Logik für Informatiker Proofs in propositional logic

Till Mossakowski

WiSe 2007/08

1. truth-table method leads to exponentially growing tables

1. truth-table method leads to exponentially growing tables ○ 20 atomic sentences ⇒ more than 1.000.000 rows

- 1. truth-table method leads to exponentially growing tables
 - \circ 20 atomic sentences \Rightarrow more than 1.000.000 rows
- 2. truth-table method cannot be extended to first-order logic

- 1. truth-table method leads to exponentially growing tables
 20 atomic sentences ⇒ more than 1.000.000 rows
- 2. truth-table method cannot be extended to first-order logic
- model checking can overcome the first limitation (up to 1.000.000 atomic sentences)

- 1. truth-table method leads to exponentially growing tables
 20 atomic sentences ⇒ more than 1.000.000 rows
- 2. truth-table method cannot be extended to first-order logic
- model checking can overcome the first limitation (up to 1.000.000 atomic sentences)
- proofs can overcome both limitations

• A proof consists of a sequence of proof steps

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should
 be significant but easily understood, in informal proofs,

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should
 - $\circ\,$ be significant but easily understood, in informal proofs,
 - follow some proof rule, in formal proofs.

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should
 be significant but easily understood, in informal proofs,
 follow some proof rule, in formal proofs.
- Some valid patterns of inference that generally go unmentioned in informal (but not in formal) proofs:

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should
 be significant but easily understood, in informal proofs,
 follow some proof rule, in formal proofs.
- Some valid patterns of inference that generally go unmentioned in informal (but not in formal) proofs:
 - \circ From $P \wedge Q$, infer P.
 - \circ From P and Q, infer $P \wedge Q$.
 - \circ From P, infer $P \lor Q$.

To prove S from $P_1 \vee \ldots \vee P_n$, prove S from each of P_1, \ldots, P_n .

To prove S from $P_1 \vee \ldots \vee P_n$, prove S from each of P_1, \ldots, P_n .

Claim: there are irrational numbers b and c such that b^c is rational.

To prove S from $P_1 \vee \ldots \vee P_n$, prove S from each of P_1, \ldots, P_n .

Claim: there are irrational numbers b and c such that b^c is rational.

Proof: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational.

To prove S from $P_1 \vee \ldots \vee P_n$, prove S from each of P_1, \ldots, P_n .

Claim: there are irrational numbers b and c such that b^c is rational.

Proof: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational.

Case 1: If $\sqrt{2}^{\sqrt{2}}$ is rational: take $b = c = \sqrt{2}$.

To prove S from $P_1 \vee \ldots \vee P_n$, prove S from each of P_1, \ldots, P_n .

Claim: there are irrational numbers b and c such that b^c is rational.

Proof: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational. Case 1: If $\sqrt{2}^{\sqrt{2}}$ is rational: take $b = c = \sqrt{2}$. Case 2: If $\sqrt{2}^{\sqrt{2}}$ is irrational: take $b = \sqrt{2}^{\sqrt{2}}$ and $c = \sqrt{2}$. Then $b^c = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^2 = 2$.

To prove $\neg S$, assume S and prove a contradiction \bot . (\bot may be inferred from P and $\neg P$.)

To prove $\neg S$, assume S and prove a contradiction \bot . (\bot may be inferred from P and $\neg P$.) Assume $Cube(c) \lor Dodec(c)$ and Tet(b). Claim: $\neg(b = c)$.

To prove $\neg S$, assume S and prove a contradiction \bot . (\bot may be inferred from P and $\neg P$.) Assume $Cube(c) \lor Dodec(c)$ and Tet(b). Claim: $\neg(b = c)$. Proof: Let us assume b = c.

To prove $\neg S$, assume S and prove a contradiction \bot . (\bot may be inferred from P and $\neg P$.) Assume $Cube(c) \lor Dodec(c)$ and Tet(b). Claim: $\neg(b = c)$. Proof: Let us assume b = c. Case 1: If Cube(c), then by b = c, also Cube(b), which contradicts Tet(b).

To prove $\neg S$, assume S and prove a contradiction \bot . $(\perp \text{ may be inferred from } P \text{ and } \neg P.)$ Assume $Cube(c) \lor Dodec(c)$ and Tet(b). Claim: $\neg(b=c)$. **Proof:** Let us assume b = c. Case 1: If Cube(c), then by b = c, also Cube(b), which contradicts Tet(b). Case 2: Dodec(c) similarly contradicts Tet(b).

To prove $\neg S$, assume S and prove a contradiction \bot . $(\perp \text{ may be inferred from } P \text{ and } \neg P.)$ Assume $Cube(c) \lor Dodec(c)$ and Tet(b). Claim: $\neg(b=c)$. **Proof:** Let us assume b = c. Case 1: If Cube(c), then by b = c, also Cube(b), which contradicts Tet(b). Case 2: Dodec(c) similarly contradicts Tet(b). In both case, we arrive at a contradiction. Hence, our assumption b = c cannot be true, thus $\neg(b = c)$.

Arguments with inconsistent premises

A proof of a contradiction \perp from premises P_1, \ldots, P_n (without additional assumptions) shows that the premises are inconsistent. An argument with inconsistent premises is always valid, but more importantly, always unsound.

```
Home(max) \lor Home(claire)
```

```
\neg Home(max)
```

```
\negHome(claire)
```

```
\mathsf{Home}(\mathsf{max}) \land \mathsf{Happy}(\mathsf{carl})
```

Arguments without premises

A proof without any premises shows that its conclusion is a logical truth.

Example: $\neg (P \land \neg P)$.

• Well-defined set of formal proof rules

- Well-defined set of formal proof rules
- Formal proofs in Fitch can be mechanically checked

- Well-defined set of formal proof rules
- Formal proofs in Fitch can be mechanically checked
- For each connective, there is

- Well-defined set of formal proof rules
- Formal proofs in Fitch can be mechanically checked
- For each connective, there is
 an introduction rule, e.g. "from P, infer P ∨ Q".

- Well-defined set of formal proof rules
- Formal proofs in Fitch can be mechanically checked
- For each connective, there is
 - \circ an introduction rule, e.g. "from P, infer $P \lor Q$ ".
 - \circ an elimination rule, e.g. "from $P \wedge Q$, infer P".

Conjunction Elimination

Conjunction Introduction $(\land$ Intro) P_1 \downarrow P_n $\triangleright | \begin{array}{c} : \\ \mathsf{P}_1 \land \ldots \land \mathsf{P}_n \end{array}$ •

Disjunction Introduction
(\lor Intro) P_i \vdots $P_1 \lor \dots \lor P_i \lor \dots \lor P_n$

Disjunction Elimination (V Elim)

$$P_{1} \lor \ldots \lor P_{n}$$

$$\vdots$$

$$P_{1}$$

$$P_{1}$$

$$\vdots$$

$$S$$

$$\downarrow$$

$$P_{n}$$

$$\vdots$$

$$S$$

$$\vdots$$

$$S$$

$$\vdots$$

$$S$$

The proper use of subproofs

Till Mossakowski: Logic WiSe 2007/08

The proper use of subproofs (cont'd)

 In justifying a step of a subproof, you may cite any earlier step contained in the main proof, or in any subproof whose assumption is still in force. You may never cite individual steps inside a subproof that has already ended.

The proper use of subproofs (cont'd)

- In justifying a step of a subproof, you may cite any earlier step contained in the main proof, or in any subproof whose assumption is still in force. You may never cite individual steps inside a subproof that has already ended.
- Fitch enforces this automatically by not permitting the citation of individual steps inside subproofs that have ended.

NegationElimination $(\neg Elim)$ $\neg \neg P$ \vdots \triangleright P

$\begin{array}{c|c} \bot & \mathbf{Elimination} \\ (\bot & \mathbf{Elim}) \\ & & \\ &$

1. Understand what the sentences are saying.

- 1. Understand what the sentences are saying.
- 2. Decide whether you think the conclusion follows from the premises.

- 1. Understand what the sentences are saying.
- 2. Decide whether you think the conclusion follows from the premises.
- 3. If you think it does not follow, or are not sure, try to find a counterexample.

- 1. Understand what the sentences are saying.
- 2. Decide whether you think the conclusion follows from the premises.
- 3. If you think it does not follow, or are not sure, try to find a counterexample.
- 4. If you think it does follow, try to give an informal proof.

- 1. Understand what the sentences are saying.
- 2. Decide whether you think the conclusion follows from the premises.
- 3. If you think it does not follow, or are not sure, try to find a counterexample.
- 4. If you think it does follow, try to give an informal proof.
- 5. If a formal proof is called for, use the informal proof to guide you in finding one.

- 1. Understand what the sentences are saying.
- 2. Decide whether you think the conclusion follows from the premises.
- 3. If you think it does not follow, or are not sure, try to find a counterexample.
- 4. If you think it does follow, try to give an informal proof.
- 5. If a formal proof is called for, use the informal proof to guide you in finding one.
- 6. In giving consequence proofs, both formal and informal, don't forget the tactic of working backwards.

- 1. Understand what the sentences are saying.
- 2. Decide whether you think the conclusion follows from the premises.
- 3. If you think it does not follow, or are not sure, try to find a counterexample.
- 4. If you think it does follow, try to give an informal proof.
- 5. If a formal proof is called for, use the informal proof to guide you in finding one.
- 6. In giving consequence proofs, both formal and informal, don't forget the tactic of working backwards.
- 7. In working backwards, though, always check that your intermediate goals are consequences of the available information.

Conditionals Ρ Ρ \rightarrow Q Q \mathbf{T} Τ Т \mathbf{F} \mathbf{F} Τ \mathbf{T} Т F \mathbf{T} F \mathbf{F}

Game rule: $P \rightarrow Q$ is replaced by $\neg P \lor Q$.

Formalisation of conditional sentences

- The following English constructions are all translated $P \rightarrow Q$:
 - If P then Q; Q if P; P only if Q; and Provided P, Q.

Formalisation of conditional sentences

- The following English constructions are all translated $P \rightarrow Q$:
 - If P then Q; Q if P; P only if Q; and Provided P, Q.
- Unless P, Q and Q unless P are translated: $\neg P \rightarrow Q$.

Formalisation of conditional sentences

- The following English constructions are all translated $P \rightarrow Q$:
 - If P then Q; Q if P; P only if Q; and Provided P, Q.
- Unless P, Q and Q unless P are translated: $\neg P \rightarrow Q$.
- Q is a logical consequence of P_1, \ldots, P_n if and only if the sentence $(P1 \land \cdots \land P_n) \rightarrow Q$ is a logical truth.

Conditional Elimination (\rightarrow Elim) $\begin{vmatrix} P \rightarrow Q \\ \vdots \\ P \end{vmatrix}$

 \triangleright

Conditional Introduction (\rightarrow Intro)

: Q

$\triangleright | \begin{array}{c} \cdot \\ Q \\ P \rightarrow Q \end{array}$

Biconditionals $\mathsf{P} \leftrightarrow \mathsf{Q}$ Ρ \mathbf{T} Т Т \mathbf{F} \mathbf{F} Т F T \mathbf{F} \mathbf{T} \mathbf{F} F

Game rule: $P \leftrightarrow Q$ is replaced by $(P \rightarrow Q) \land (Q \rightarrow P)$.

Ü

Biconditional Elimination

$$(\leftrightarrow \text{ Elim})$$

 $| P \leftrightarrow Q \text{ (or } Q \leftrightarrow P)$
 \vdots
 $| P$
 \vdots
 $| P$
 \vdots
 $| Q$

Biconditional Introduction $(\leftrightarrow \text{Intro})$

Object and meta theory

Object theory = reasoning within a formal proof system (e.g. Fitch)

Meta theory = reasoning about a formal proof system

Tautological consequence

A sentence S is a tautological consequence of a set of sentences ${\mathcal T}$, written

$$\mathcal{T}\models_T S,$$

if all valuations of atomic formulas with truth values that make all sentences in \mathcal{T} true also make S true.

 \mathcal{T} is called tt-satisfiable, if there is a valuation making all sentences in \mathcal{T} true. (Note: \mathcal{T} may be infinite.)

iU

Propositional proofs

S is \mathcal{F}_T -provable from \mathcal{T} , written

 $\mathcal{T} \vdash_T S,$

if there is a formal proof of S with premises drawn from \mathcal{T} using the elimination and introduction rules for $\lor, \land, \neg, \rightarrow, \leftrightarrow$ and \bot .

Again note: \mathcal{T} may be infinite.

Consistency

A set of sentences ${\mathcal T}$ is called formally inconsistent, if

$\mathcal{T} \vdash_T \perp$.

Example:
$$\{A \lor B, \neg A, \neg B\}$$
.

Otherwise, T is called formally consistent. Example: $\{A \lor B, A, \neg B\}$

Soundness

Theorem 1. The proof calculus \mathcal{F}_T is sound, i.e. if

 $\mathcal{T} \vdash_T S$,

then

$$\mathcal{T}\models_T S.$$

Proof: Book: by contradiction, using the first invalid step. Here: by induction on the length of the proof.

Completeness

Theorem 2 (Bernays, Post). The proof calculus \mathcal{F}_T is complete, i.e. if

$$\mathcal{T}\models_T S,$$

then

$$\mathcal{T} \vdash_T S.$$

Theorem 2 follows from:

Theorem 3. Every formally consistent set of sentences is tt-satisfiable.

Lemma 4. $\mathcal{T} \cup \{\neg S\} \vdash_T \bot$ if and only if $\mathcal{T} \vdash_T S$.

Proof of Theorem 3

A set \mathcal{T} is formally complete, if for any sentence S, either $\mathcal{T} \vdash_T S$ or $\mathcal{T} \vdash_T \neg S$.

Proposition 5. Every formally complete and formally consistent set of sentences is tt-satisfiable.

Proposition 6. Every formally consistent set of sentences can be expanded to a formally complete and formally consistent set of sentences.

iU

Proof of Proposition 5

Lemma 7. Let \mathcal{T} be formally complete and formally consistent. Then

```
1. \mathcal{T} \vdash_T (R \land S) iff \mathcal{T} \vdash_T R and \mathcal{T} \vdash_T S

2. \mathcal{T} \vdash_T (R \lor S) iff \mathcal{T} \vdash_T R or \mathcal{T} \vdash_T S

3. \mathcal{T} \vdash_T (\neg S) iff \mathcal{T} \not\vdash_T S

4. \mathcal{T} \vdash_T (R \rightarrow S) iff \mathcal{T} \not\vdash_T R or \mathcal{T} \vdash_T S

5. \mathcal{T} \vdash_T (R \leftrightarrow S) iff (\mathcal{T} \vdash_T R \text{ iff } \mathcal{T} \vdash_T S)
```

Proof of Proposition 6

Lemma 8. A set of sentences \mathcal{T} is formally complete if and only if for any atomic sentence A,

either $\mathcal{T} \vdash_T A$ or $\mathcal{T} \vdash_T \neg A$.

Compactness Theorem

Theorem 9. Let \mathcal{T} be any set of sentences. If every finite subset of \mathcal{T} is tt-satisfiable, then \mathcal{T} itself is satisfiable.