Logik für Informatiker Logic for computer scientists

Quantifiers

Till Mossakowski

WiSe 2007/08

Motivating examples

 $\begin{array}{l} \forall x \ Cube(x) \ ("All \ objects \ are \ cubes.") \\ \forall x \ (Cube(x) \rightarrow Large(x)) \ ("All \ cubes \ are \ large.") \\ \forall x \ Large(x) \ ("All \ objects \ are \ large.") \end{array}$

$$\exists x \ Cube(x)$$

"There exists a cube."

$\exists x \ (Cube(x) \land Large(x))$

"There exists a large cube."

3

The four Aristotelian forms

 $\begin{array}{ll} \text{All P's are Q's.} & \forall x(P(x) \rightarrow Q(x)) \\ \text{Some P's are Q's.} & \exists x(P(x) \land Q(x)) \\ \text{No P's are Q's.} & \forall x(P(x) \rightarrow \neg Q(x)) \\ \text{Some P's are not Q's.} & \exists x(P(x) \land \neg Q(x)) \end{array}$

Note:

 $\forall x(P(x) \rightarrow Q(x)) \text{ does not imply that there are some } P's.$ $\exists x(P(x) \land Q(x)) \text{ does not imply that not all } P's \text{ are } Q's.$

First-order signatures

A first-order signature consists of

- a set of predicate symbols with arities, like $Smaller^{(2)}, Dodec^{(1)}, Between^{(3)}, \leq^{(2)}$, including propositional symbols (nullary predicate symbols), like $A^{(0)}, B^{(0)}, C^{(0)}$, (written uppercase)
- its names or constants for individuals, like a, b, c, (written lowercase)
- its function symbols with arities, like $f^{(1)}, +^{(2)}, \times^{(2)}$.

5

Usually, arities are omitted.

In the book, the terminology "language" is used.

"Signature" is more precise, since it exactly describes the ingredients that are needed to generate a (first-order) language.

Terms

- t ::= a t ::= x $| f^{(n)}(t_1, \dots, t_n)$
 - constant variable application of function symbols to terms

Usually, arities are omitted. Variables are: t, u, v, w, x, y, z, possibly with subscripts.

$\neg F$ $| (F_1 \wedge \ldots \wedge F_n)$ $|(F_1 \wedge \ldots \vee F_n)|$ $|(F_1 \rightarrow F_2)|$ $|(F_1 \leftrightarrow F_2)|$ $\forall \nu F$ $\exists \nu F$

Well-formed formulas $F ::= p^{(n)}(t_1, \ldots, t_n)$ application of predicate symbols contradiction negation conjunction disjunction implication equivalence universal quantification existential quantification

The variable ν is said to be bound in $\forall \nu F$ and $\exists \nu F$.

Parentheses

The outermost parenthese of a well-formed formula can be omitted:

$$Cube(x) \wedge Small(x)$$

In general, parentheses are important to determine the scope of a quantifier (see next slide).

Free and bound variables

An occurrence of a variable in a formula that is not bound is said to be free.

$\exists y \ LeftOf(x,y)$	x is free, y is bound	
$ \begin{array}{ c } (Cube(x) \land Small(x)) \\ \rightarrow \exists y \ LeftOf(x,y) \end{array} \end{array} $	x is free, y is bound	
$\exists x \ (Cube(x) \land Small(x))$	Both occurrences of x are	
	bound	
$\exists x \ Cube(x) \land Small(x)$	The first occurrence of x is	
	bound, the second one is free	

Sentences

A sentence is a well-formed formula without free variables.

 $A \wedge B$

 $Cube(a) \lor Tet(b)$

 $\forall x \ (Cube(x) \to Large(x))$

 $\forall x \ ((Cube(x) \land Small(x)) \rightarrow \exists y \ LeftOf(x,y))$

Semantics of quantification

We need to fix some domain of discourse.

 $\forall x \ S(x)$ is true iff for every object in the domain of discourse with name n, S(n) is true.

 $\exists x \ S(x)$ is true iff for some object in the domain of discourse with name n, S(n) is true.

Not all objects need to have names — hence we assume that for objects, names n_1, n_2, \ldots can be invented "on the fly".

The game rules

Form	Your commitment	Player to move	Goal
$P \lor Q$	TRUE FALSE	you Tarski's World	Choose one of P, Q that is true.
$P \land Q$	TRUE FALSE	Tarski's World you	Choose one of P, Q that is false.
∃x P(x)	TRUE FALSE	you Tarski's World	Choose some b that satisfies the wff $P(x)$.
∀x P(x)	TRUE FALSE	Tarski's World you	Choose some b that does not satisfy $P(x)$.

Logical consequence for quantifiers

```
\begin{array}{l} \forall x(Cube(x) \rightarrow Small(x)) \\ \forall x \ Cube(x) \\ \forall x \ Small(x) \\ \forall x \ Cube(x) \\ \forall x \ Small(x) \\ \forall x \ Small(x) \end{array}
```

However: ignoring quantifiers does not work!

```
\exists x(\mathsf{Cube}(x) \to \mathsf{Small}(x)) \\ \exists x \ \mathsf{Cube}(x) \end{cases}
```

```
\exists x \ Small(x)
```

```
∃x Cube(x)
∃x Small(x)
```

```
\exists x(\mathsf{Cube}(x) \land \mathsf{Small}(x))
```

Tautologies do not distribute over quantifiers

$$\exists x \ Cube(x) \lor \exists x \ \neg Cube(x)$$

is a logical truth, but

$$\forall x \ Cube(x) \lor \forall x \ \neg Cube(x)$$

is not. By contrast,

$$\forall x \ Cube(x) \lor \neg \forall x \ Cube(x)$$

is a tautology.

Truth-functional form

Replace all top-level quantified sub-formulas (i.e. those not ocurring below another quantifier) by propositional letters. Replace multiple occurrences of the same sub-formula by the same propositional letter.

A quantified sentence of FOL is said to be a tautology iff its truth-functional form is a tautology.

$$\forall x \ Cube(x) \lor \neg \forall x \ Cube(x)$$

becomes

$$A \vee \neg A$$

Truth functional form — examples

FO sentence	t.f. form
$\forall x Cube(x) \lor \neg \forall x Cube(x)$	$A \vee \neg A$
$(\exists y Tet(y) \land \forall z Small(z)) \to \forall z Small(z)$	$(A \land B) \to B$
$\forall x Cube(x) \lor \exists y Tet(y)$	$A \lor B$
$\forall x Cube(x) \to Cube(a)$	$A \to B$
$\forall x (Cube(x) \lor \neg Cube(x))$	А
$\forall x \left(Cube(x) \to Small(x)\right) \lor \exists x Dodec(x)$	$A \lor B$

Examples of \rightarrow **-Elim**

$\exists x(Cube(x) \to Small(x))$	A	No!
∃x Cube(x)	B	
∃x Small(x)	C	

$$\begin{array}{c|c} \exists x Cube(x) \rightarrow \exists x \ Small(x) & A \rightarrow B & Yes! \\ \exists x \ Cube(x) & A & B & \\ \exists x \ Small(x) & B & \end{array}$$

Tautologies and logical truths

Every tautology is a logical truth, but not vice versa. Example: $\exists x \ Cube(x) \lor \exists x \neg Cube(x)$ is a logical truth, but not a tautology.

Similarly, every tautologically valid argument is a logically valid argument, but not vice versa.

 $\forall x \ Cube(x)$ $\exists x \ Cube(x)$

is a logically valid argument, but not tautologically valid.

Tautologies and logical truths, cont'd

Propositional logic	First-order logic	Tarski' World	General notion
Tautology	FO validity	TW validity	Logical Truth
<i>Tautological</i>	FO	<i>TW</i>	Logical
<i>consequence</i>	consequence	consequence	consequence
Tautological	FO	TW	Logical
equivalence	equivalence	equivalence	equivalence

Which ones are FO validities?

 $\begin{array}{l} \forall x \; SameSize(x,x) \\ \forall x \; Cube(x) \rightarrow Cube(b) \\ (Cube(b) \land b = c) \rightarrow Cube(c) \\ (Small(b) \land SameSize(b,c)) \rightarrow Small(c) \end{array}$

Replacement method: Replace predicates by meaningless ones

 $\begin{array}{l} \forall x \ Outgrabe(x,x) \\ \forall x \ Tove(x) \to Tove(b) \\ (Tove(b) \land b = c) \to Tove(c) \\ (Slithy(b) \land Outgrabe(b,c)) \to Slithy(c) \end{array}$

24

Is this a valid FO argument?

```
 \begin{array}{l} \forall x(Tet(x) \rightarrow Large(x)) \\ \neg Large(b) \\ \neg Tet(b) \end{array}
```

Replacement with nonsense predicates:

$$\forall x (Borogove(x) \rightarrow Mimsy(x)) \\ \neg Mimsy(b) \\ \neg Borogove(b)$$

Is this a valid FO argument?

Replacement with a meaningless predicate:

 $\neg \exists x Larger(x, a) \\ \neg \exists x Larger(b, x) \\ Larger(c, d) \\ Larger(a, b)$

$$\neg \exists x \ R(x, a) \neg \exists x \ R(b, x) R(c, d) R(a, b)$$

The method of counterexamples

In order to show that the argument

P₁ IS

not valid, it suffices to give a counterexample, i.e. a world that makes the premises P_1, \ldots, P_n true, but the conclusion Q false.

(For now, "world" is understood informally. Later on, we will formalize "world" as "first-order structure".)

A counterexample

Figure 10.1: A first-order counterexample.

Exercises

- chapter 9
- chapter 10: 10.1 to 10.29