
Software specification in CASL -
Logic

Till Mossakowski, Lutz Schröder

October 2006



2

Signatures (vocabularies)

• sort symbols s, t, Nat, List, Tree

• function symbols f : s−→ t, + :Nat×Nat−→Nat,

+ + :List× List−→List

• predicate symbols p : t, ≤ : Nat×Nat

T.Mossakowski, L. Schröder: Casl; October 2006



3

Terms
Terms denote values, like natural numbers, data values, etc.

t ::= c constant

| x variable

| f(t1, . . . , tn) application of function symbols

to terms

| t1 when φ else t2 conditional terms

T.Mossakowski, L. Schröder: Casl; October 2006



4

Formulas
φ ::= p(t1, . . . , tn) application of predicate symbols

| false (⊥) contradiction

| true (>) always true

| not φ (¬φ) negation

| (φ1 ∧ . . . ∧ φn) conjunction

| (φ1 ∨ . . . ∨ φn) disjunction

| (φ1 ⇒ φ2) implication

| (φ1 ⇔ φ2) equivalence

| ∀x : s . φ universal quantification

| ∃x : s . φ existential quantification

In single-sorted logic: ∀x . φ, ∃x . φ.

T.Mossakowski, L. Schröder: Casl; October 2006



5

Free and bound variables

An occurrence of a variable in a formula that is not bound is

said to be free.

∃y LeftOf (x, y) x is free, y is bound

(Cube(x) ∧ Small(x))
→ ∃y LeftOf (x, y)

x is free, y is bound

∃x (Cube(x) ∧ Small(x)) Both occurrences of x are

bound

(∃x Cube(x)) ∧ Small(x) The first occurrence of x is

bound, the second one is

free

T.Mossakowski, L. Schröder: Casl; October 2006



6

Models

• each sort is interpreted with a carrier set

• each function symbol is interpreted with a (set-theoretic)

function

• each predicate symbol is interpreted with a (set-theoretic)

relation (= subset of cartesian product)

T.Mossakowski, L. Schröder: Casl; October 2006



7

Variable valuations . . .

. . . are just maps from a set of variables into the carrier sets

of a model. The sorting has to respected.

T.Mossakowski, L. Schröder: Casl; October 2006



8

Denotation of a term in a model w.r.t. a
variable valuation

is defined inductively over the structure of the term

• the interpretation of a variable is determined by the

variable valuation

• the intepretation of constant c is determined by the

corresponing element of the carrier set

• the interpretation of f(t1, . . . , tn) is the interpretation of

f , applied to the interpretations of t1, . . . , tn

T.Mossakowski, L. Schröder: Casl; October 2006



9

Satisfaction of a formula in a model w.r.t. a
variable valuation

• p(t1, . . . , tn) is satisfied iff the tuple formed by the

interpretations of t1, . . . , tn is element of the relation that

is the interpretation of p

• the logical connectives are interpreted in the well-known

way

• ∀x : s . φ is satisfied if for all valuations that may modify

the given one on x, φ is satisfied

• ∃x : s . φ is satisfied if for some valuation that may modify

the given one on x, φ is satisfied

T.Mossakowski, L. Schröder: Casl; October 2006



10

Satisfaction of a formula in a model

A formula is satisfied in a model iff it is satisfied for all

valuations.

Notation: M |= ϕ.

T.Mossakowski, L. Schröder: Casl; October 2006



11

The axiomatic method

Try to capture the intended meaning of data sets, functions

and predicates by specifying their properties using axioms

(=formulas).

Axioms restrict the possible interpretation of sorts, functions

and predicates.

Axioms may be used as premises within arguments/proofs.

A basic specification consists of a signature together with a

collection of axioms.

T.Mossakowski, L. Schröder: Casl; October 2006



12

Semantics of specifications

• The (loose) semantics of a basic specification is the class

of those models that satisfy all the specified formulas.

• A specification is said to be consistent when there are

some models that satisfy all the formulas, and

• inconsistent when there are no such models.

• A formula is a logical consequence of a basic specification

if it is satisfied in all the models of the specification.

T.Mossakowski, L. Schröder: Casl; October 2006



13

The four Aristotelian forms

All P’s are Q’s. ∀x(P (x) → Q(x))
Some P’s are Q’s. ∃x(P (x) ∧Q(x))

No P’s are Q’s. ∀x(P (x) → ¬Q(x))
Some P’s are not Q’s. ∃x(P (x) ∧ ¬Q(x))

Note:

∀x(P (x) → Q(x)) does not imply that there are some P ′s.

∃x(P (x) ∧Q(x)) does not imply that not all P ′s are Q′s.

T.Mossakowski, L. Schröder: Casl; October 2006


