Software specification in CASL Logic

Till Mossakowski, Lutz Schröder

October 2006

Signatures (vocabularies)

- sort symbols s, t, Nat, List, Tree
- function symbols $f: s \longrightarrow t,{ }_{--}+{ }_{\text {_- }}: N a t \times N a t \longrightarrow N a t$, ${ }_{-}++_{-}:$List \timesList \longrightarrow List
- predicate symbols $p: t,-\leq_{--}$: Nat \timesNat

Terms

Terms denote values, like natural numbers, data values, etc.

```
t::=c
    |
    | f(t, ,.., tr )
```

| t_{1} when ϕ else t_{2} conditional terms

Formulas

```
\phi::= p(t, ,.., tr )
| false (\perp) contradiction
true (T) always true
not \phi (\neg\phi) negation
(}\mp@subsup{\phi}{1}{}\wedge\ldots\wedge\mp@subsup{\phi}{n}{}) conjunctio
(}\mp@subsup{\phi}{1}{}\vee\ldots\vee\mp@subsup{\phi}{n}{}) disjunctio
(}\mp@subsup{\phi}{1}{}=>\mp@subsup{\phi}{2}{})\quad\mathrm{ implication
(}\mp@subsup{\phi}{1}{}\Leftrightarrow\mp@subsup{\phi}{2}{})\quad\mathrm{ equivalence
\forallx:s.\phi
\exists:s.\phi
application of predicate symbols contradiction
always true negation
conjunction
disjunction
implication
equivalence
universal quantification
existential quantification
```

In single-sorted logic: $\forall x . \phi, \exists x . \phi$.

Free and bound variables

An occurrence of a variable in a formula that is not bound is said to be free.

$\exists y \operatorname{LeftOf(x,y)}$	x is free, y is bound
Cube $(x) \wedge \operatorname{Small}(x))$ $\rightarrow \exists y \operatorname{LeftOf}(x, y)$	x is free, y is bound
$\exists x(\operatorname{Cube}(x) \wedge \operatorname{Small}(x))$	Both occurrences of x are bound
$(\exists x \operatorname{Cube}(x)) \wedge \operatorname{Small}(x)$	The first occurrence of x is bound, the second one is free

Models

- each sort is interpreted with a carrier set
- each function symbol is interpreted with a (set-theoretic) function
- each predicate symbol is interpreted with a (set-theoretic) relation (= subset of cartesian product)

Variable valuations ...

. . . are just maps from a set of variables into the carrier sets of a model. The sorting has to respected.

Denotation of a term in a model w.r.t. a variable valuation

is defined inductively over the structure of the term

- the interpretation of a variable is determined by the variable valuation
- the intepretation of constant c is determined by the corresponing element of the carrier set
- the interpretation of $f\left(t_{1}, \ldots, t_{n}\right)$ is the interpretation of f, applied to the interpretations of t_{1}, \ldots, t_{n}

Satisfaction of a formula in model w.r.t. a variable valuation

- $p\left(t_{1}, \ldots, t_{n}\right)$ is satisfied iff the tuple formed by the interpretations of t_{1}, \ldots, t_{n} is element of the relation that is the interpretation of p
- the logical connectives are interpreted in the well-known way
- $\forall x: s . \phi$ is satisfied if for all valuations that may modify the given one on x, ϕ is satisfied
- $\exists x: s . \phi$ is satisfied if for some valuation that may modify the given one on x, ϕ is satisfied

Satisfaction of a formula in a model

A formula is satisfied in a model iff it is satisfied for all valuations.

Notation: $M \models \varphi$.

The axiomatic method

Try to capture the intended meaning of data sets, functions and predicates by specifying their properties using axioms (=formulas).

Axioms restrict the possible interpretation of sorts, functions and predicates.

Axioms may be used as premises within arguments/proofs.
A basic specification consists of a signature together with a collection of axioms.

Semantics of specifications

- The (loose) semantics of a basic specification is the class of those models that satisfy all the specified formulas.
- A specification is said to be consistent when there are some models that satisfy all the formulas, and
- inconsistent when there are no such models.
- A formula is a logical consequence of a basic specification if it is satisfied in all the models of the specification.

The four Aristotelian forms

$$
\begin{aligned}
\text { All P's are Q's. } & \forall x(P(x) \rightarrow Q(x)) \\
\text { Some P's are Q's. } & \exists x(P(x) \wedge Q(x)) \\
\text { No P's are Q's. } & \forall x(P(x) \rightarrow \neg Q(x)) \\
\text { Some P's are not Q's. } & \exists x(P(x) \wedge \neg Q(x))
\end{aligned}
$$

Note:
$\forall x(P(x) \rightarrow Q(x))$ does not imply that there are some $P^{\prime} s$. $\exists x(P(x) \wedge Q(x))$ does not imply that not all $P^{\prime} s$ are $Q^{\prime} s$.

