Logik für Informatiker Logic for computer scientists

Boolean connectives

Till Mossakowski

Negation — Truth table

P	¬P
TRUE	FALSE
FALSE	TRUE

The Henkin-Hintikka game

The Henkin-Hintikka game

Is a sentence true in a given world?

- Players: you and the computer (Tarski's world)
- You claim that a sentence is true (or false), Tarski's world will claim the opposite
- In each round, the sentence is reduced to a simpler one
- When an atomic sentence is reached, its truth can be directly inspected in the given world

You have a winning strategy exactly in those cases where your claim is correct.

Negation — Game rule

Form	Your commitment	Player to move	Goal
$\neg P$	either		Replace $\neg P$ by
			P and switch
			commitment

w

Conjunction — Truth table

Р	Q	$P \wedge Q$
TRUE	TRUE	TRUE
TRUE	FALSE	FALSE
FALSE	TRUE	FALSE
FALSE	FALSE	FALSE

Conjunction — **Game rule**

Form	Your	Player to move	Goal
	commitment		
	TRUE	Tarski's World	Choose one of
$P \wedge Q$			P, Q that is
	FALSE	you	false.

Till Mossakowski: Logic WiSe 2007/08

Disjunction — Truth table

Р	Q	$P \lor Q$
TRUE	TRUE	TRUE
TRUE	FALSE	TRUE
FALSE	TRUE	TRUE
FALSE	FALSE	FALSE

Disjunction — Game rule

Form	Your	Player to move	Goal
	commitment		
	TRUE	you	Choose one of
$P \lor Q$			P, Q that is
	FALSE	Tarski's World	true.

W

Formalisation

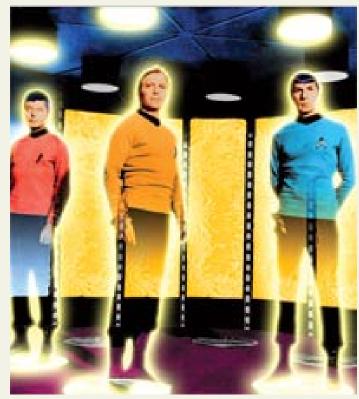
- Sometimes, natural language double negation means logical single negation
- The English expression and sometimes suggests a temporal ordering; the FOL expression ∧ never does.
- The English expressions but, however, yet, nonetheless, and moreover are all stylistic variants of and.
- Natural language disjunction can mean invlusive-or (\lor) or exclusive-or: $A \ xor \ B \Leftrightarrow (A \lor B) \land (\neg A \lor \neg B)$

Logical necessity

A sentence is

- logically necessary, or logically valid, if it is true in all circumstances (worlds),
- logically possible, if it is true in some circumstances (worlds),
- logically impossible, if it is true in no circumstances (worlds).

Logically possible



Logically impossible

$$P \wedge \neg P$$

$$a \neq a$$

Logically and physically possible

Logically necessary

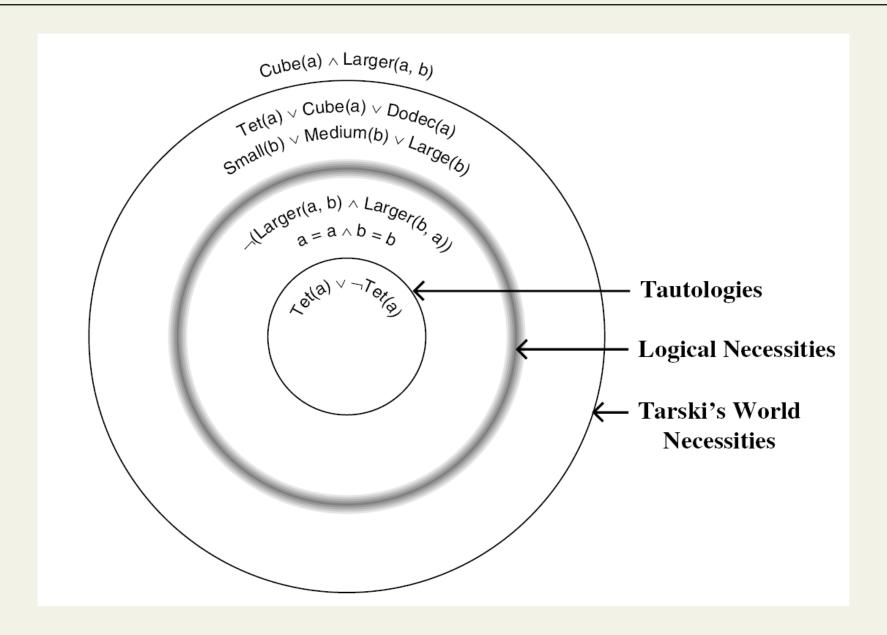
$$P \vee \neg P$$

$$a = a$$

Logic, Boolean logic and Tarski's world

A sentence is

- logically necessary, or logically valid, if it is true in all circumstances (worlds),
- TW-necessary, if it is true in all worlds of Tarski's world,
- a tautology, if it is true in all valuations of the atomic sentences with {TRUE, FALSE}.



The truth table method

- A sentence is a tautology if and only if it evaluates to TRUE in all rows of its complete truth table.
- Truth tables can be constructed with the program Boole.

Tautological equivalence and consequence

- Two sentences P and Q are tautologically equivalent, if they evaluate to the same truth value in all valuations (rows of the truth table).
- Q is a tautological consequence of P_1, \ldots, P_n if and only if every row that assigns TRUE to each of P_1, \ldots, P_n also assigns TRUE to Q.
- If Q is a tautological consequence of $P_1, \ldots P_n$, then Q is also a logical consequence of P_1, \ldots, P_n .
- Some logical consequences are not tautological ones.

The Con rules in Fitch

- Taut Con proves all tautological consequences.
- **FO Con** proves all first-order consequences (like a=c follows from $a=b \land b=c$).
- Ana Con proves (almost) all Tarski's world consequences.

de Morgan's laws and double negation

$$\neg (P \land Q) \Leftrightarrow (\neg P \lor \neg Q)$$
$$\neg (P \lor Q) \Leftrightarrow (\neg P \land \neg Q)$$
$$\neg P \Leftrightarrow P$$

Note: \neg binds stronger than \land and \lor . Bracktes are needed to override this.

Negation normal form

- Substitution of equivalents: If P and Q are logically equivalent: $P \Leftrightarrow Q$ then the results of substituting one for the other in the context of a larger sentence are also logically equivalent: $S(P) \Leftrightarrow S(Q)$
- A sentence is in negation normal form (NNF) if all occurrences of ¬ apply directly to atomic sentences.
- Any sentence built from atomic sentences using just ∧, ∨, and ¬ can be put into negation normal form by repeated application of the de Morgan laws and double negation.

Distributive laws

For any sentences P, Q, and R:

Distribution of ∧ over ∨:

$$P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R)$$
.

Distribution of ∨ over ∧:

$$P \vee (Q \wedge R) \Leftrightarrow (P \vee Q) \wedge (P \vee R).$$

Conjunctive and disjunctive normal form

- A sentence is in conjunctive normal form (CNF) if it is a conjunction of one or more disjunctions of one or more literals.
- Distribution of ∨ over ∧ allows you to transform any sentence in negation normal form into conjunctive normal form.

w

Disjunctive normal form

- A sentence is in disjunctive normal form (DNF) if it is a disjunction of one or more conjunctions of one or more literals.
- Distribution of \(\) over \(\) allows you to transform any sentence in negation normal form into disjunctive normal form.
- Some sentences are in both CNF and DNF.