Logik für Informatiker Logic for computer scientists

Gödel's completeness theorem

Till Mossakowski

WiSe 2007/08

Completeness of propositional logic

Theorem (Completeness theorem). Let \mathcal{T} be a set of propositional sentences, and S be a propositional sentence. If S is a tautological consequence of \mathcal{T} ($\mathcal{T} \models S$), then $\mathcal{T} \vdash S$.

Recall: $\mathcal{T} \models S$ means that each valuation satisfying \mathcal{T} also satisfies S.

 $\mathcal{T} \vdash S$ means that S is derivable from \mathcal{T} using the rules of Fitch.

Proof of propositional completeness

Call a set of sentences \mathcal{T} formally inconsistent, if $\mathcal{T} \vdash \bot$. Example: $\{A \lor B, \neg A, \neg B\}$.

Otherwise, \mathcal{T} is called formally consistent. Example: $\{A \lor B, A, \neg B\}$

Lemma 1 $\mathcal{T} \cup \{\neg S\} \vdash \bot$ iff $\mathcal{T} \vdash S$.

Reformulation of completeness: Every formally consistent set of sentences is tt-satisfiable.

Completeness of formally complete sets

A set \mathcal{T} is formally complete, if for any sentence S in the same language as \mathcal{T} , either $\mathcal{T} \vdash S$ or $\mathcal{T} \vdash \neg S$. Lemma 2 For \mathcal{T} formally complete and consistent, 1. $\mathcal{T} \vdash R \land S$ iff $\mathcal{T} \vdash R$ and $\mathcal{T} \vdash S$. 2. $\mathcal{T} \vdash R \lor S$ iff $\mathcal{T} \vdash R$ or $\mathcal{T} \vdash S$. 3. $\mathcal{T} \vdash \neg S$ iff not $\mathcal{T} \vdash S$. 4. $\mathcal{T} \vdash R \rightarrow S$ iff $\mathcal{T} \nvDash R$ or $\mathcal{T} \vdash S$. 5. $\mathcal{T} \vdash R \leftrightarrow S$ iff $(\mathcal{T} \vdash R \text{ iff } \mathcal{T} \vdash S)$.

Finishing the proof

Lemma 3 Every formally complete and consistent set is tt-satisfiable.

Lemma 4 A set of sentence is formally complete iff for every atomic sentence A, either $\mathcal{T} \vdash A$ or $\mathcal{T} \vdash \neg A$.

Lemma 5 Every formally consistent set of sentences can be expanded to a formally consistent, formally complete set of sentences.

Gödel's completeness theorem

Theorem (Completeness theorem). Let \mathcal{T} be a set of sentences of a first-order language L and S be a sentence of the same language. If S is a first-order consequence of \mathcal{T} $(\mathcal{T} \models S)$, then $\mathcal{T} \vdash S$.

Recall: $\mathcal{T} \models S$ means that each first-order structure satisfying \mathcal{T} also satisfies S.

 $\mathcal{T} \vdash S$ means that S is derivable from \mathcal{T} using the rules of Fitch.

6

Henkin's proof of Gödel's theorem

- Adding witnessing constants L is enriched to L_H by adding infinitely many constants, the witnessing constants.
- **The Henkin theory** Isolate a theory \mathcal{H} in the enriched language L_H , which contains Henkin witnessing axioms.
- The Elimination theorem For any proof with sentences in L or from \mathcal{H} as premises, and a sentence in L as conclusion, we can eliminate the premises from \mathcal{H} from the proof.
- **The Henkin construction** For every truth assignment h assinging TRUE to all formulas in \mathcal{H} , there is a first-order structure \mathfrak{M}_h such that \mathfrak{M}_h makes true all first-order sentence that h makes true.

How to obtain Gödel's theorem

Assume that $\mathcal{T} \models S$.

- 1. Hence, there is no model of $\mathcal{T} \cup \{\neg S\}$.
- 2. By the Henkin construction, there is no assignment h satisfying $\mathcal{T} \cup \mathcal{H} \cup \{\neg S\}$.
- 3. Hence, S is a tautological consequence of $T \cup H$.
- 4. By completeness of propositional logic, $T \cup H \vdash S$.
- 5. By the elimination theorem, $\mathcal{T} \vdash S$.

Adding witnessing constants

For each well-formed formula P of L with exactly one free variable, add a new constant c_P , P's witnessing constant. E.g. for $Small(x) \wedge Cube(x)$, we introduce $c_{Small(x) \wedge Cube(x)}$. This process has to be iterated:

$$L = L_0 \subseteq L_1 \subseteq L_2 \subseteq \dots$$

E.g. for $Smaller(y, c_{Small(x) \land Cube(x)})$, we introduce $c_{Smaller(y, c_{Small(x) \land Cube(x)})}$. Each witnessing constant appears in some L_n for the first time. n is called its date of birth.

The Henkin witnessing axioms

$$\exists x \ P(x) \to P(c_{P(x)})$$

intuitve idea:

if there is something that satisfies P(x), then the object named by $c_{P(x)}$ provides an example 10

The Henkin theory

H1 $\exists x \ P(x) \rightarrow P(c_{P(x)})$	(witnessing axioms, $\hat{=} \exists Elim$)
H2 $P(c) \rightarrow \exists x \ P(x)$	(≙ ∃Intro)
H3 $\neg \forall x \ P(x) \leftrightarrow \exists x \ \neg P(x)$	(reduces \forall to \exists)
H4 $c = c$	$(\hat{=} = $ Intro $)$
H5 $(P(c) \land c = d) \rightarrow P(d)$	$(\hat{=} = Elim)$

11

Independence lemma

If c_P and c_Q are two witnessing constants and the date of birth of c_P is less than or equal to that of c_Q , then c_Q does not appear in the witnessing axiom of c_P .

Elimination Theorem

For any proof with sentences in L or from \mathcal{H} as premises, and a sentence in L as conclusion, we can eliminate the premises from \mathcal{H} from the proof. **Deduction Theorem If** $\mathcal{T} \cup \{P\} \vdash Q$, then $\mathcal{T} \vdash P \rightarrow Q$.

Lemma 1 If $\mathcal{T} \vdash P \rightarrow Q$ and $\mathcal{T} \vdash \neg P \rightarrow Q$, then $\mathcal{T} \vdash Q$.

Lemma 2 If $\mathcal{T} \vdash (P \rightarrow Q) \rightarrow R$, then $\mathcal{T} \vdash \neg P \rightarrow R$, and $\mathcal{T} \vdash Q \rightarrow R$.

Lemma 3 Let \mathcal{T} be a set of sentences of some first-order language L, and Q be a sentence. Let P(x) be a formula of L with one free variable and which does not contain c. If $\mathcal{T} \vdash P(c) \rightarrow Q$ and c does not appear in \mathcal{T} or Q, then $\mathcal{T} \vdash \exists x \ P(x) \rightarrow Q$. Lemma 4 Let \mathcal{T} be a set of sentences of some first-order language L, and Q be a sentence of L. Let P(x) be a formula of L with one free variable and which does not contain c. If $\mathcal{T} \cup \{ \exists x \ P(x) \to P(c) \} \vdash Q$ and c does not appear in \mathcal{T} or Q, then $\mathcal{T} \vdash Q$. Lemma 5 Let \mathcal{T} be a set of first-order sentences, let P(x) be a formula with one free variable, and let c and d be constant symbols. The following are provable in \mathcal{F} :

$$P(c) \to \exists x \ P(x)$$
$$\neg \forall x \ P(x) \leftrightarrow \exists x \ \neg P(x)$$
$$c = c$$
$$(P(c) \land c = d) \to P(d)$$

Elimination Theorem

For any proof with sentences in L or from \mathcal{H} as premises, and a sentence in L as conclusion, we can eliminate the premises from \mathcal{H} from the proof.

The Henkin construction

For every truth assignment h assinging TRUE to all formulas in \mathcal{H} , there is a first-order structure \mathfrak{M}_h such that \mathfrak{M}_h makes true all first-order sentence that h makes true.

Given h, construct \mathfrak{M} as follows:

- $D^{\mathfrak{M}}$: set of constant symbols in L_H
- $\mathfrak{M}(c)$ is just c
- $\mathfrak{M}(R)$ is $\{\langle c_1, \ldots c_n \rangle \mid h(R(c_1, \ldots c_n)) = \text{TRUE}\}$

$$c \equiv d$$
 if and only if $h(c=d)\,=\,\mbox{true}$

$$\mathfrak{M}_h = \mathfrak{M}/\equiv$$

U

The truth lemma

For any sentence S of L_H , $\mathfrak{M}_h \models S$ iff h(S) = true.

Consequences of the Completeness Theorem

Theorem (Compactness theorem) Let \mathcal{T} be a set of first-order sentences in a first-order language L. If every finite subset of \mathcal{T} is first order-satisfiable, then \mathcal{T} itself is first-order satisfiable.

Non-standard models of Peano arithmetic

Let L be the language of Peano arithmetic. Then there exists a first-order structure \mathfrak{M} such that

- 1. \mathfrak{M} contains all the natural numbers in its domain,
- 2. ${\mathfrak M}$ also contains elements greater than all the natural numbers, but
- 3. \mathfrak{M} makes true exactly the same sentences of L as are true about the natural numbers.

Exercises

- Today's lecture: 17.4-17.16, 19.1-19.23
- you can also submit any other exercise that has not been covered so far
- deadline: Mon, 11th February