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Motivating examples

∀x Cube(x) (“All objects are cubes.”)
∀x (Cube(x) → Large(x)) (“All cubes are large.”)
∀x Large(x) (“All objects are large.”)
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∃x Cube(x)

“There exists a cube.”

∃x (Cube(x) ∧ Large(x))

“There exists a large cube.”
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The four Aristotelian forms

All P’s are Q’s. ∀x(P (x) → Q(x))
Some P’s are Q’s. ∃x(P (x) ∧Q(x))

No P’s are Q’s. ∀x(P (x) → ¬Q(x))
Some P’s are not Q’s. ∃x(P (x) ∧ ¬Q(x))

Note:

∀x(P (x) → Q(x)) does not imply that there are some P ′s.

∃x(P (x) ∧Q(x)) does not imply that not all P ′s are Q′s.
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First-order signatures

A first-order signature consists of

• a set of predicate symbols with arities, like

Smaller (2),Dodec(1),Between(3),≤(2), including

propositional symbols (nullary predicate symbols), like

A(0), B(0), C(0), (written uppercase)

• its names or constants for individuals, like a, b, c, (written

lowercase)

• its function symbols with arities, like f (1),+(2),×(2).
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Usually, arities are omitted.

In the book, the terminology “language” is used.

“Signature” is more precise, since it exactly describes the

ingredients that are needed to generate a (first-order)

language.
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Terms

t ::= a constant

t ::= x variable

| f (n)(t1, . . . , tn) application of function symbols

to terms

Usually, arities are omitted.

Variables are: t, u, v, w, x, y, z, possibly with subscripts.
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Well-formed formulas
F ::= p(n)(t1, . . . , tn) application of predicate symbols

| ⊥ contradiction

| ¬F negation

| (F1 ∧ . . . ∧ Fn) conjunction

| (F1 ∧ . . . ∨ Fn) disjunction

| (F1 → F2) implication

| (F1 ↔ F2) equivalence

| ∀νF universal quantification

| ∃νF existential quantification

The variable ν is said to be bound in ∀νF and ∃νF .
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Parentheses

The outermost parenthese of a well-formed formula can be

omitted:

Cube(x) ∧ Small(x)

In general, parentheses are important to determine the scope

of a quantifier (see next slide).
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Free and bound variables

An occurrence of a variable in a formula that is not bound is

said to be free.

∃y LeftOf (x, y) x is free, y is bound

(Cube(x) ∧ Small(x))
→ ∃y LeftOf (x, y)

x is free, y is bound

∃x (Cube(x) ∧ Small(x)) Both occurrences of x are

bound

∃x Cube(x) ∧ Small(x) The first occurrence of x is

bound, the second one is free
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Sentences

A sentence is a well-formed formula without free variables.

⊥ A ∧B

Cube(a) ∨ Tet(b)

∀x (Cube(x) → Large(x))

∀x ((Cube(x) ∧ Small(x)) → ∃y LeftOf (x, y))
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Semantics of quantification

We need to fix some domain of discourse.

∀x S(x) is true iff for every object in the domain of

discourse with name n, S(n) is true.

∃x S(x) is true iff for some object in the domain of

discourse with name n, S(n) is true.

Not all objects need to have names — hence we assume that

for objects, names n1, n2, . . . can be invented “on the fly”.
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The game rules

Semantics for the quantifiers / 237

Table 9.1: Summary of the game rules

Form Your commitment Player to move Goal

true you Choose one of
P ∨ Q P, Q that

false Tarski’s World is true.

true Tarski’s World Choose one of
P ∧ Q P, Q that

false you is false.

true you Choose some b
∃x P(x) that satisfies

false Tarski’s World the wff P(x).

true Tarski’s World Choose some b
∀x P(x) that does not

false you satisfy P(x).

Replace ¬P
¬P either — by P

and switch
commitment.

Replace P → Q
P → Q either — by ¬P ∨ Q

and keep
commitment.

Replace P ↔ Q by
P ↔ Q either — (P → Q) ∧ (Q → P)

and keep
commitment.

Game rules for the quantifiers

The game rules for the quantifiers are more interesting than those for the
truth-functional connectives. With the connectives, moves in the game in-
volved choosing sentences that are parts of the sentence to which you are
committed. With the quantifier rules, however, moves consist in choosing ob-
jects, not sentences.

Suppose, for example, that you are committed to the truth of ∃x P(x). This game rules for ∃

Section 9.4
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Logical consequence for quantifiers

∀x(Cube(x) → Small(x))
∀x Cube(x)

∀x Small(x)

∀x Cube(x)
∀x Small(x)

∀x(Cube(x) ∧ Small(x))
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However: ignoring quantifiers does not work!

∃x(Cube(x) → Small(x))
∃x Cube(x)

∃x Small(x)

∃x Cube(x)
∃x Small(x)

∃x(Cube(x) ∧ Small(x))
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Tautologies do not distribute over quantifiers

∃x Cube(x) ∨ ∃x ¬Cube(x)
is a logical truth, but

∀x Cube(x) ∨ ∀x ¬Cube(x)
is not. By contrast,

∀x Cube(x) ∨ ¬∀x Cube(x)
is a tautology.
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Truth-functional form
Replace all top-level quantified sub-formulas (i.e. those not

ocurring below another quantifier) by propositional letters.

Replace multiple occurrences of the same sub-formula by the

same propositional letter.

A quantified sentence of FOL is said to be a tautology iff its

truth-functional form is a tautology.

∀x Cube(x) ∨ ¬∀x Cube(x)
becomes

A ∨ ¬A
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Truth functional form — examples

262 / The Logic of Quantifiers

1. ¬(Tet(d) ∧ ∀x Small(x)) → (¬Tet(d) ∨ ¬∀y Small(y))

2. ¬(Tet(d)
A

∧ ∀x Small(x)) → (¬Tet(d) ∨ ¬∀y Small(y))

3. ¬(Tet(d)
A

∧ ∀x Small(x)
B
) → (¬Tet(d) ∨ ¬∀y Small(y))

4. ¬(Tet(d)
A

∧ ∀x Small(x)
B
) → (¬Tet(d)

A
∨ ¬∀y Small(y))

5. ¬(Tet(d)
A

∧ ∀x Small(x)
B
) → (¬Tet(d)

A
∨ ¬∀y Small(y)

C
)

6. ¬(A ∧ B) → (¬A ∨ ¬C)

We are now in a position to say exactly which sentences of the quantified
language are tautologies.

Definition A quantified sentence of fol is said to be a tautology if and onlytautologies of fol

if its truth-functional form is a tautology.

Here is a table displaying six first-order sentences and their truth-functional
forms. Notice that although four of the sentences in the left column are log-
ically true, only the first two are tautologies, as shown by their t.f. forms in
the right column.

FO sentence t.f. form

∀x Cube(x) ∨ ¬∀x Cube(x) A ∨ ¬A

(∃y Tet(y) ∧ ∀zSmall(z)) → ∀z Small(z) (A ∧ B) → B

∀x Cube(x) ∨ ∃y Tet(y) A ∨ B

∀x Cube(x) → Cube(a) A → B

∀x (Cube(x) ∨ ¬Cube(x)) A

∀x (Cube(x) → Small(x)) ∨ ∃x Dodec(x) A ∨ B

A useful feature of the truth-functional form algorithm is that it can be
applied to arguments as easily as it can be applied to sentences. All you do is
continue the procedure until you come to the end of the argument, rather than
stopping at the end of the first sentence. For example, applied to argument 3
on page 258, we first get the labeled argument:

∃x (Cube(x) → Small(x))
A

∃x Cube(x)
B

∃x Small(x)
C

and then the truth-functional form:

Chapter 10
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Examples of →-Elim

∃x(Cube(x) → Small(x))
∃x Cube(x)

∃x Small(x)

A

B

C

No!

∃xCube(x) → ∃x Small(x)
∃x Cube(x)

∃x Small(x)

A → B

A

B

Yes!
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Tautologies and logical truths

Every tautology is a logical truth, but not vice versa.

Example: ∃x Cube(x) ∨ ∃x ¬Cube(x)
is a logical truth, but not a tautology.

Similarly, every tautologically valid argument is a logically

valid argument, but not vice versa.

∀x Cube(x)

∃x Cube(x)
is a logically valid argument, but not tautologically valid.
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Tautologies and logical truths, cont’d

Propositional logic First-order logic Tarski’ World General notion

Tautology FO validity TW validity Logical Truth

Tautological FO TW Logical

consequence consequence consequence consequence

Tautological FO TW Logical

equivalence equivalence equivalence equivalence
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Which ones are FO validities?

∀x SameSize(x, x)
∀x Cube(x) → Cube(b)

(Cube(b) ∧ b = c) → Cube(c)
(Small(b) ∧ SameSize(b, c)) → Small(c)
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Replacement method:
Replace predicates by meaningless ones

∀x Outgrabe(x, x)
∀x Tove(x) → Tove(b)

(Tove(b) ∧ b = c) → Tove(c)
(Slithy(b) ∧Outgrabe(b, c)) → Slithy(c)
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Is this a valid FO argument?

∀x(Tet(x) → Large(x))
¬Large(b)

¬Tet(b)

Replacement with nonsense predicates:

∀x(Borogove(x) → Mimsy(x))
¬Mimsy(b)

¬Borogove(b)

Till Mossakowski: Logic WiSe 2007/08



26

Is this a valid FO argument?

Replacement with a

meaningless predicate:

¬∃x Larger(x, a)
¬∃x Larger(b, x)
Larger(c, d)

Larger(a, b)

¬∃x R(x, a)
¬∃x R(b, x)
R(c, d)

R(a, b)

Till Mossakowski: Logic WiSe 2007/08



27

The method of counterexamples

In order to show that the argument P1

. . .

Pn

Q

is

not valid, it suffices to give a counterexample, i.e. a world

that makes the premises P1, . . . , Pn true, but the conclusion

Q false.

(For now, “world” is understood informally. Later on, we will

formalize “world” as “first-order structure”.)
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A counterexample
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Exercises

• chapter 9

• chapter 10: 10.1 to 10.29
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