Logik für Informatiker Logic for computer scientists

Quantifiers

Till Mossakowski

WiSe 2007/08

Motivating examples

$\forall x$ Cube(x) ("All objects are cubes.")
$\forall x(C u b e(x) \rightarrow \operatorname{Large}(x))$ ("All cubes are large.")
$\forall x \operatorname{Large}(x)$ ("All objects are large.")

$$
\exists x C u b e(x)
$$

"There exists a cube."

$$
\exists x(C u b e(x) \wedge \operatorname{Large}(x))
$$

"There exists a large cube."

The four Aristotelian forms

All P's are Q's. $\forall x(P(x) \rightarrow Q(x))$
Some P's are Q's. $\exists x(P(x) \wedge Q(x))$
No P's are Q's. $\forall x(P(x) \rightarrow \neg Q(x))$
Some P's are not Q's. $\exists x(P(x) \wedge \neg Q(x))$

Note:
$\forall x(P(x) \rightarrow Q(x))$ does not imply that there are some $P^{\prime} s$.
$\exists x(P(x) \wedge Q(x))$ does not imply that not all $P^{\prime} s$ are $Q^{\prime} s$.

First-order signatures

A first-order signature consists of

- a set of predicate symbols with arities, like

Smaller ${ }^{(2)}$, Dodec ${ }^{(1)}$, Between ${ }^{(3)}, \leq{ }^{(2)}$, including propositional symbols (nullary predicate symbols), like $A^{(0)}, B^{(0)}, C^{(0)}$, (written uppercase)

- its names or constants for individuals, like a, b, c, (written lowercase)
- its function symbols with arities, like $f^{(1)},+^{(2)}, \times^{(2)}$.

Usually, arities are omitted.
In the book, the terminology "language" is used.
"Signature" is more precise, since it exactly describes the ingredients that are needed to generate a (first-order) language.

Terms

$$
\begin{aligned}
& t::=a \\
& t::=x \\
& \mid f^{(n)}\left(t_{1}, \ldots, t_{n}\right)
\end{aligned}
$$

Usually, arities are omitted.
Variables are: t, u, v, w, x, y, z, possibly with subscripts.

```
Well-formed formulas
F::= p (n)}(\mp@subsup{t}{1}{},\ldots,\mp@subsup{t}{n}{})\quad\mathrm{ application of predicate symbols
|
\neg F
(F F}^\ldots\ldots\wedge\mp@subsup{F}{n}{})\quad\mathrm{ conjunction
(F1\wedge\ldots\vee F F ) disjunction
(F1->F2) implication
(F1\leftrightarrowF}\mp@subsup{F}{2}{})\quad\mathrm{ equivalence
\forall\nu
\exists\nuF contradiction negation
universal quantification
existential quantification
```

The variable ν is said to be bound in $\forall \nu F$ and $\exists \nu F$.

Parentheses

The outermost parenthese of a well-formed formula can be omitted:

$$
\operatorname{Cube}(x) \wedge \operatorname{Small}(x)
$$

In general, parentheses are important to determine the scope of a quantifier (see next slide).

Free and bound variables

An occurrence of a variable in a formula that is not bound is said to be free.

$\exists y \operatorname{LeftOf}(x, y)$	x is free, y is bound
Cube $(x) \wedge \operatorname{Small}(x))$ $\rightarrow \exists y \operatorname{LeftOf(x,y)}$	x is free, y is bound
$\exists x(\operatorname{Cube}(x) \wedge \operatorname{Small}(x))$	Both occurrences of x are bound
$\exists x \operatorname{Cube}(x) \wedge \operatorname{Small}(x)$	The first occurrence of x is bound, the second one is free

Sentences

A sentence is a well-formed formula without free variables.

$$
\begin{gathered}
\perp \quad A \wedge B \\
\operatorname{Cube}(a) \vee \operatorname{Tet}(b) \\
\forall x(C u b e(x) \rightarrow \operatorname{Large}(x)) \\
\forall x((C u b e(x) \wedge \operatorname{Small}(x)) \rightarrow \exists y \operatorname{LeftOf}(x, y))
\end{gathered}
$$

Semantics of quantification

We need to fix some domain of discourse.
$\forall x S(x)$ is true iff for every object in the domain of discourse with name $n, S(n)$ is true.
$\exists x S(x)$ is true iff for some object in the domain of discourse with name $n, S(n)$ is true.

Not all objects need to have names - hence we assume that for objects, names n_{1}, n_{2}, \ldots can be invented "on the fly".

The game rules

Form	Your Commitment	Player to move	GOAL
$P \vee Q$	TRUE FALSE	you Tarski's World	Choose one of P, Q that is true.
$P \wedge Q$	TRUE FALSE	Tarski's World you	Choose one of P, Q that is false.
$\exists \mathrm{P}$ (x$)$	TRUE FALSE	you Tarski's World	Choose some b that satisfies the wff $P(x)$.
$\forall x \mathrm{P}(\mathrm{x})$	TRUE FALSE	Tarski's World you	Choose some b that does not satisfy $P(x)$.

Logical consequence for quantifiers

$\forall x($ Cube $(x) \rightarrow$ Small $(x))$
$\forall x$ Cube(x)
$\forall x$ Small(x)
$\forall x$ Cube(x)
$\forall x$ Small(x)
$\forall x($ Cube $(\mathrm{x}) \wedge$ Small $(\mathrm{x}))$

However: ignoring quantifiers does not work!

$\exists x($ Cube $(x) \rightarrow$ Small $(x))$
$\exists x$ Cube(x)
$\exists x$ Small(x)
$\exists x$ Cube(x)
$\exists x$ Small(x)
$\exists x($ Cube $(x) \wedge$ Small $(x))$

Tautologies do not distribute over quantifiers

$$
\exists x C u b e(x) \vee \exists x \neg C u b e(x)
$$

is a logical truth, but

$$
\forall x C u b e(x) \vee \forall x \neg C u b e(x)
$$

is not. By contrast,

$$
\forall x C u b e(x) \vee \neg \forall x \operatorname{Cube}(x)
$$

is a tautology.

Truth-functional form

Replace all top-level quantified sub-formulas (i.e. those not ocurring below another quantifier) by propositional letters.
Replace multiple occurrences of the same sub-formula by the same propositional letter.
A quantified sentence of FOL is said to be a tautology iff its truth-functional form is a tautology.

$$
\forall x \operatorname{Cube}(x) \vee \neg \forall x \operatorname{Cube}(x)
$$

becomes

$$
A \vee \neg A
$$

Truth functional form - examples

FO sentence	t.f. form
$\forall x \operatorname{Cube}(x) \vee \neg \forall x \operatorname{Cube}(x)$	$\mathrm{A} \vee \neg \mathrm{A}$
$(\exists \mathrm{y} \operatorname{Tet}(\mathrm{y}) \wedge \forall \mathrm{z} \operatorname{Small}(\mathrm{z})) \rightarrow \forall \mathrm{z} \operatorname{Small}(\mathrm{z})$	$(\mathrm{A} \wedge \mathrm{B}) \rightarrow \mathrm{B}$
$\forall x \operatorname{Cube}(\mathrm{x}) \vee \exists \mathrm{y} \operatorname{Tet}(\mathrm{y})$	$\mathrm{A} \vee \mathrm{B}$
$\forall x \operatorname{Cube}(\mathrm{x}) \rightarrow \operatorname{Cube}(\mathrm{a})$	$\mathrm{A} \rightarrow \mathrm{B}$
$\forall x(\operatorname{Cube}(\mathrm{x}) \vee \neg \operatorname{Cube}(\mathrm{x}))$	A
$\forall x(\operatorname{Cube}(\mathrm{x}) \rightarrow \operatorname{Small}(\mathrm{x})) \vee \exists \mathrm{Dodec}(\mathrm{x})$	$\mathrm{A} \vee \mathrm{B}$

Examples of \rightarrow-Elim

$\exists x(\operatorname{Cube}(\mathrm{x}) \rightarrow$ Small $(\mathrm{x}))$	A
$\exists \mathrm{x} \operatorname{Cube}(\mathrm{x})$	B
$\exists \mathrm{x}$ Small (x)	C

No!
$\exists x$ Cube $(x) \rightarrow \exists x$ Small $(x) \quad A \rightarrow B$ $\exists x$ Cube(x)
$\exists x$ Small(x)

A
B

Tautologies and logical truths

Every tautology is a logical truth, but not vice versa.
Example: $\exists x C u b e(x) \vee \exists x \neg C u b e(x)$
is a logical truth, but not a tautology.
Similarly, every tautologically valid argument is a logically valid argument, but not vice versa.
$\forall x$ Cube(x)
$\exists x$ Cube(x)
is a logically valid argument, but not tautologically valid.

Tautologies and logical truths, cont'd

Propositional logic	First-order logic	Tarski' World	General notion
Tautology	FO validity	TW validity	Logical Truth
Tautological consequence	FO consequence	TW consequence	Logical consequence
Tautological equivalence	FO equivalence	TW equivalence	Logical equivalence

Which ones are FO validities?

$$
\begin{gathered}
\forall x \operatorname{SameSize}(x, x) \\
\forall x \operatorname{Cube}(x) \rightarrow C u b e(b) \\
(C u b e(b) \wedge b=c) \rightarrow C u b e(c) \\
(\operatorname{Small}(b) \wedge \operatorname{SameSize}(b, c)) \rightarrow \operatorname{Small}(c)
\end{gathered}
$$

Replacement method: Replace predicates by meaningless ones

$$
\begin{gathered}
\forall x \text { Outgrabe }(x, x) \\
\forall x \operatorname{Tove}(x) \rightarrow \text { Tove }(b) \\
(\text { Tove }(b) \wedge b=c) \rightarrow \text { Tove }(c) \\
(\operatorname{Slithy}(b) \wedge \operatorname{Outgrabe}(b, c)) \rightarrow \operatorname{Slithy}(c)
\end{gathered}
$$

Is this a valid FO argument?

```
\forallx(Tet(x) }->\mathrm{ Large(x))
~arge(b)
\(\neg \operatorname{Tet}(\mathrm{b})\)
```

Replacement with nonsense predicates:
$\forall x($ Borogove $(x) \rightarrow \operatorname{Mimsy}(x))$
\neg Mimsy (b)
\neg Borogove (b)

Is this a valid FO argument?

Replacement with a
meaningless predicate:

$$
\begin{aligned}
& \neg \exists x \operatorname{Larger}(\mathrm{x}, \mathrm{a}) \\
& \neg \exists \mathrm{x} \operatorname{Larger}(\mathrm{~b}, \mathrm{x}) \\
& \operatorname{Larger}(\mathrm{c}, \mathrm{~d}) \\
& \operatorname{Larger}(\mathrm{a}, \mathrm{~b})
\end{aligned}
$$

$$
\begin{aligned}
& \neg \exists \mathrm{x} R(\mathrm{x}, \mathrm{a}) \\
& \neg \exists \mathrm{x}(\mathrm{R}, \mathrm{~b}, \mathrm{x}) \\
& \mathrm{R}(\mathrm{c}, \mathrm{~d}) \\
& \mathrm{R}(\mathrm{a}, \mathrm{~b})
\end{aligned}
$$

The method of counterexamples

In order to show that the argument

$$
\begin{gathered}
P_{1} \\
\ldots \\
P_{n} \\
Q
\end{gathered}
$$

is
not valid, it suffices to give a counterexample, i.e. a world that makes the premises P_{1}, \ldots, P_{n} true, but the conclusion Q false.
(For now, "world" is understood informally. Later on, we will formalize "world" as "first-order structure".)

A counterexample

Scrooge
(b)

Figure 10.1: A first-order counterexample.

Exercises

- chapter 9
- chapter 10: 10.1 to 10.29

