Software specification in CASL The Common Algebraic Specification Language

Till Mossakowski, Lutz Schröder

Semantics of CASL basic specifications (recalled)

The CASL logic (institution)

- Signatures: a signature provides the vocabulary

The CASL logic (institution)

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures

The CASL logic (institution)

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures
- Models: interpret the vocabulary of a signature with mathematical objects (sets, functions, relations)

The CASL logic (institution)

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures
- Models: interpret the vocabulary of a signature with mathematical objects (sets, functions, relations)
- Sentences (formulae): for axiomatizing models denote true or false in a given model

The CASL logic (institution)

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures
- Models: interpret the vocabulary of a signature with mathematical objects (sets, functions, relations)
- Sentences (formulae): for axiomatizing models denote true or false in a given model
- Terms: parts of sentences, denote data values

The CASL logic (institution)

- Signatures: a signature provides the vocabulary
- Signature morphisms: for extending and renaming signatures
- Models: interpret the vocabulary of a signature with mathematical objects (sets, functions, relations)
- Sentences (formulae): for axiomatizing models denote true or false in a given model
- Terms: parts of sentences, denote data values
- Satisfaction of sentences in models

CASL many-sorted signatures

- a set S of sorts,

CASL many-sorted signatures

- a set S of sorts,
- an $S^{*} \times S$-indexed set $\left(T F_{w, s}\right)_{w, s \in S^{*} \times S}$ of total operation symbols,

CASL many-sorted signatures

- a set S of sorts,
- an $S^{*} \times S$-indexed set $\left(T F_{w, s}\right)_{w, s \in S^{*} \times S}$ of total operation symbols,
- an $S^{*} \times S$-indexed set $\left(P F_{w, s}\right)_{w, s \in S^{*} \times S}$ of partial operation symbols, such that $T F_{w, s} \cap P F_{w, s}=\emptyset$,

CASL many-sorted signatures

- a set S of sorts,
- an $S^{*} \times S$-indexed set $\left(T F_{w, s}\right)_{w, s \in S^{*} \times S}$ of total operation symbols,
- an $S^{*} \times S$-indexed set $\left(P F_{w, s}\right)_{w, s \in S^{*} \times S}$ of partial operation symbols, such that $T F_{w, s} \cap P F_{w, s}=\emptyset$,
- an S^{*}-indexed set $\left(P_{w}\right)_{w \in S^{*}}$ of predicate symbols

Signature morphisms map these components in a compatible way

Example signatures

- $\Sigma^{N a t}=(\{N a t\},\{0: N a t$, succ: $N a t \longrightarrow N a t\}$, $\{p r e: N a t \longrightarrow ? N a t\}, \emptyset)$
- $(\{$ Elem $\}, \emptyset, \emptyset,\{--<--:$ Elem $*$ Elem $\})$
- (\{Elem, List $\}$,

$$
\{\text { Nil : Elem, Cons: Elem } * \text { List } \longrightarrow \text { List }\}, \emptyset, \emptyset)
$$

CASL many-sorted models

For a many-sorted signature $\Sigma=(S, T F, P F, P)$ a many-sorted model $M \in \operatorname{Mod}(\Sigma)$ consists of

- a non-empty carrier set s^{M} for each sort $s \in S$ (let w^{M} denote the Cartesian product $s_{1}^{M} \times \cdots \times s_{n}^{M}$ when $\left.w=s_{1} \ldots s_{n}\right)$,

CASL many-sorted models

For a many-sorted signature $\Sigma=(S, T F, P F, P)$ a many-sorted model $M \in \operatorname{Mod}(\Sigma)$ consists of

- a non-empty carrier set s^{M} for each sort $s \in S$ (let w^{M} denote the Cartesian product $s_{1}^{M} \times \cdots \times s_{n}^{M}$ when $\left.w=s_{1} \ldots s_{n}\right)$,
- a partial function f^{M} from w^{M} to s^{M} for each function symbol $f \in T F_{w, s}$ or $f \in P F_{w, s}$, the function being required to be total in the former case,

CASL many-sorted models

For a many-sorted signature $\Sigma=(S, T F, P F, P)$ a many-sorted model $M \in \operatorname{Mod}(\Sigma)$ consists of

- a non-empty carrier set s^{M} for each sort $s \in S$ (let w^{M} denote the Cartesian product $s_{1}^{M} \times \cdots \times s_{n}^{M}$ when $\left.w=s_{1} \ldots s_{n}\right)$,
- a partial function f^{M} from w^{M} to s^{M} for each function symbol $f \in T F_{w, s}$ or $f \in P F_{w, s}$, the function being required to be total in the former case,
- a predicate $p^{M} \subseteq w^{M}$ for each predicate symbol $p \in P_{w}$.

Example $\Sigma^{N a t}$-models

- $N a t^{M}=\mathbb{N}, 0^{M}=0, \operatorname{suc}^{M}(x)=x+1$,

$$
\operatorname{pr}^{M}(x)=\left\{\begin{array}{l}
x-1, x>0 \\
\text { undefined, otherwise }
\end{array}\right.
$$

Example $\Sigma^{N a t}$-models

- $N a t^{M}=I N, 0^{M}=0, \operatorname{suc}^{M}(x)=x+1$, $\operatorname{pre}^{M}(x)=\left\{\begin{array}{l}x-1, x>0 \\ \text { undefined, otherwise }\end{array}\right.$
- $N a t^{N}=\mathbb{N} \cup\{\infty\}, 0^{N}=0$,
$\operatorname{suc}^{N}(x)=\left\{\begin{array}{ll}\infty, & \text { if } x=\infty \\ x+1, & \text { otherwise }\end{array}\right.$,
$\operatorname{pr}^{N}(x)= \begin{cases}x-1, & \text { if } 0<x \neq \infty \\ \text { undefined, } & \text { otherwise }\end{cases}$

Example $\Sigma^{N a t}$-models

- $N a t^{M}=I N, 0^{M}=0, \operatorname{suc}^{M}(x)=x+1$, pre $^{M}(x)=\left\{\begin{array}{l}x-1, x>0 \\ \text { undefined, otherwise }\end{array}\right.$
- $N a t^{N}=\mathbb{N} \cup\{\infty\}, 0^{N}=0$,

$$
\operatorname{suc}^{N}(x)= \begin{cases}\infty, & \text { if } x=\infty \\ x+1, & \text { otherwise }\end{cases}
$$

$$
\operatorname{pre}^{N}(x)= \begin{cases}x-1, & \text { if } 0<x \neq \infty \\ \text { undefined, }, & \text { otherwise }\end{cases}
$$

- $\operatorname{Nat}^{T}=\{*\}, 0^{T}=*, \operatorname{suc}^{T}(*)=*, \operatorname{pre}^{T}(*)=*$

Example $\Sigma^{N a t}$-models

- $N a t^{M}=I N, 0^{M}=0, \operatorname{suc}^{M}(x)=x+1$, pre $^{M}(x)=\left\{\begin{array}{l}x-1, x>0 \\ \text { undefined, otherwise }\end{array}\right.$
- $N a t^{N}=\mathbb{N} \cup\{\infty\}, 0^{N}=0$,

$$
\operatorname{suc}^{N}(x)= \begin{cases}\infty, & \text { if } x=\infty \\ x+1, & \text { otherwise }\end{cases}
$$

$$
\operatorname{pre}^{N}(x)= \begin{cases}x-1, & \text { if } 0<x \neq \infty \\ \text { undefined, }, & \text { otherwise }\end{cases}
$$

- $\operatorname{Nat}^{T}=\{*\}, 0^{T}=*, \operatorname{suc}^{T}(*)=*, \operatorname{pre}^{T}(*)=*$
- $N a t^{K}=\mathbb{N}, 0^{N}=K, s u c^{K}(x)=x$, pre $^{K}(x)= \begin{cases}y, & \text { if TM } x \text { outputs } y \text { on input } x \\ \text { undefined, } & \text { otherwise }\end{cases}$
- $N a t^{K}=\mathbb{N}, 0^{N}=K, \operatorname{suc}^{K}(x)=x$,
$\operatorname{pre}^{K}(x)= \begin{cases}y, & \text { if TM } x \text { outputs } y \text { on input } x \\ \text { undefined, }, & \text { otherwise }\end{cases}$
- $N a t^{F}=\mathbb{N} \rightarrow \mathbb{N}, 0^{F}(x)=0, s u c^{F}(f)(x)=f(x)+1$, $\operatorname{pre}^{F}(f)$ undefined for each f

CASL many-sorted terms

Given a signature Σ and a variable system $\left(X_{s}\right)_{s \in S}$, the set of terms is defined inductively as follows:

- variables $x \in X_{s}$ are terms of sort s

CASL many-sorted terms

Given a signature Σ and a variable system $\left(X_{s}\right)_{s \in S}$, the set of terms is defined inductively as follows:

- variables $x \in X_{s}$ are terms of sort s
- applications $f_{w, s}\left(t_{1}, \ldots, t_{n}\right)$ is a term of sort s, if $f \in T F_{w, s} \cup P F_{w, s}$ and t_{i} is a term of sort $s_{i}, w=s_{1} \ldots s_{n}$.

Semantics of terms

Given a Σ-model and a variable valuation $\nu: X \longrightarrow M$, the semantics $\nu^{\#}$ of terms is defined as follows:

- variables $\nu^{\#}(x)=\nu(x)$

Semantics of terms

Given a Σ-model and a variable valuation $\nu: X \longrightarrow M$, the semantics $\nu^{\#}$ of terms is defined as follows:

- variables $\nu^{\#}(x)=\nu(x)$
- applications $\nu^{\#}\left(f_{w, s}\left(t_{1}, \ldots, t_{n}\right)\right)=f_{w, s}^{M}\left(\nu^{\#}\left(t_{1}\right), \ldots, \nu^{\#}\left(t_{n}\right)\right)$ if all components are defined (undefined otherwise)

CASL formulae

The set of (Σ, X)-formulae is defined inductively as follows:

- strong equations $t_{1}=t_{2}$

CASL formulae

The set of (Σ, X)-formulae is defined inductively as follows:

- strong equations $t_{1}=t_{2}$
- existential equations $t_{1} \xlongequal{=} t_{2}$

CASL formulae

The set of (Σ, X)-formulae is defined inductively as follows:

- strong equations $t_{1}=t_{2}$
- existential equations $t_{1} \xlongequal{=} t_{2}$
- predications $p_{w}\left(t_{1}, \ldots, t_{n}\right)$

CASL formulae

The set of (Σ, X)-formulae is defined inductively as follows:

- strong equations $t_{1}=t_{2}$
- existential equations $t_{1} \stackrel{e}{=} t_{2}$
- predications $p_{w}\left(t_{1}, \ldots, t_{n}\right)$
- definedness assertions $\operatorname{def}(t)$

CASL formulae

The set of (Σ, X)-formulae is defined inductively as follows:

- strong equations $t_{1}=t_{2}$
- existential equations $t_{1} \stackrel{e}{=} t_{2}$
- predications $p_{w}\left(t_{1}, \ldots, t_{n}\right)$
- definedness assertions $\operatorname{def}(t)$
- conjunctions, disjunctions, implications, equivalences of formulae

CASL formulae

The set of (Σ, X)-formulae is defined inductively as follows:

- strong equations $t_{1}=t_{2}$
- existential equations $t_{1} \stackrel{e}{=} t_{2}$
- predications $p_{w}\left(t_{1}, \ldots, t_{n}\right)$
- definedness assertions $\operatorname{def}(t)$
- conjunctions, disjunctions, implications, equivalences of formulae
- universal, existential, unique-existential quantifications

Satisfaction of atomic formulae

A formula φ is satisfied in a model M w.r.t. a valuation $\nu: X \longrightarrow M$ (short notation: $M, \nu \models \varphi$), if

- $M, \nu \models t_{1}=t_{2}$ if $\nu^{\#}\left(t_{1}\right)=\nu^{\#}\left(t_{2}\right)$ or both sides are undefined,

Satisfaction of atomic formulae

A formula φ is satisfied in a model M w.r.t. a valuation $\nu: X \longrightarrow M$ (short notation: $M, \nu \models \varphi$), if

- $M, \nu \models t_{1}=t_{2}$ if $\nu^{\#}\left(t_{1}\right)=\nu^{\#}\left(t_{2}\right)$ or both sides are undefined,
- $M, \nu \models t_{1} \stackrel{e}{=} t_{2}$ if $\nu^{\#}\left(t_{1}\right)=\nu^{\#}\left(t_{2}\right)$ and both sides defined,

Satisfaction of atomic formulae

A formula φ is satisfied in a model M w.r.t. a valuation $\nu: X \longrightarrow M$ (short notation: $M, \nu \models \varphi$), if

- $M, \nu \models t_{1}=t_{2}$ if $\nu^{\#}\left(t_{1}\right)=\nu^{\#}\left(t_{2}\right)$ or both sides are undefined,
- $M, \nu \models t_{1} \stackrel{e}{=} t_{2}$ if $\nu^{\#}\left(t_{1}\right)=\nu^{\#}\left(t_{2}\right)$ and both sides defined,
- $M, \nu \models p_{w}\left(t_{1}, \ldots, t_{n}\right)$
if $\left(\nu^{\#}\left(t_{1}\right), \ldots, \nu^{\#}\left(t_{n}\right)\right)$ is defined and $\in p_{w}^{M}$,

Satisfaction of atomic formulae

A formula φ is satisfied in a model M w.r.t. a valuation $\nu: X \longrightarrow M$ (short notation: $M, \nu \models \varphi$), if

- $M, \nu \models t_{1}=t_{2}$ if $\nu^{\#}\left(t_{1}\right)=\nu^{\#}\left(t_{2}\right)$ or both sides are undefined,
- $M, \nu \models t_{1} \stackrel{e}{=} t_{2}$ if $\nu^{\#}\left(t_{1}\right)=\nu^{\#}\left(t_{2}\right)$ and both sides defined,
- $M, \nu \models p_{w}\left(t_{1}, \ldots, t_{n}\right)$
if $\left(\nu^{\#}\left(t_{1}\right), \ldots, \nu^{\#}\left(t_{n}\right)\right)$ is defined and $\in p_{w}^{M}$,
- $M, \nu \models \operatorname{def}(t)$ if $\nu^{\#}(t)$ is defined

Satisfaction of compound formulae

A standard in first-order logic, i.e.

- a conjuction is satisfied iff all the conjuncts are satisfied

Satisfaction of compound formulae

A standard in first-order logic, i.e.

- a conjuction is satisfied iff all the conjuncts are satisfied
- similar for disjunction etc.

Satisfaction of compound formulae

A standard in first-order logic, i.e.

- a conjuction is satisfied iff all the conjuncts are satisfied
- similar for disjunction etc.
- a universal (existential) quantification is satisfied when all (some) of the changes of the valuation for the quantified variable lead to satisfcation in the model: $M, \nu \models \forall x: s . \phi$ iff $M, \xi \models \phi$ for all valuation ξ that differ from ν only on $x: s$

Satisfaction of closed formulae

A closed formula (sentences) is satisfied in a model iff it is satisfied w.r.t. the empty valuation:

$$
M \models \varphi \text { iff } M, \emptyset \models \varphi
$$

Sort generation constraints

A Σ-sort-generation constraint (S^{\prime}, F^{\prime}) consists of

Sort generation constraints

A Σ-sort-generation constraint (S^{\prime}, F^{\prime}) consists of

- a set of sorts $S^{\prime} \subseteq S$

Sort generation constraints

A Σ-sort-generation constraint (S^{\prime}, F^{\prime}) consists of

- a set of sorts $S^{\prime} \subseteq S$
- a set of (qualified) operation symbols $F^{\prime} \subseteq T F \cup P F$

Sort generation constraints

A Σ-sort-generation constraint (S^{\prime}, F^{\prime}) consists of

- a set of sorts $S^{\prime} \subseteq S$
- a set of (qualified) operation symbols $F^{\prime} \subseteq T F \cup P F$
$M \models\left(S^{\prime}, F^{\prime}\right)$ iff the carriers of sorts in S^{\prime} are generated by terms in F^{\prime} (with variables of sorts outside S^{\prime})

Sort generation constraints

A Σ-sort-generation constraint (S^{\prime}, F^{\prime}) consists of

- a set of sorts $S^{\prime} \subseteq S$
- a set of (qualified) operation symbols $F^{\prime} \subseteq T F \cup P F$
$M \models\left(S^{\prime}, F^{\prime}\right)$ iff the carriers of sorts in S^{\prime} are generated by terms in F^{\prime} (with variables of sorts outside S^{\prime})
i.e. for each $s \in S^{\prime}, a \in s^{M}$, there is some term t (with variables of sorts outside S^{\prime}) and some valuation ν with $\nu^{\#}(t)=a$.

Example $\Sigma^{N a t}$-models

- $N a t^{M}=I N, 0^{M}=0, \operatorname{suc}^{M}(x)=x+1$, pre $^{M}(x)=\left\{\begin{array}{l}x-1, x>0 \\ \text { undefined, otherwise }\end{array}\right.$
- $N a t^{N}=\mathbb{N} \cup\{\infty\}, 0^{N}=0$,
$\operatorname{suc}^{N}(x)=\left\{\begin{array}{ll}\infty, & \text { if } x=\infty \\ x+1, & \text { otherwise }\end{array}\right.$,
$\operatorname{pr}^{N}(x)= \begin{cases}x-1, & \text { if } 0<x \neq \infty \\ \text { undefined, } & \text { otherwise }\end{cases}$
- $\operatorname{Nat}^{T}=\{*\}, 0^{T}=*, \operatorname{suc}^{T}(*)=*, \operatorname{pre}^{T}(*)=*$
- $N a t^{K}=\mathbb{N}, 0^{N}=K, s u c^{K}(x)=x$,
$\operatorname{pre}^{K}(x)= \begin{cases}y, & \text { if TM } x \text { outputs } y \text { on input } x \\ \text { undefined, }, & \text { otherwise }\end{cases}$
- $N a t^{F}=\mathbb{N} \rightarrow \mathbb{N}, 0^{F}(x)=0, s u c^{F}(f)(x)=f(x)+1$, $\operatorname{pre}^{F}(f)$ undefined for each f

Semantics of CASL Structured Specifications

Institutions

- Basic idea: abstract away from the details of signature, model, sentence, satisfaction.
- The semantics of CASL structured specifications is defined for an arbitrary institution.
- first-order, higher-order, polymorphic, modal, temporal, process, behavioural, ASM- und Z-like and object-oriented logics have been shown to be institutions.
- Hence, you may replace the CASL institution with your favourite institution.

The CASL institution revisited

Given a signature morphism $\sigma: \Sigma \longrightarrow \Sigma^{\prime}, \Sigma=(S, T F, P F, P)$ and a Σ^{\prime}-model M^{\prime}, the reduct $\left.M^{\prime}\right|_{\sigma}$ is defined as follows

- $s^{M}:=\sigma(s)^{M^{\prime}}$ for $s \in S$,
- $f_{w, s}^{M}:=\sigma\left(f_{w, s}\right)^{M^{\prime}}$ for $f \in T F_{w, s} \cup P F_{w, s}$,
- $p_{w}^{M}:=\sigma\left(p_{w}\right)^{M^{\prime}}$ for $p \in P_{w}$.

A Σ-formula φ is translated along σ by just replacing the symbols in φ according to σ.

The Satisfaction Condition

Theorem

$$
M^{\prime} \models \sigma(\varphi) \text { iff }\left.M^{\prime}\right|_{\sigma} \models \varphi
$$

That is:

Truth is invariant under change of notation and enlargement of context.

Institutions

Institutions, formally

- category Sign of signatures,
- a sentence functor $\operatorname{Sen}: \boldsymbol{\operatorname { S i g n }} \longrightarrow$ Set,
- a model functor Mod: $\mathbf{S i g n}^{o p} \longrightarrow \mathcal{C A} \mathcal{A}$,
- a satisfaction relation $\models_{\Sigma} \subseteq|\operatorname{Mod}(\Sigma)| \times \operatorname{Sen}(\Sigma)$, such that the following satisfaction condition holds:

$$
M^{\prime} \models_{\Sigma^{\prime}} \operatorname{Sen}(\sigma)(\varphi) \Leftrightarrow \operatorname{Mod}(\sigma)(M)^{\prime} \models_{\Sigma} \varphi
$$

or shortly

$$
\left.M^{\prime} \models_{\Sigma^{\prime}} \sigma(\varphi) \Leftrightarrow M^{\prime}\right|_{\sigma} \models_{\Sigma} \varphi .
$$

Benefits of institutions

- Institution independent semantics (and proof system) of structured specifications, architectural specifications, refinement, behavioural abstraction etc.
- ASMs over arbitrary institutions (Zucca 1999, TCS 216)
- Borrowing of parts of a logic from other logics
- Combination of logics
- Heterogeneous specification and tools
- Abstract model theory with deep results (Diaconescu)

Semantics of basic specifications

$$
\begin{gathered}
\frac{\Sigma \vdash \text { BASIC-SPEC } \triangleright\left(\Sigma^{\prime}, \Psi\right)}{\Sigma \vdash \text { BASIC-SPEC } q u a \operatorname{SPEC} \triangleright \Sigma^{\prime}} \\
\Sigma \vdash \operatorname{BASIC-SPEC} \triangleright\left(\Sigma^{\prime}, \Psi\right) \\
\mathcal{M}^{\prime}=\left\{M \in \operatorname{Mod}\left(\Sigma^{\prime}\right)|M|_{\Sigma} \in \mathcal{M}, M \models \Psi\right\} \\
\Sigma, \mathcal{M} \vdash \operatorname{BASIC}-\text { SPEC } q u a \operatorname{SPEC} \Rightarrow \Sigma^{\prime}, \mathcal{M}^{\prime}
\end{gathered}
$$

Semantics of translations

$$
\frac{\Sigma \vdash \operatorname{SPEC} \triangleright \Sigma^{\prime}}{\overline{\Sigma \vdash \text { SPEC with } \sigma: \Sigma^{\prime} \longrightarrow \Sigma^{\prime \prime} \triangleright \Sigma^{\prime \prime}}}
$$

$$
\begin{aligned}
& \Sigma, \mathcal{M} \vdash \operatorname{SPEC} \Rightarrow \Sigma^{\prime}, \mathcal{M}^{\prime} \\
\mathcal{M}^{\prime \prime}= & \left\{M \in \operatorname{Mod}\left(\Sigma^{\prime \prime}\right)|M|_{\sigma} \in \mathcal{M}^{\prime}\right\}
\end{aligned}
$$

$$
\Sigma, \mathcal{M} \vdash \text { SPEC with } \sigma: \Sigma^{\prime} \longrightarrow \Sigma^{\prime \prime} \Rightarrow \Sigma^{\prime \prime}, \mathcal{M}^{\prime \prime}
$$

Semantics of reductions

$$
\Sigma \vdash \operatorname{SPEC} \triangleright \Sigma^{\prime}
$$

$\bar{\Sigma} \vdash$ SPEC hide $\sigma: \Sigma^{\prime \prime} \longrightarrow \Sigma^{\prime} \triangleright \Sigma^{\prime \prime}$

$$
\begin{gathered}
\Sigma, \mathcal{M} \vdash \mathrm{SPEC} \Rightarrow \Sigma^{\prime}, \mathcal{M}^{\prime} \\
\mathcal{M}^{\prime \prime}=\left\{\left.M\right|_{\sigma} \mid M \in \mathcal{M}^{\prime}\right\} \\
\Sigma, \mathcal{M} \vdash \text { SPEC hide } \sigma: \Sigma^{\prime \prime} \longrightarrow \Sigma^{\prime} \Rightarrow \Sigma^{\prime \prime}, \mathcal{M}^{\prime \prime}
\end{gathered}
$$

Semantics of extensions

$$
\begin{gathered}
\Sigma \vdash \mathrm{SPEC}_{1} \triangleright \Sigma^{\prime} \\
\Sigma^{\prime} \vdash \mathrm{SPEC}_{2} \triangleright \Sigma^{\prime \prime} \\
\Sigma \vdash \mathrm{SPEC}_{1} \text { then } \mathrm{SPEC}_{2} \triangleright \Sigma^{\prime \prime}
\end{gathered}
$$

$$
\begin{gathered}
\Sigma, \mathcal{M} \vdash \mathrm{SPEC}_{1} \Rightarrow \Sigma^{\prime}, \mathcal{M}^{\prime} \\
\frac{\Sigma^{\prime}, \mathcal{M}^{\prime} \vdash \mathrm{SPEC}_{2} \Rightarrow \Sigma^{\prime \prime}, \mathcal{M}^{\prime \prime}}{\Sigma, \mathcal{M} \vdash \mathrm{SPEC}_{1} \text { then } \mathrm{SPEC}_{2} \Rightarrow \Sigma^{\prime \prime}, \mathcal{M}^{\prime \prime}}
\end{gathered}
$$

Semantics of views

$$
\begin{gathered}
\emptyset, \mathcal{M}_{\perp} \vdash \operatorname{SPEC}_{1} \Rightarrow \Sigma_{1}, \mathcal{M}_{1} \\
\emptyset, \mathcal{M}_{\perp} \vdash \operatorname{SPEC}_{2} \Rightarrow \Sigma_{2}, \mathcal{M}_{2} \\
\text { for each } M \in \mathcal{M}_{2},\left.M\right|_{\sigma} \in \mathcal{M}_{1}
\end{gathered}
$$

\vdash view SPEC_{1} to $\mathrm{SPEC}_{2}=\sigma \Rightarrow \sigma, \mathcal{M}_{1}, \mathcal{M}_{2}$

Semantics of parameterization (simplified)

The right square is required to be a pushout, that is, all symbols shared between the body and the actual parameter must occur also in the formal parameter.
Models: those models of the instantiation whose reducts are models of the body and of the actual parameter.

Development graphs $\mathcal{S}=\langle\mathcal{N}, \mathcal{L}\rangle$

Nodes in $\mathcal{N}:\left(\Sigma^{N}, \Gamma^{N}\right)$ with

- Σ^{N} signature,
- $\Gamma^{N} \subseteq \operatorname{Sen}\left(\Sigma^{N}\right)$ set of local axioms.

Links in \mathcal{L} :

- global $M \xrightarrow{\sigma} N$, where $\sigma: \Sigma^{M} \rightarrow \Sigma^{N}$,
- local $M \xrightarrow{\sigma} \ldots \ldots \ldots \ldots \ldots \ldots$ where $\sigma: \Sigma^{M} \rightarrow \Sigma^{N}$, or
- hiding $M \xrightarrow[h]{\sigma} N$ where $\sigma: \Sigma^{N} \rightarrow \Sigma^{M}$ going against the direction of the link.

Semantics of development graphs

$\operatorname{Mod}_{S}(N)$ consists of those Σ^{N}-models n for which

1. n satisfies the local axioms Γ^{N},
2. for each $K \xrightarrow{\sigma} N \in \mathcal{S},\left.n\right|_{\sigma}$ is a K-model, σ
3. for each $K \cdots \cdots \cdots \cdots \cdots \cdots \cdots \mathcal{S}$,
$\left.n\right|_{\sigma}$ satisfies the local axioms Γ^{K},
4. for each $K \xrightarrow[h]{\sigma} N \in \mathcal{S}$,
n has a σ-expansion k (i.e. $\left.k\right|_{\sigma}=n$) that is a K-model.

Theorem links

Theorem links come in two versions:

- global theorem links $M \xrightarrow{\sigma} N$, where $\sigma: \Sigma^{M} \longrightarrow \Sigma^{N}$,
- $\mathcal{S} \models M \xrightarrow{\sigma} N$ iff for all $n \in \operatorname{Mod}_{S}(N),\left.n\right|_{\sigma} \in \operatorname{Mod}_{S}(M)$.
σ
- local theorem links $M \cdots \cdots . .>$, where $\sigma: \Sigma^{M} \longrightarrow \Sigma^{N}$,
- $\mathcal{S} \models M \stackrel{\sigma}{\cdots} \cdots$ iff for all $n \in \operatorname{Mod}_{S}(N),\left.n\right|_{\sigma} \models \Gamma^{M}$.
- the calculus reduces these to local proof obligations.

