Logik für Informatiker Logic for computer scientists

Identity, induction and XMas

Till Mossakowski

WiSe 2007/08

Identity Elimination (= Elim) $\mathsf{P}(\mathsf{n})$ n = m: P(m) \triangleright

Example for =-**Elim**

```
SameCol(a, b)
b = c
SameCol(a, c)
```

Identity Introduction (= Intro) $\triangleright \mid n = n$

Ü

Reflexivity, symmetry and transitivity

$$\forall x \ x = x$$

 $\forall x \ \forall y \ x = y \rightarrow y = x$
 $\forall x \ \forall y \ \forall z \ (x = y \land y = z) \rightarrow x = z$

Induction

Induction is like a chain of dominoes. You need

- the dominoes must be close enough together ⇒ one falling dominoe knocks down the next (inductive step)
- you need to knock down the first dominoe (inductive basis)

6

Induction

Induction is like a chain of dominoes. You need

- the dominoes must be close enough together ⇒ one falling dominoe knocks down the next (inductive step)
- you need to knock down the first dominoe (inductive basis)

Note: in the inductive step, branching is possible.

Inductive definition: Natural numbers

- 1. 0 is a natural number.
- 2. If n is natural number, then suc(n) is a natural number.
- 3. There is no natural number whose successor is 0.
- 4. Two different natural numbers have different successors.
- 5. Nothing is a natural number unless generated by repeated applications of (1) and (2).

Recursive definition of functions

$$\forall y(0 + y = y) \forall x \forall y(suc(x) + y = suc(x + y))$$

$$\forall y(0 * y = 0) \forall x \forall y(suc(x) * y = (x * y) + y)$$

Formalization of Peano's axioms

- 1. a constant $\boldsymbol{0}$
- 2. a unary function symbol $\ensuremath{\mathit{suc}}$
- 3. $\forall n \neg suc(n) = 0$
- 4. $\forall m \forall n \ suc(m) = suc(n) \rightarrow m = n$
- 5. $(\Phi(x/0) \land \forall n(\Phi(x/n) \rightarrow \Phi(x/suc(n)))) \rightarrow \forall n \ \Phi(x/n)$ if Φ is a formula with a free variable x, and $\Phi(x/t)$ denotes the replacement of x with t within Φ

Inductive proofs

Take $\Phi(x) := \forall y \forall z (x + (y + z) = (x + y) + z)$. Then

 $(\Phi(x/0) \land \forall n (\Phi(x/n) \to \Phi(x/suc(n)))) \to \forall n \ \Phi(x/n)$

is just

$$\begin{aligned} (\forall y \forall z (0 + (y + z) = (0 + y) + z) \\ \wedge \forall n \forall y \forall z \ (n + (y + z) = (n + y) + z \\ \rightarrow suc(n) + (y + z) = (suc(n) + y) + z)) \\ \rightarrow \forall n \forall y \forall z \ (n + (y + z) = (n + y) + z) \end{aligned}$$

With this, we can prove $\forall n \forall y \forall z \ (n + (y + z) = (n + y) + z)$

Inductive datatypes: Lists of natural numbers

- 1. The empty list [] is a list.
- 2. If l is a list and n is natural number, then cons(n, l) is a list.
- 3. Nothing is a list unless generated by repeated applications of (1) and (2).

Note: This needs many-sorted first-order logic. We have two sorts of objects: natural numbers and lists.

Recursive definition of functions over lists

$$length([]) = 0$$

 $\forall n : Nat \ \forall l : List \ (length(cons(n, l)) = suc(length(l)))$

$$\begin{aligned} \forall l : List ([] ++ l = l) \\ \forall n : Nat \ \forall l_1 : List \ \forall l_2 : List \\ (cons(n, l_1) ++ l_2 = cons(n, l_1 ++ l_2)) \end{aligned}$$

Inductive proofs over lists

$$\forall l_1 : List \ \forall l_2 : List \ \forall l_3 : List (l_1 ++ (l_2 ++ l_3) = (l_1 ++ l_2) ++ l_3)$$

$$\forall l_1 : List \ \forall l_2 : List (length(l_1 ++ l_2) = length(l_1) + length(l_2))$$

XMas special

Existence of Santa Clause

Theorem. Santa Clause exists.

Existence of Santa Clause

Theorem. Santa Clause exists. Proof.

Assume to the contrary, that Santa Clause does not exist.

By \exists -Intro, there exists something that does not exist.

This is a contradiction. Hence, the assumption that Santa Clause does not exist must be wrong.

Thus, Santa Clause exists.

All reindeers have the same color

Theorem. Any number of reindeers have the same color.

All reindeers have the same color

Theorem. Any number of reindeers have the same color. Proof. By induction.

Basis: one reindeer has the same color (obviously!).

All reindeers have the same color

Theorem. Any number of reindeers have the same color. Proof. By induction.

Basis: one reindeer has the same color (obviously!).

Inductive step: suppose that any collection of n reindeers has the same color. We need to show that n + 1 reindeers have the same color, too. By induction hypothesis, the first n reindeers have the same color. Take out the last reindeer of these and replace it with the n + 1st. Again by induction hypothesis, these have the same color. Hence, all n + 1 reindeers have the same color. \Box

Why the date of XMas cannot be surprising

Son: It is boring that XMas always is on the 24th. Father: OK. This year, we will celebrate XMas on a day in the week from 23th to 29th. You will not know the date beforehand.

Son: Good! Then it cannot be the 29th — if we hadn't celebrated it until the 28th, I would know beforehand that it must be the 29th, since this is the last day of the week! Moreover, it cannot be the 28th — if we hadn't celebrated it until the 27th, I would know beforehand that it must be the

28th (the 29th already has been excluded above). Son (cont'd): Similarly, it can be neither the 27th, nor the 26th, nor the 25th, nor the 24th, nor the 23th. Hence, you cannot fulfill you promise that I won't know the

date beforehand.

Father: You will see, you won't know the date beforehand.

Why the date of XMas can be surprising

After all, XMas was celebrated on the 27th.

The son was quite surprised.

A scheduling problem

A camel must travel 1000 miles across a desert to the nearest city. She has 3000 bananas but can only carry 1000 at a time. For every mile she walks, she needs to eat a banana. What is the maximum number of bananas she can transport to the city?

