Logik für Informatiker Logic for computer scientists Logical consequence

Till Mossakowski

WiSe 2007/08

Logical consequence

A sentence B is a logical consequence of $A_{1}, \ldots A_{n}$, if all circumstances that make $A_{1}, \ldots A_{n}$ true also make B true. In symbols: $A_{1}, \ldots A_{n} \models B$.

Logical consequence

A sentence B is a logical consequence of $A_{1}, \ldots A_{n}$, if all circumstances that make $A_{1}, \ldots A_{n}$ true also make B true. In symbols: $A_{1}, \ldots A_{n} \models B$.
In this case, it is a valid argument to infer B from $A_{1}, \ldots A_{n}$. If also $A_{1}, \ldots A_{n}$ are true, then the valid argument is sound.

Logical consequence

A sentence B is a logical consequence of $A_{1}, \ldots A_{n}$, if all circumstances that make $A_{1}, \ldots A_{n}$ true also make B true. In symbols: $A_{1}, \ldots A_{n} \models B$.
In this case, it is a valid argument to infer B from $A_{1}, \ldots A_{n}$. If also $A_{1}, \ldots A_{n}$ are true, then the valid argument is sound.
A circumstance is

- in propositional logic: a valuation of the atomic formulas in the set $\{$ true, false $\}$
- in Tarski's world: a block world

Logical consequence - examples

- All men are mortal. Socrates is a man. So, Socrates is mortal.

Logical consequence - examples

- All men are mortal. Socrates is a man. So, Socrates is mortal. (valid, sound)

Logical consequence - examples

- All men are mortal. Socrates is a man. So, Socrates is mortal. (valid, sound)
- All rich actors are good actors. Brad Pitt is a rich actor. So he must be a good actor.

Logical consequence - examples

- All men are mortal. Socrates is a man. So, Socrates is mortal. (valid, sound)
- All rich actors are good actors. Brad Pitt is a rich actor. So he must be a good actor. (valid, but not sound)

Logical consequence - examples

- All men are mortal. Socrates is a man. So, Socrates is mortal. (valid, sound)
- All rich actors are good actors. Brad Pitt is a rich actor. So he must be a good actor. (valid, but not sound)
- All rich actors are good actors. Brad Pitt is a good actor. So he must be a rich actor.

Logical consequence - examples

- All men are mortal. Socrates is a man. So, Socrates is mortal. (valid, sound)
- All rich actors are good actors. Brad Pitt is a rich actor. So he must be a good actor. (valid, but not sound)
- All rich actors are good actors. Brad Pitt is a good actor. So he must be a rich actor. (not valid)

Fitch notation

All men are mortal
Socrates is a man
So, Socrates is mortal
A_{1}
\ldots
$\mathrm{~A}_{n}$
B

Premise $_{1}$
Premise $_{n}$
Conclusion

Methods for showing (in)validity of arguments

Methods for showing (in)validity of arguments

Validity To show that an argument is valid, we must provide a proof. A proof consists of a sequence of proof steps, each of which must be valid.

Methods for showing (in)validity of arguments

Validity To show that an argument is valid, we must provide a proof. A proof consists of a sequence of proof steps, each of which must be valid.

- In propositional logic, we also can use truth tables to show validity. This it not possible in first-order logic.

Methods for showing (in)validity of arguments

Validity To show that an argument is valid, we must provide a proof. A proof consists of a sequence of proof steps, each of which must be valid.

- In propositional logic, we also can use truth tables to show validity. This it not possible in first-order logic.

Invalidity An argument can shown to be invalid by finding a counterexample (model), i.e. a circumstance where the premises are true, but the conclusion is false.

Informal and formal proofs

- informal reasoning is used in everyday life
- semi-formal reasoning is used in mathematics and theoretical computer science
- balance between readability and precision
- formal proofs: follow some specific rule system,
- and are entirely rigorous
- and can be checked by a computer

An informal proof

- Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.

An informal proof

- Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.
- But all mortals will eventually die, since that is what it means to be mortal.

An informal proof

- Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.
- But all mortals will eventually die, since that is what it means to be mortal.
- So Socrates will eventually die.

An informal proof

- Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.
- But all mortals will eventually die, since that is what it means to be mortal.
- So Socrates will eventually die.
- But we are given that everyone who will eventually die sometimes worries about it.

An informal proof

- Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.
- But all mortals will eventually die, since that is what it means to be mortal.
- So Socrates will eventually die.
- But we are given that everyone who will eventually die sometimes worries about it.
- Hence Socrates sometimes worries about dying.

A formal proof

1. Cube(c)

A formal proof

1. Cube(c)
 2. $c=b$

A formal proof

1. Cube(c)
 2. $c=b$

3. Cube(b) =Elim: 1,2

Four principles for the identity relation

1. =Elim: If $b=c$, then whatever holds of b holds of c (indiscernibility of identicals).

Four principles for the identity relation

1. =Elim: If $b=c$, then whatever holds of b holds of c (indiscernibility of identicals).
2. =Intro: $b=b$ is always true in FOL (reflexivity of identity).

Four principles for the identity relation

1. =Elim: If $b=c$, then whatever holds of b holds of c (indiscernibility of identicals).
2. =Intro: $b=b$ is always true in FOL (reflexivity of identity).
3. Symmetry of Identity: If $b=c$, then $c=b$.

Four principles for the identity relation

1. =Elim: If $b=c$, then whatever holds of b holds of c (indiscernibility of identicals).
2. =Intro: $b=b$ is always true in FOL (reflexivity of identity).
3. Symmetry of Identity: If $b=c$, then $c=b$.
4. Transitivity of Identity: If $a=b$ and $b=c$, then $a=c$.

Four principles for the identity relation

1. =Elim: If $b=c$, then whatever holds of b holds of c (indiscernibility of identicals).
2. =Intro: $b=b$ is always true in FOL (reflexivity of identity).
3. Symmetry of Identity: If $b=c$, then $c=b$.
4. Transitivity of Identity: If $a=b$ and $b=c$, then $a=c$.

The latter two principles follow from the first two.

Transitivity . . .

Informal proof of symmetry of identity

- Suppose that $a=b$.

Informal proof of symmetry of identity

- Suppose that $a=b$.
- We know that $a=a$, by the reflexivity of identity.

Informal proof of symmetry of identity

- Suppose that $a=b$.
- We know that $a=a$, by the reflexivity of identity.
- Now substitute the name b for the first use of the name a in $a=a$, using the indiscernibility of identicals.

Informal proof of symmetry of identity

- Suppose that $a=b$.
- We know that $a=a$, by the reflexivity of identity.
- Now substitute the name b for the first use of the name a in $a=a$, using the indiscernibility of identicals.
- We come up with $b=a$, as desired.

Formal proofs

```
P
S
S
Justification n
Justification n+1
```


Formal proof of symmetry of identity

1. $\mathrm{a}=\mathrm{b}$

Formal proof of symmetry of identity

1. $a=b$
2. $\mathrm{a}=\mathrm{a} \quad=$ Intro:

Formal proof of symmetry of identity

1. $a=b$
2. $\mathrm{a}=\mathrm{a} \quad=$ Intro:
3. $\mathrm{b}=\mathrm{a} \quad=$ Elim: 2,1

Fitch rule: Identity introduction

Identity Introduction (= Intro):

$$
\triangleright \mid \mathrm{n}=\mathrm{n}
$$

Fitch rule: Identity elimination

Identity Elimination (= Elim):

$$
\begin{array}{c|c}
& P(n) \\
\vdots \\
& \mathrm{n}=\mathrm{m} \\
\vdots \\
& \mathrm{P}(\mathrm{~m})
\end{array}
$$

Fitch rule: Reiteration

Reiteration (Reit):

Example proof in fitch

Properties of predicates in Tarski's world

Larger (a, b)
Larger(b, c)
Larger (a, c)

RightOf(b, c)
LeftOf(c, b)

Properties of predicates in Tarski's world

Larger (a, b)
Larger(b, c)
Larger (a, c)

```
RightOf(b,c)
LeftOf(c, b)
```

Such arguments can be proved in Fitch using the special rule Ana Con.

Properties of predicates in Tarski's world

Larger (a, b)
Larger(b, c)
Larger (a, c)
Such arguments can be proved in Fitch using the special rule Ana Con.
This rule is only valid for reasoning about Tarski's world!

Showing invalidity using counterexamples

Al Gore is a politician
Hardly any politicians are honest
Al Gore is dishonest

Showing invalidity using counterexamples

Al Gore is a politician
Hardly any politicians are honest
Al Gore is dishonest
Imagine a situation where there are 10,000 politicians, and that Al Gore is the only honest one of the lot. In such circumstances both premises would be true but the conclusion would be false.

Showing invalidity using counterexamples

Al Gore is a politician
Hardly any politicians are honest
Al Gore is dishonest
Imagine a situation where there are 10,000 politicians, and that Al Gore is the only honest one of the lot. In such circumstances both premises would be true but the conclusion would be false.
This demonstrates that the argument is invalid.

Are the following arguments valid?

Small(a)
Larger(b, a)
Large(b)
Small(a)
Larger (a, b)
Large(b)

