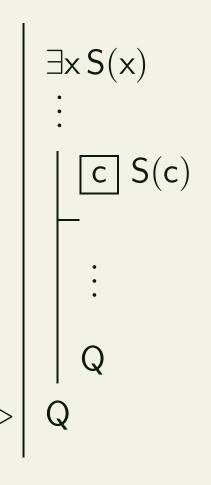
Logik für Informatiker Logic for computer scientists

Proof rules for quantifiers

Till Mossakowski

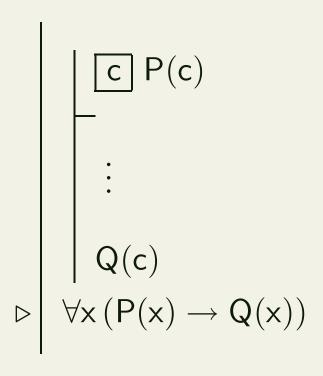

Universal Elimination $(\forall Elim)$

Existential Introduction (∃ Intro)

Example: ∀-Elim and ∃-Intro

```
 \forall x [Cube(x) \rightarrow Large(x)] 
\forall x [Large(x) \rightarrow LeftOf(x, b)] 
Cube(d) 
\exists x [Large(x) \land LeftOf(x, b)]
```

Existential Elimination (3 Elim):

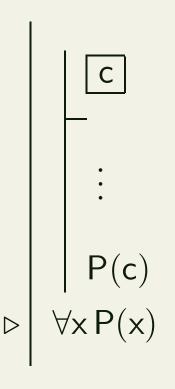


Where c does not occur outside the subproof where it is introduced.

Example: ∃-Elim

```
 \forall x [Cube(x) \rightarrow Large(x)] 
\forall x [Large(x) \rightarrow LeftOf(x, b)] 
\exists x \ Cube(x) 
\exists x [Large(x) \land LeftOf(x, b)]
```

General Conditional Proof (\forall Intro):



Where c does not occur outside the subproof where it is introduced.

Example: General Conditional Proof

$$\begin{array}{l} \forall x[\mathsf{Cube}(x) \to \mathsf{Large}(x)] \\ \forall x[\mathsf{Large}(x) \to \mathsf{LeftOf}(x,b)] \\ \forall x[\mathsf{Cube}(x) \to \mathsf{LeftOf}(x,b) \end{array}$$

Universal Introduction (\forall Intro):

Where c does not occur outside the subproof where it is introduced.

$$\triangleright \mid n = n$$

Example: ∀-Intro

$$\forall x \ x = x$$

W

Example with multiple quantifiers

$$\exists y [Girl(y) \land \forall x (Boy(x) \rightarrow Likes(x, y))]$$
$$\forall x [Boy(x) \rightarrow \exists y (Girl(y) \land Likes(x, y))]$$

$$\forall x [Boy(x) \rightarrow \exists y (Girl(y) \land Likes(x, y))]$$

Example: de Morgan's Law

(is not valid in intuitionistic logic, only in classical logic)

Example: The Barber Paradox

$$\exists z \; \exists x \; [\mathit{ManOf}(x,z) \land \forall y \; (\mathit{ManOf}(y,z) \rightarrow (\mathit{Shave}(x,y) \leftrightarrow \neg \mathit{Shave}(y,y)))]$$

W