disjunctions, implications, equivalences of
formulae

e universal, existential, unique-existential quantifications
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Satisfaction of atomic formulae

A formula ¢ is satisfied in a model M w.r.t. a valuation
v: X — M (short notation: M, v = ), if

o M. v

— ¢, = ty if V7 (1) = v7(t3) or both sides are

undefined,

T.MossakOWSki, L. Schroder: CASL, January 2007 ’.smmcocumou



Semantics of CASL basic specifications (recalled)

12

Satisfaction of atomic formulae

A formula ¢ is satisfied in a model M w.r.t. a valuation
v: X — M (short notation: M, v = ), if

o M,v =t =ty if v7(t;) = 17 (t2) or both sides are
undefined,

o M,v =1t =ty if v7(t1) = 17 (t2) and both sides defined,

T.Mossakowski, L. Schroder: CASL; January 2007 i coonmon



Semantics of CASL basic specifications (recalled)

12

Satisfaction of atomic formulae

A formula ¢ is satisfied in a model M w.r.t. a valuation
v: X — M (short notation: M, v = ), if

o M,v =t =ty if v7(t;) = 17 (t2) or both sides are
undefined,

o M,v =1t =ty if v7(t1) = 17 (t2) and both sides defined,

~ M,V :pw(tlaatn)
if (v7(t1),...,v7(t,)) is defined and € p,

T.Mossakowski, L. Schroder: CASL; January 2007 i coonmon



Semantics of CASL basic specifications (recalled)

12

Satisfaction of atomic formulae

A formula ¢ is satisfied in a model M w.r.t. a valuation
v: X — M (short notation: M, v = ), if

o M,v =t =ty if v7(t;) = 17 (t2) or both sides are
undefined,

o M,v =1t =ty if v7(t1) = 17 (t2) and both sides defined,

~ M,V _pw(tb“ 7tn)
if (v7(t1),...,v7(t,)) is defined and € p,

)
o M,v = def(t) if v7(t) is defined
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13

Satisfaction of compound formulae

A standard in first-order logic, i.e.

e a conjuction is satisfied iff all the conjuncts are satisfied

T.MossakOWSki, L. Schroder: CASL, January 2007 ’.smm GNITION



Semantics of CASL basic specifications (recalled)

13

Satisfaction of compound formulae

A standard in first-order logic, i.e.

e a conjuction is satisfied iff all the conjuncts are satisfied

e similar for disjunction etc.

T.MossakOWSki, L. Schroder: CASL, January 2007 ’.smm GNITION



Semantics of CASL basic specifications (recalled) 13

Satisfaction of compound formulae

A standard in first-order logic, i.e.

e a conjuction is satisfied iff all the conjuncts are satisfied
e similar for disjunction etc.

e a universal (existential) quantification is satisfied when all
(some) of the changes of the valuation for the quantified
variable lead to satisfcation in the model:

M,v =Vx:s. ¢ iff M,& = ¢ for all valuation ¢ that
differ from v only on z : s
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Satisfaction of closed formulae

A closed formula (sentences) is satisfied in a model iff it is
satisfied w.r.t. the empty valuation:

MEpift M,0 = ¢
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Sort generation constraints
A Y-sort-generation constraint (S’, F') consists of
e a set of sorts S’ C S

e a set of (qualified) operation symbols F' C TF U PF

M = (S', F') iff the carriers of sorts in S are generated by
terms in I’ (with variables of sorts outside S’)
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15

Sort generation constraints

A Y-sort-generation constraint (S’, F') consists of

e aset of sorts 8" C S

e a set of (qualified) operation symbols F' C TF U PF

M = (S', F') iff the carriers of sorts in S are generated by
terms in I’ (with variables of sorts outside S’)
i.e. for each s € S, a € sM, there is some term ¢ (with

variables of sorts outside S’) and some valuation v with
V7 (t) = a.
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16

Example X"“-models

e Nat¥ = IN, 0M=0, sucM(z) =z +1,
vy Jx—1,2>0
pre”(z) = { undefined, otherwise

e Nat = IN U {OO}, 0V=0,

N 00, if £ = o0
— < ] :
suc” (x) .z + 1, otherwise
N [z — 1, if 0 <2z # oo
= < : :
pre”(z) | undefined, otherwise

o Nat! = {x}, 01 = %, suc’ (x) = *, pre! (x) = x
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17

o Nath = IN, 0 = K, suct(z) = «,

pret (z) = { /

if TM x outputs y on input x

undefined, otherwise

e Nat! = IN — IN, 0/ (z) =0, suc” (f)(z) = f(x) + 1,
pref’ (f) undefined for each f
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Institutions

e Basic idea: abstract away from the details of signature,
model, sentence, satisfaction.

e The semantics of CASL structured specifications is defined
for an arbitrary institution.

e first-order, higher-order, polymorphic, modal, temporal,
orocess, behavioural, ASM- und Z-like and object-oriented
ogics have been shown to be institutions.

e Hence, you may replace the CASL institution with your
favourite institution.
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The CASL institution revisited
Given a signature morphism o: ¥ —3%', 3 = (S, TF, PF, P)
and a X'-model M’, the reduct M’|, is defined as follows
o sM:=g(s)M forse S,

o fM = o(f, ) for f € TF, ,UPF,.,

w,Ss

o pM = g(p,)™ forp € P,

A X-formula ¢ is translated along o by just replacing the
symbols in ¢ according to o.
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Semantics of CASL Structured Specifications

The Satisfaction Condition

Theorem
M'" = o(p) iff M'|, = ¢
That Is:
Truth is invariant under change of notation and
enlargement of context.
T.Mossakowski, L. Schroder: CAsL; January 2007 P co
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| nstitutions

Signatures

Sen o

Satisfaction —

‘ .

Mod o
Models

T.Mossakowski, L. Schroder: CASL; January 2007
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Institutions, formally

e category Sign of signatures,

e a sentence functor Sen: Sign — Set,
e a model functor Mod: Sign”” — CAT,

e a satisfaction relation

—y C |[Mod(X)| x Sen(X),

such that the following satisfaction condition holds:

M/

or shortly

=y Sen(c)(p) < Mod(o)(M)’

M sy o(p) & Mo s @

M

T.Mossakowski, L. Schroder: CASL; January 2007
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Benefits of institutions

e Institution independent semantics (and proof system) of
structured specifications, architectural specifications,
refinement, behavioural abstraction etc.

e ASMs over arbitrary institutions (Zucca 1999, TCS 216)
e Borrowing of parts of a logic from other logics

e Combination of logics

e Heterogeneous specification and tools

e Abstract model theory with deep results (Diaconescu)

T.MossakOWSki, L. Schroder: CASL, January 2007 ’.smmcocumou
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Semantics of basic specifications

> I BASIC-SPEC > (X', U)

>} - BASIC-SPEC qua SPEC > Y

>, + BASIC-SPEC > (X', )
M ={M € Mod(X)) | M|s € M, M

:\IJ}

>, M F BASIC-SPEC qua SPEC = X/, M’

T.Mossakowski, L. Schroder: CASL; January 2007



Semantics of CASL Structured Specifications

26

Semantics of translations

> F SPEC > Y
> F SPEC with o: Y/ —Y" > Y

>, M - SPEC = X/, M’
M"={M € Mod(X") | M|, € M’}

>, M F SPEC with ¢: Y —>" = " M"

T.Mossakowski, L. Schroder: CASL; January 2007
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Semantics of reductions

> F SPEC > Y
> F SPEC hide o: Y/ — >/ > Y

>, M - SPEC = X/, M’
M'={M|,| M € M’}

>, M F SPEC hide ¢: X" — Y = " M"

T.Mossakowski, L. Schroder: CASL; January 2007
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Semantics of extensions

> + SPEC; > >/
> SPEC, > X"

>) F SPEC; then SPEC, > "

>, M SPEC; = X/, M’
> M'F SPEC, = X", M"

>, M F SPEC; then SPEC; = X", M”

T.Mossakowski, L. Schroder: CASL; January 2007
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Semantics of views

@,MJ_ - SPEC; = 21,M1
0, M| F SPECy = X9, M5
for each M € My, M|, € M,

- view SPEC; to SPEC; = 0 = o, M, M,

T.Mossakowski, L. Schroder: CASL; January 2007
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Semantics of parameterization (simplified)
Import —— Formal Parameter———» Body

o Ud o Uncl

v \/
Import —— Actual Parameter~» Instantiation

The right square Is required to be a pushout, that is, all
symbols shared between the body and the actual parameter
must occur also in the formal parameter.

Models: those models of the instantiation whose reducts are
models of the body and of the actual parameter.

T.Mossakowski, L. Schroder: CASL; January 2007 i coonmon
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Development graphs S = (N, L)
Nodes in NV: (2, T'V) with

o X% signature,

e I''V C Sen(X") set of local axioms.

Links in L:

e global M ’ » N, where 0 : ¥ — 32NV
o

o local M - » N where o : M — ¥V or

o hiding M Z > N where o : BN — ¥M

going against the direction of the link.

T.Mossakowski, L. Schroder: CASL; January 2007
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Semantics of development graphs

Modg(NN) consists of those Y*Y-models n for which

1. n satisfies the local axioms I'"V,

2. for each K W Ne S, n|, is a K-model,

3_ for eachK ................... ’NES’
n|, satisfies the local axioms I'%,

4. for each K Z » N c S,

n has a o-expansion k (i.e. k|, = n) that is a K-model.
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Theorem links

Theorem links come in two versions:
| o
e global theorem links M ——= N, where o: ¥ — 3V,
0 Sl= M—">N iff for all n € Modg(N), n|, € Modg(M).

o
e |ocal theorem links M ------ >N . where g: XM — 3N

o

0 S | M N iff for all n € Modg(N), n|, = I'M.

e the calculus reduces these to local proof obligations.
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