Logik für Informatiker Proofs in propositional logic

Till Mossakowski

WiSe 2007/08

Limits of the truth-table method

1. truth-table method leads to exponentially growing tables

Limits of the truth-table method

1. truth-table method leads to exponentially growing tables

- 20 atomic sentences \Rightarrow more than 1.000 .000 rows

Limits of the truth-table method

1. truth-table method leads to exponentially growing tables

- 20 atomic sentences \Rightarrow more than 1.000 .000 rows

2. truth-table method cannot be extended to first-order logic

Limits of the truth-table method

1. truth-table method leads to exponentially growing tables

- 20 atomic sentences \Rightarrow more than 1.000 .000 rows

2. truth-table method cannot be extended to first-order logic

- model checking can overcome the first limitation (up to 1.000.000 atomic sentences)

Limits of the truth-table method

1. truth-table method leads to exponentially growing tables

- 20 atomic sentences \Rightarrow more than 1.000 .000 rows

2. truth-table method cannot be extended to first-order logic

- model checking can overcome the first limitation (up to 1.000.000 atomic sentences)
- proofs can overcome both limitations

Proofs

- A proof consists of a sequence of proof steps

Proofs

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should

Proofs

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should - be significant but easily understood, in informal proofs,

Proofs

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should - be significant but easily understood, in informal proofs,
- follow some proof rule, in formal proofs.

Proofs

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should - be significant but easily understood, in informal proofs,
- follow some proof rule, in formal proofs.
- Some valid patterns of inference that generally go unmentioned in informal (but not in formal) proofs:

Proofs

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should
- be significant but easily understood, in informal proofs,
- follow some proof rule, in formal proofs.
- Some valid patterns of inference that generally go unmentioned in informal (but not in formal) proofs:
- From $P \wedge Q$, infer P.
- From P and Q, infer $P \wedge Q$.
- From P, infer $P \vee Q$.

Proof by cases (disjunction elimination)

To prove S from $P_{1} \vee \ldots \vee P_{n}$, prove S from each of P_{1}, \ldots, P_{n}.

Proof by cases (disjunction elimination)

To prove S from $P_{1} \vee \ldots \vee P_{n}$, prove S from each of P_{1}, \ldots, P_{n}.
Claim: there are irrational numbers b and c such that b^{c} is rational.

Proof by cases (disjunction elimination)

To prove S from $P_{1} \vee \ldots \vee P_{n}$, prove S from each of P_{1}, \ldots, P_{n}.
Claim: there are irrational numbers b and c such that b^{c} is rational.
Proof: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational.

Proof by cases (disjunction elimination)

To prove S from $P_{1} \vee \ldots \vee P_{n}$, prove S from each of P_{1}, \ldots, P_{n}.
Claim: there are irrational numbers b and c such that b^{c} is rational.
Proof: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational.
Case 1: If $\sqrt{2}^{\sqrt{2}}$ is rational: take $b=c=\sqrt{2}$.

Proof by cases (disjunction elimination)

To prove S from $P_{1} \vee \ldots \vee P_{n}$, prove S from each of P_{1}, \ldots, P_{n}.
Claim: there are irrational numbers b and c such that b^{c} is rational.
Proof: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational.
Case 1: If $\sqrt{2}^{\sqrt{2}}$ is rational: take $b=c=\sqrt{2}$.
Case 2: If $\sqrt{2}^{\sqrt{2}}$ is irrational: take $b=\sqrt{2}^{\sqrt{2}}$ and $c=\sqrt{2}$.
Then $b^{c}=\left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}}=\sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})}=\sqrt{2}^{2}=2$.

Proof by contradiction

To prove $\neg S$, assume S and prove a contradiction \perp.
(\perp may be infered from P and $\neg P$.)

Proof by contradiction

To prove $\neg S$, assume S and prove a contradiction \perp.
(\perp may be infered from P and $\neg P$.)
Assume Cube $(c) \vee \operatorname{Dodec}(c)$ and $\operatorname{Tet}(b)$.
Claim: $\neg(b=c)$.

Proof by contradiction

To prove $\neg S$, assume S and prove a contradiction \perp.
(\perp may be infered from P and $\neg P$.)
Assume Cube $(c) \vee \operatorname{Dodec}(c)$ and $\operatorname{Tet}(b)$.
Claim: $\neg(b=c)$.
Proof: Let us assume $b=c$.

Proof by contradiction

To prove $\neg S$, assume S and prove a contradiction \perp.
(\perp may be infered from P and $\neg P$.)
Assume Cube $(c) \vee \operatorname{Dodec}(c)$ and $\operatorname{Tet}(b)$.
Claim: $\neg(b=c)$.
Proof: Let us assume $b=c$.
Case 1: If Cube (c), then by $b=c$, also Cube(b), which contradicts Tet(b).

Proof by contradiction

To prove $\neg S$, assume S and prove a contradiction \perp.
(\perp may be infered from P and $\neg P$.)
Assume Cube $(c) \vee \operatorname{Dodec}(c)$ and $\operatorname{Tet}(b)$.
Claim: $\neg(b=c)$.
Proof: Let us assume $b=c$.
Case 1: If Cube (c), then by $b=c$, also Cube(b), which contradicts Tet (b).
Case 2: $\operatorname{Dodec}(c)$ similarly contradicts $\operatorname{Tet}(b)$.

Proof by contradiction

To prove $\neg S$, assume S and prove a contradiction \perp.
(\perp may be infered from P and $\neg P$.)
Assume Cube $(c) \vee \operatorname{Dodec}(c)$ and $\operatorname{Tet}(b)$.
Claim: $\neg(b=c)$.
Proof: Let us assume $b=c$.
Case 1: If $C u b e(c)$, then by $b=c$, also $C u b e(b)$, which contradicts Tet (b).
Case 2: $\operatorname{Dodec}(c)$ similarly contradicts $\operatorname{Tet}(b)$. In both case, we arrive at a contradiction. Hence, our assumption $b=c$ cannot be true, thus $\neg(b=c)$.

Arguments with inconsistent premises

A proof of a contradiction \perp from premises P_{1}, \ldots, P_{n} (without additional assumptions) shows that the premises are inconsistent. An argument with inconsistent premises is always valid, but more importantly, always unsound.

Home(max) \vee Home(claire)
\neg Home (max)
\neg Home(claire)
Home(max) \wedge Happy (carl)

Arguments without premises

A proof without any premises shows that its conclusion is a logical truth.
Example: $\neg(P \wedge \neg P)$.

Formal proofs in Fitch

- Well-defined set of formal proof rules

Formal proofs in Fitch

- Well-defined set of formal proof rules
- Formal proofs in Fitch can be mechanically checked

Formal proofs in Fitch

- Well-defined set of formal proof rules
- Formal proofs in Fitch can be mechanically checked
- For each connective, there is

Formal proofs in Fitch

- Well-defined set of formal proof rules
- Formal proofs in Fitch can be mechanically checked
- For each connective, there is
- an introduction rule, e.g. "from P, infer $P \vee Q$ ".

Formal proofs in Fitch

- Well-defined set of formal proof rules
- Formal proofs in Fitch can be mechanically checked
- For each connective, there is
- an introduction rule, e.g. "from P, infer $P \vee Q$ ".
- an elimination rule, e.g. "from $P \wedge Q$, infer P ".

Conjunction Elimination (\wedge Elim)

$$
\triangleright \left\lvert\, \begin{aligned}
& \mathrm{P}_{1} \wedge \ldots \wedge \mathrm{P}_{i} \wedge \ldots \wedge \mathrm{P}_{n} \\
& \vdots \\
& \mathrm{P}_{i}
\end{aligned}\right.
$$

Conjunction Introduction (\wedge Intro)

Disjunction Introduction (\vee Intro)

$$
\triangleright \left\lvert\, \begin{array}{ll}
\mathrm{P}_{i} \\
\vdots \\
\mathrm{P}_{1} \vee \ldots \vee \mathrm{P}_{i} \vee \ldots \vee \mathrm{P}_{n}
\end{array}\right.
$$

Disjunction Elimination

(\vee Elim)

The proper use of subproofs

$$
\begin{array}{|ll}
\text { 1. }(\mathrm{B} \wedge \mathrm{~A}) \vee(\mathrm{A} \wedge \mathrm{C}) & \\
\left\lvert\, \begin{array}{ll}
2 . \mathrm{B} \wedge \mathrm{~A} & \\
3 . \mathrm{B} & \\
4 . \mathrm{A} & \wedge \text { Elim: } 2 \\
\mid 5 . \mathrm{A} \wedge \mathrm{C} & \wedge \text { Elim: } 2 \\
-6 . \mathrm{A} & \\
7 . \mathrm{A} & \wedge \text { Elim: } 5 \\
8 . \mathrm{A} \wedge \mathrm{~B} & \vee \text { Elim: 1, 2-4, } 5-6 \\
\hline \text { Intro: } 7,3
\end{array}\right.
\end{array}
$$

The proper use of subproofs (cont'd)

- In justifying a step of a subproof, you may cite any earlier step contained in the main proof, or in any subproof whose assumption is still in force. You may never cite individual steps inside a subproof that has already ended.

The proper use of subproofs (cont'd)

- In justifying a step of a subproof, you may cite any earlier step contained in the main proof, or in any subproof whose assumption is still in force. You may never cite individual steps inside a subproof that has already ended.
- Fitch enforces this automatically by not permitting the citation of individual steps inside subproofs that have ended.

Negation Elimination (\neg Elim)

\perp Introduction
 (\perp Intro)

Negation Introduction (\neg Intro)

\perp Elimination
 (\perp Elim)

Strategies and tactics

1. Understand what the sentences are saying.

Strategies and tactics

1. Understand what the sentences are saying.
2. Decide whether you think the conclusion follows from the premises.

Strategies and tactics

1. Understand what the sentences are saying.
2. Decide whether you think the conclusion follows from the premises.
3. If you think it does not follow, or are not sure, try to find a counterexample.

Strategies and tactics

1. Understand what the sentences are saying.
2. Decide whether you think the conclusion follows from the premises.
3. If you think it does not follow, or are not sure, try to find a counterexample.
4. If you think it does follow, try to give an informal proof.

Strategies and tactics

1. Understand what the sentences are saying.
2. Decide whether you think the conclusion follows from the premises.
3. If you think it does not follow, or are not sure, try to find a counterexample.
4. If you think it does follow, try to give an informal proof.
5. If a formal proof is called for, use the informal proof to guide you in finding one.

Strategies and tactics

1. Understand what the sentences are saying.
2. Decide whether you think the conclusion follows from the premises.
3. If you think it does not follow, or are not sure, try to find a counterexample.
4. If you think it does follow, try to give an informal proof.
5. If a formal proof is called for, use the informal proof to guide you in finding one.
6. In giving consequence proofs, both formal and informal, don't forget the tactic of working backwards.

Strategies and tactics

1. Understand what the sentences are saying.
2. Decide whether you think the conclusion follows from the premises.
3. If you think it does not follow, or are not sure, try to find a counterexample.
4. If you think it does follow, try to give an informal proof.
5. If a formal proof is called for, use the informal proof to guide you in finding one.
6. In giving consequence proofs, both formal and informal, don't forget the tactic of working backwards.
7. In working backwards, though, always check that your intermediate goals are consequences of the available information.

Conditionals

P	Q	$\mathrm{P} \rightarrow \mathrm{Q}$
T	T	T
T	F	\mathbf{F}
F	T	\mathbf{T}
F	F	\mathbf{T}

Game rule: $P \rightarrow Q$ is replaced by $\neg P \vee Q$.

Formalisation of conditional sentences

- The following English constructions are all translated $P \rightarrow Q$:
If P then $Q ; Q$ if $P ; P$ only if Q; and $\operatorname{Provided~} P, Q$.

Formalisation of conditional sentences

- The following English constructions are all translated $P \rightarrow Q$:
If P then $Q ; Q$ if $P ; P$ only if Q; and $\operatorname{Provided~} P, Q$.
- Unless P, Q and Q unless P are translated: $\neg P \rightarrow Q$.

Formalisation of conditional sentences

- The following English constructions are all translated $P \rightarrow Q$:
If P then $Q ; Q$ if $P ; P$ only if Q; and $\operatorname{Provided~} P, Q$.
- Unless P, Q and Q unless P are translated: $\neg P \rightarrow Q$.
- Q is a logical consequence of P_{1}, \ldots, P_{n} if and only if the sentence $\left(P 1 \wedge \cdots \wedge P_{n}\right) \rightarrow Q$ is a logical truth.

Conditional Elimination (\rightarrow Elim)

Conditional Introduction (\rightarrow Intro)

Biconditionals

P	Q	$\mathrm{P} \leftrightarrow \mathrm{Q}$
T	T	T
T	F	\mathbf{F}
F	T	\mathbf{F}
F	F	T

Game rule: $P \leftrightarrow Q$ is replaced by $(P \rightarrow Q) \wedge(Q \rightarrow P)$.

Biconditional Elimination (\leftrightarrow Elim)

Biconditional Introduction

(\leftrightarrow Intro)

Reiteration
 (Reit)

Object and meta theory

Object theory $=$ reasoning within a formal proof system (e.g. Fitch)

Meta theory $=$ reasoning about a formal proof system

Tautological consequence

A sentence S is a tautological consequence of a set of sentences \mathcal{T}, written

$$
\mathcal{T} \models_{T} S,
$$

if all valuations of atomic formulas with truth values that make all sentences in \mathcal{T} true also make S true.
\mathcal{T} is called tt-satisfiable, if there is a valuation making all sentences in \mathcal{T} true. (Note: \mathcal{T} may be infinite.)

Propositional proofs

S is \mathcal{F}_{T}-provable from \mathcal{T}, written

$$
\mathcal{T} \vdash_{T} S
$$

if there is a formal proof of S with premises drawn from \mathcal{T} using the elimination and introduction rules for $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$ and \perp.

Again note: \mathcal{T} may be infinite.

Consistency

A set of sentences \mathcal{T} is called formally inconsistent, if

$$
\mathcal{T} \vdash_{T} \perp .
$$

Example: $\{A \vee B, \neg A, \neg B\}$.

Otherwise, \mathcal{T} is called formally consistent.
Example: $\{A \vee B, A, \neg B\}$

Soundness

Theorem 1. The proof calculus \mathcal{F}_{T} is sound, i.e. if

$$
\mathcal{T} \vdash_{T} S
$$

then

$$
\mathcal{T} \models_{T} S
$$

Proof: Book: by contradiction, using the first invalid step. Here: by induction on the length of the proof.

Completeness

Theorem 2 (Bernays, Post). The proof calculus \mathcal{F}_{T} is complete, i.e. if

$$
\mathcal{T} \models_{T} S,
$$

then

$$
\mathcal{T} \vdash_{T} S
$$

Theorem 2 follows from:
Theorem 3. Every formally consistent set of sentences is tt-satisfiable.
Lemma 4. $\mathcal{T} \cup\{\neg S\} \vdash_{T} \perp$ if and only if $\mathcal{T} \vdash_{T} S$.

Proof of Theorem 3

A set \mathcal{T} is formally complete, if for any sentence S, either $\mathcal{T} \vdash_{T} S$ or $\mathcal{T} \vdash_{T} \neg S$.

Proposition 5. Every formally complete and formally consistent set of sentences is tt-satisfiable.

Proposition 6. Every formally consistent set of sentences can be expanded to a formally complete and formally consistent set of sentences.

Proof of Proposition 5

Lemma 7. Let \mathcal{T} be formally complete and formally consistent. Then

1. $\mathcal{T} \vdash_{T}(R \wedge S)$ iff $\mathcal{T} \vdash_{T} R$ and $\mathcal{T} \vdash_{T} S$
2. $\mathcal{T} \vdash_{T}(R \vee S)$ iff $\mathcal{T} \vdash_{T} R$ or $\mathcal{T} \vdash_{T} S$
3. $\mathcal{T} \vdash_{T}(\neg S)$ iff $\mathcal{T} \nvdash_{T} S$
4. $\mathcal{T} \vdash_{T}(R \rightarrow S)$ iff $\mathcal{T} \nvdash_{T} R$ or $\mathcal{T} \vdash_{T} S$
5. $\mathcal{T} \vdash_{T}(R \leftrightarrow S)$ iff $\left(\mathcal{T} \vdash_{T} R\right.$ iff $\left.\mathcal{T} \vdash_{T} S\right)$

Proof of Proposition 6

Lemma 8. A set of sentences \mathcal{T} is formally complete if and only if for any atomic sentence A,

$$
\text { either } \mathcal{T} \vdash_{T} A \text { or } \mathcal{T} \vdash_{T} \neg A .
$$

Compactness Theorem

Theorem 9. Let \mathcal{T} be any set of sentences. If every finite subset of \mathcal{T} is tt-satisfiable, then \mathcal{T} itself is satisfiable.

