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Limits of the truth-table method

1. truth-table method leads to exponentially growing tables
◦ 20 atomic sentences ⇒ more than 1.000.000 rows

2. truth-table method cannot be extended to first-order logic

• model checking can overcome the first limitation (up to

1.000.000 atomic sentences)

• proofs can overcome both limitations

Till Mossakowski: Logic WiSe 2007/08
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Proofs

• A proof consists of a sequence of proof steps

• Each proof step is known to be valid and should
◦ be significant but easily understood, in informal proofs,

◦ follow some proof rule, in formal proofs.

• Some valid patterns of inference that generally go
unmentioned in informal (but not in formal) proofs:
◦ From P ∧Q, infer P .

◦ From P and Q, infer P ∧Q.

◦ From P , infer P ∨Q.

Till Mossakowski: Logic WiSe 2007/08
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Proof by cases (disjunction elimination)

To prove S from P1 ∨ . . . ∨ Pn, prove S from each of

P1, . . . , Pn.
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Proof by cases (disjunction elimination)

To prove S from P1 ∨ . . . ∨ Pn, prove S from each of

P1, . . . , Pn.

Claim: there are irrational numbers b and c such that bc is

rational.

Proof:
√

2
√

2
is either rational or irrational.

Case 1: If
√
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√
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Proof by cases (disjunction elimination)

To prove S from P1 ∨ . . . ∨ Pn, prove S from each of

P1, . . . , Pn.

Claim: there are irrational numbers b and c such that bc is

rational.

Proof:
√

2
√

2
is either rational or irrational.

Case 1: If
√

2
√

2
is rational: take b = c =

√
2.

Case 2: If
√

2
√

2
is irrational: take b =

√
2
√

2
and c =

√
2.

Then bc = (
√

2
√

2
)
√

2 =
√

2
(
√

2·
√

2)
=
√

2
2
= 2.
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Proof by contradiction
To prove ¬S, assume S and prove a contradiction ⊥.

(⊥ may be infered from P and ¬P .)
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Proof by contradiction
To prove ¬S, assume S and prove a contradiction ⊥.

(⊥ may be infered from P and ¬P .)

Assume Cube(c) ∨Dodec(c) and Tet(b).
Claim: ¬(b = c).
Proof: Let us assume b = c.

Case 1: If Cube(c), then by b = c, also Cube(b), which

contradicts Tet(b).
Case 2: Dodec(c) similarly contradicts Tet(b).
In both case, we arrive at a contradiction. Hence, our

assumption b = c cannot be true, thus ¬(b = c).
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Arguments with inconsistent premises

A proof of a contradiction ⊥ from premises P1, . . . , Pn

(without additional assumptions) shows that the premises

are inconsistent. An argument with inconsistent premises is

always valid, but more importantly, always unsound.

Home(max) ∨ Home(claire)
¬Home(max)
¬Home(claire)

Home(max) ∧ Happy(carl)
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Arguments without premises

A proof without any premises shows that its conclusion is a

logical truth.

Example: ¬(P ∧ ¬P ).
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Formal proofs in Fitch

• Well-defined set of formal proof rules

• Formal proofs in Fitch can be mechanically checked

• For each connective, there is
◦ an introduction rule, e.g. “from P , infer P ∨Q”.

◦ an elimination rule, e.g. “from P ∧Q, infer P”.
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Summary of Rules

Propositional rules (FT)

Conjunction Introduction
(∧ Intro)

P1

⇓
Pn
...

. P1 ∧ . . . ∧ Pn

Conjunction Elimination
(∧ Elim)

P1 ∧ . . . ∧ Pi ∧ . . . ∧ Pn
...

. Pi

Disjunction Introduction
(∨ Intro)

Pi
...

. P1 ∨ . . . ∨ Pi ∨ . . . ∨ Pn

Disjunction Elimination
(∨ Elim)

P1 ∨ . . . ∨ Pn
...

P1

...
S

⇓

Pn

...
S

...
. S
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The proper use of subproofs

The proper use of subproofs / 163

In the following two exercises, determine whether the sentences are consistent. If they are, use Tarski’s
World to build a world where the sentences are both true. If they are inconsistent, use Fitch to give a
proof that they are inconsistent (that is, derive ⊥ from them). You may use Ana Con in your proof,
but only applied to literals (that is, atomic sentences or negations of atomic sentences).

6.15
➶

¬(Larger(a, b) ∧ Larger(b, a))
¬SameSize(a, b)

6.16
➶

Smaller(a, b) ∨ Smaller(b, a)
SameSize(a, b)

Section 6.4

The proper use of subproofs

Subproofs are the characteristic feature of Fitch-style deductive systems. It
is important that you understand how to use them properly, since if you are
not careful, you may “prove” things that don’t follow from your premises. For
example, the following formal proof looks like it is constructed according to
our rules, but it purports to prove that A ∧ B follows from (B ∧ A) ∨ (A ∧ C),
which is clearly not right.

1. (B ∧ A) ∨ (A ∧ C)

2. B ∧ A

3. B ∧ Elim: 2
4. A ∧ Elim: 2

5. A ∧ C

6. A ∧ Elim: 5

7. A ∨ Elim: 1, 2–4, 5–6
8. A ∧ B ∧ Intro: 7, 3

The problem with this proof is step 8. In this step we have used step
3, a step that occurs within an earlier subproof. But it turns out that this
sort of justification—one that reaches back inside a subproof that has already
ended—is not legitimate. To understand why it’s not legitimate, we need to
think about what function subproofs play in a piece of reasoning.

A subproof typically looks something like this:

Section 6.4
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The proper use of subproofs (cont’d)

• In justifying a step of a subproof, you may cite any earlier

step contained in the main proof, or in any subproof whose

assumption is still in force. You may never cite individual

steps inside a subproof that has already ended.
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The proper use of subproofs (cont’d)

• In justifying a step of a subproof, you may cite any earlier

step contained in the main proof, or in any subproof whose

assumption is still in force. You may never cite individual

steps inside a subproof that has already ended.

• Fitch enforces this automatically by not permitting the

citation of individual steps inside subproofs that have

ended.
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Strategies and tactics
1. Understand what the sentences are saying.
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Strategies and tactics
1. Understand what the sentences are saying.

2. Decide whether you think the conclusion follows from the premises.

3. If you think it does not follow, or are not sure, try to find a

counterexample.

4. If you think it does follow, try to give an informal proof.

5. If a formal proof is called for, use the informal proof to guide you in

finding one.

6. In giving consequence proofs, both formal and informal, don’t forget

the tactic of working backwards.

7. In working backwards, though, always check that your intermediate

goals are consequences of the available information.
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Conditionals

178 / Conditionals

do, however, make it much easier to say and prove certain things, and so are
valuable additions to the language.

Section 7.1

Material conditional symbol: →

The symbol → is used to combine two sentences P and Q to form a new
sentence P → Q, called a material conditional. The sentence P is called the
antecedent of the conditional, and Q is called the consequent of the conditional.
We will discuss the English counterparts of this symbol after we explain its
meaning.

Semantics and the game rule for the conditional

The sentence P → Q is true if and only if either P is false or Q is true (or
both). This can be summarized by the following truth table.

P Q P → Q
t t T
t f F
f t T
f f T

truth table for →

A second’s thought shows that P → Q is really just another way of saying
¬P ∨ Q. Tarski’s World in fact treats the former as an abbreviation of the
latter. In particular, in playing the game, Tarski’s World simply replaces agame rule for →
statement of the form P → Q by its equivalent ¬P ∨ Q.

Remember

1. If P and Q are sentences of fol, then so is P → Q.

2. The sentence P → Q is false in only one case: if the antecedent P is
true and the consequent Q is false. Otherwise, it is true.

English forms of the material conditional

We can come fairly close to an adequate English rendering of the material
conditional P → Q with the sentence If P then Q. At any rate, it is clear thatif . . . then

Chapter 7

Game rule: P → Q is replaced by ¬P ∨Q.
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Formalisation of conditional sentences

• The following English constructions are all translated

P → Q:

If P then Q; Q if P ; P only if Q; and Provided P , Q.
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Formalisation of conditional sentences

• The following English constructions are all translated

P → Q:

If P then Q; Q if P ; P only if Q; and Provided P , Q.

• Unless P , Q and Q unless P are translated: ¬P → Q.

• Q is a logical consequence of P1, . . . , Pn if and only if the

sentence (P1 ∧ · · · ∧ Pn) → Q is a logical truth.

Till Mossakowski: Logic WiSe 2007/08
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Biconditionals

182 / Conditionals

means of the biconditional: P ↔ Q. A sentence of the form P ↔ Q is true if
and only if P and Q have the same truth value, that is, either they are both
true or both false. In English this is commonly expressed using the expression
if and only if. So, for example, the sentence Max is home if and only if Claireif and only if
is at the library would be translated as:

Home(max) ↔ Library(claire)

Mathematicians and logicians often write “iff” as an abbreviation for “ififf
and only if.” Upon encountering this, students and typesetters generally con-
clude it’s a spelling mistake, to the consternation of the authors. But in fact it
is shorthand for the biconditional. Mathematicians also use “just in case” as ajust in case
way of expressing the biconditional. Thus the mathematical claims n is even
iff n2 is even, and n is even just in case n2 is even, would both be translated
as:

Even(n) ↔ Even(n2)

This use of “just in case” is, we admit, one of the more bizarre quirks of
mathematicians, having nothing much to do with the ordinary meaning of
this phrase. In this book, we use the phrase in the mathematician’s sense,
just in case you were wondering.

An important fact about the biconditional symbol is that two sentences
P and Q are logically equivalent if and only if the biconditional formed from
them, P ↔ Q, is a logical truth. Another way of putting this is to say that
P ⇔ Q is true if and only if the fol sentence P ↔ Q is logically necessary.
So, for example, we can express one of the DeMorgan laws by saying that the
following sentence is a logical truth:

¬(P ∨ Q) ↔ (¬P ∧ ¬Q)

This observation makes it tempting to confuse the symbols ↔ and ⇔. This↔ vs. ⇔
temptation must be resisted. The former is a truth-functional connective of
fol, while the latter is an abbreviation of “is logically equivalent to.” It is
not a truth-functional connective and is not an expression of fol.

Semantics and the game rule for ↔

The semantics for the biconditional is given by the following truth table.

P Q P ↔ Q
t t T
t f F
f t F
f f T

truth table for ↔

Chapter 7

Game rule: P ↔ Q is replaced by (P → Q) ∧ (Q → P ).
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First-order rules (F) / 559

Biconditional Introduction
(↔ Intro)

P

...
Q

Q

...
P

. P ↔ Q

Biconditional Elimination
(↔ Elim)

P ↔ Q (or Q ↔ P)
...
P
...

. Q

Reiteration
(Reit)

P
...

. P

First-order rules (F)

Identity Introduction
(= Intro)

. n = n

Identity Elimination
(= Elim)

P(n)
...
n = m
...

. P(m)

First-order rules (F)
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Object and meta theory

Object theory = reasoning within a formal proof system (e.g.

Fitch)

Meta theory = reasoning about a formal proof system
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Tautological consequence

A sentence S is a tautological consequence of a set of

sentences T , written

T |=T S,

if all valuations of atomic formulas with truth values that

make all sentences in T true also make S true.

T is called tt-satisfiable, if there is a valuation making all

sentences in T true. (Note: T may be infinite.)
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Propositional proofs

S is FT -provable from T , written

T `T S,

if there is a formal proof of S with premises drawn from T
using the elimination and introduction rules for

∨,∧,¬,→,↔ and ⊥.

Again note: T may be infinite.
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Consistency

A set of sentences T is called formally inconsistent, if

T `T ⊥.

Example: {A ∨B,¬A,¬B}.

Otherwise, T is called formally consistent.

Example: {A ∨B,A,¬B}
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Soundness

Theorem 1. The proof calculus FT is sound, i.e. if

T `T S,

then

T |=T S.

Proof: Book: by contradiction, using the first invalid step.

Here: by induction on the length of the proof.
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Completeness

Theorem 2 (Bernays, Post). The proof calculus FT is

complete, i.e. if

T |=T S,

then

T `T S.

Theorem 2 follows from:

Theorem 3. Every formally consistent set of sentences is

tt-satisfiable.

Lemma 4. T ∪ {¬S} `T ⊥ if and only if T `T S.
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Proof of Theorem 3

A set T is formally complete, if for any sentence S, either

T `T S or T `T ¬S.

Proposition 5. Every formally complete and formally

consistent set of sentences is tt-satisfiable.

Proposition 6. Every formally consistent set of sentences can

be expanded to a formally complete and formally consistent

set of sentences.
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Proof of Proposition 5

Lemma 7. Let T be formally complete and formally

consistent. Then

1. T `T (R ∧ S) iff T `T R and T `T S

2. T `T (R ∨ S) iff T `T R or T `T S

3. T `T (¬S) iff T 6`T S

4. T `T (R → S) iff T 6`T R or T `T S

5. T `T (R ↔ S) iff (T `T R iff T `T S)
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Proof of Proposition 6

Lemma 8. A set of sentences T is formally complete if and

only if for any atomic sentence A,

either T `T A or T `T ¬A.
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Compactness Theorem

Theorem 9. Let T be any set of sentences. If every finite

subset of T is tt-satisfiable, then T itself is satisfiable.
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