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Completeness of propositional logic

Theorem (Completeness theorem). Let T be a set of

propositional sentences, and S be a propositional sentence. If

S is a tautological consequence of T (T |= S), then T ` S.

Recall: T |= S means that each valuation satisfying T also

satisfies S.

T ` S means that S is derivable from T using the rules of

Fitch.
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Proof of propositional completeness

Call a set of sentences T formally inconsistent, if T ` ⊥.

Example: {A ∨B,¬A,¬B}.

Otherwise, T is called formally consistent.

Example: {A ∨B,A,¬B}

Lemma 1 T ∪ {¬S} ` ⊥ iff T ` S.

Reformulation of completeness: Every formally consistent set

of sentences is tt-satisfiable.
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Completeness of formally complete sets

A set T is formally complete, if for any sentence S in the

same language as T , either T ` S or T ` ¬S.

Lemma 2 For T formally complete and consistent,

1. T ` R ∧ S iff T ` R and T ` S.

2. T ` R ∨ S iff T ` R or T ` S.

3. T ` ¬S iff not T ` S.

4. T ` R → S iff T 6` R or T ` S.

5. T ` R ↔ S iff ( T ` R iff T ` S).
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Finishing the proof

Lemma 3 Every formally complete and consistent set is

tt-satisfiable.

Lemma 4 A set of sentence is formally complete iff for every

atomic sentence A, either T ` A or T ` ¬A.

Lemma 5 Every formally consistent set of sentences can be

expanded to a formally consistent, formally complete set of

sentences.
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Gödel’s completeness theorem

Theorem (Completeness theorem). Let T be a set of

sentences of a first-order language L and S be a sentence of

the same language. If S is a first-order consequence of T
(T |= S), then T ` S.

Recall: T |= S means that each first-order structure

satisfying T also satisfies S.

T ` S means that S is derivable from T using the rules of

Fitch.
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Henkin’s proof of Gödel’s theorem

Adding witnessing constants L is enriched to LH by adding infinitely

many constants, the witnessing constants.

The Henkin theory Isolate a theory H in the enriched language LH,

which contains Henkin witnessing axioms.

The Elimination theorem For any proof with sentences in L or from H
as premises, and a sentence in L as conclusion, we can eliminate the

premises from H from the proof.

The Henkin construction For every truth assignment h assinging true

to all formulas in H, there is a first-order structure Mh such that Mh

makes true all first-order sentence that h makes true.
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How to obtain Gödel’s theorem

Assume that T |= S.

1. Hence, there is no model of T ∪ {¬S}.
2. By the Henkin construction, there is no assignment h

satisfying T ∪ H ∪ {¬S}.
3. Hence, S is a tautological consequence of T ∪ H.

4. By completeness of propositional logic, T ∪ H ` S.

5. By the elimination theorem, T ` S.
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Adding witnessing constants

For each well-formed formula P of L with exactly one free

variable, add a new constant cP , P ’s witnessing constant.

E.g. for Small(x) ∧ Cube(x), we introduce cSmall(x)∧Cube(x).

This process has to be iterated:

L = L0 ⊆ L1 ⊆ L2 ⊆ . . .

E.g. for Smaller(y, cSmall(x)∧Cube(x)), we introduce
cSmaller(y,cSmall(x)∧Cube(x)).

Each witnessing constant appears in some Ln for the first

time. n is called its date of birth.
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The Henkin witnessing axioms

∃x P (x) → P (cP (x))

intuitve idea:

if there is something that satisfies P (x), then the object

named by cP (x) provides an example

Till Mossakowski: Logic WiSe 2007/08



11

The Henkin theory

H1 ∃x P (x) → P (cP (x)) (witnessing axioms, =̂ ∃Elim)

H2 P (c) → ∃x P (x) (=̂ ∃Intro)

H3 ¬∀x P (x) ↔ ∃x ¬P (x) (reduces ∀ to ∃)

H4 c = c (=̂ =Intro)

H5 (P (c) ∧ c = d) → P (d) (=̂ =Elim)
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Independence lemma

If cP and cQ are two witnessing constants and the date of

birth of cP is less than or equal to that of cQ, then cQ does

not appear in the witnessing axiom of cP .
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Elimination Theorem

For any proof with sentences in L or from H as premises,

and a sentence in L as conclusion, we can eliminate the

premises from H from the proof.
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Deduction Theorem If T ∪ {P} ` Q, then T ` P → Q.

Lemma 1 If T ` P → Q and T ` ¬P → Q, then T ` Q.

Lemma 2 If T ` (P → Q) → R,

then T ` ¬P → R, and T ` Q → R.

Lemma 3 Let T be a set of sentences of some first-order

language L, and Q be a sentence. Let P (x) be a formula of

L with one free variable and which does not contain c. If

T ` P (c) → Q and c does not appear in T or Q, then

T ` ∃x P (x) → Q.
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Lemma 4 Let T be a set of sentences of some first-order

language L, and Q be a sentence of L. Let P (x) be a

formula of L with one free variable and which does not

contain c. If T ∪ {∃x P (x) → P (c)} ` Q and c does not

appear in T or Q, then T ` Q.
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Lemma 5 Let T be a set of first-order sentences, let P (x) be

a formula with one free variable, and let c and d be constant

symbols. The following are provable in F :

P (c) → ∃x P (x)
¬∀x P (x) ↔ ∃x ¬P (x)

c = c

(P (c) ∧ c = d) → P (d)
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Elimination Theorem

For any proof with sentences in L or from H as premises,

and a sentence in L as conclusion, we can eliminate the

premises from H from the proof.
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The Henkin construction

For every truth assignment h assinging true to all formulas in H, there

is a first-order structure Mh such that Mh makes true all first-order

sentence that h makes true.

Given h, construct M as follows:

• DM: set of constant symbols in LH

• M(c) is just c

• M(R) is {〈c1, . . . cn〉 | h(R(c1, . . . cn)) = true}

c ≡ d if and only if h(c = d) = true

Mh = M/ ≡
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The truth lemma

For any sentence S of LH, Mh |= S iff h(S) = true.
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Consequences of the Completeness Theorem

Theorem (Compactness theorem) Let T be a set of

first-order sentences in a first-order language L. If every

finite subset of T is first order-satisfiable, then T itself is

first-order satisfiable.
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Non-standard models of Peano arithmetic

Let L be the language of Peano arithmetic. Then there

exists a first-order structure M such that

1. M contains all the natural numbers in its domain,

2. M also contains elements greater than all the natural

numbers, but

3. M makes true exactly the same sentences of L as are true

about the natural numbers.
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Exercises

• Today’s lecture: 17.4-17.16, 19.1-19.23

• you can also submit any other exercise that has not been

covered so far

• deadline: Mon, 11th February
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