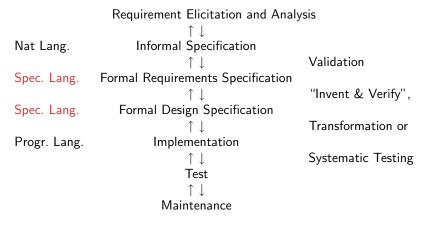
Vorlesung vom 29.10.2007: Einführung in CASL

Christoph Lüth & Lutz Schröder

WS 07/08

• loose requirements, close to informal descriptions


- loose requirements, close to informal descriptions
- clarification of underlying mathematical concepts

- loose requirements, close to informal descriptions
- clarification of underlying mathematical concepts
- design of algorithms and data structures independently of any implementation language

- loose requirements, close to informal descriptions
- clarification of underlying mathematical concepts
- design of algorithms and data structures independently of any implementation language
- CASL is a standard for axiomatic specification

Waterfall Model (slide by M. Roggenbach)

Example: sorting

Informal specification:

To sort a list means to find a list with the same elements, which is in ascending order.

Example: sorting

Informal specification:

To sort a list means to find a list with the same elements, which is in ascending order.

Formal requirements specification:

- is_ordered(sorter(L))
- $is_ordered(L) \Leftrightarrow \forall L1, L2 : List; x, y : Elem$.

$$L = L1 + +[x, y] + +L2 \Rightarrow x \leq y$$

- permutation(L, sorter(L))
- $permutation(L1, L2) \Leftrightarrow$

$$\forall x : Elem . count(x, L1) = count(x, L2)$$

Sorting (cont'd)

We want to show insert sort to enjoy these properties.

Formal design specification:

- insert(x, []) = [x]
 insert(x, y :: L) =
 x :: y :: L) when x ≤ y
 - else y :: insert(x, L)
- insert_sort([]) = []
- $insert_sort(x :: L) = insert(x, insert_sort(L))$

Implementation (in Haskell)

• de facto standard for specification of functional requirements

- de facto standard for specification of functional requirements
- developed by the "Common Framework Initiative" (an open international collaboration)

- de facto standard for specification of functional requirements
- developed by the "Common Framework Initiative" (an open international collaboration)
- approved by IFIP WG 1.3 "Foundations of Systems Specifications"

- de facto standard for specification of functional requirements
- developed by the "Common Framework Initiative" (an open international collaboration)
- approved by IFIP WG 1.3 "Foundations of Systems Specifications"
- CASL User Manual (Lecture Notes in Computer Science 2900) and Reference Manual (Lecture Notes in Computer Science 2960)

• detailed language summary, with informal explantation

- detailed language summary, with informal explantation
- formal definition of abstract and concrete syntax

- detailed language summary, with informal explantation
- formal definition of abstract and concrete syntax
- complete formal semantics

- detailed language summary, with informal explantation
- formal definition of abstract and concrete syntax
- complete formal semantics
- proof systems

- detailed language summary, with informal explantation
- formal definition of abstract and concrete syntax
- complete formal semantics
- proof systems
- libraries of basic datatypes

- detailed language summary, with informal explantation
- formal definition of abstract and concrete syntax
- complete formal semantics
- proof systems
- libraries of basic datatypes
- All this is contained in the Reference Manual
- here, we will largely follow the User Manual

 the complete formal semantics maps the syntax to underlying mathematical concepts

 the complete formal semantics maps the syntax to underlying mathematical concepts

• Casl specifications denote classes of models

- the complete formal semantics maps the syntax to underlying mathematical concepts
- Casl specifications denote classes of models
- The semantics is largely independent of the details of the logic (institution)

- the complete formal semantics maps the syntax to underlying mathematical concepts
- CASL specifications denote classes of models
- The semantics is largely independent of the details of the logic (institution)
- ullet The semantics is the ultimative reference for the meaning of Casl

CASL on the web

• CASL in general: http://www.cofi.info

• CASL tools: http://www.tzi.de/hets

CASL libraries: http://www.cofi.info/Libraries

Layers of CASL

CASL consists of several major layers, which are quite independent and may be understood (and used) separately:

Basic specifications many-sorted first-order logic, subsorting, partial functions, induction, datatypes.

Layers of CASL

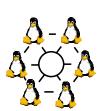
CASL consists of several major layers, which are quite independent and may be understood (and used) separately:

Basic specifications many-sorted first-order logic, subsorting, partial functions, induction, datatypes.

Structured specifications translation, reduction, union, and extension of specifications; generic (parametrized) and named specifications

Why Modular Decomposition?

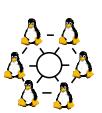
- reduction of complexity
- better understanding of specification and code (small pieces, well-defined interfaces)
- better distribution of work



Why Modular Decomposition?

- reduction of complexity
- better understanding of specification and code (small pieces, well-defined interfaces)
- better distribution of work

vs



Why Modular Decomposition?

- reduction of complexity
- better understanding of specification and code (small pieces, well-defined interfaces)
- better distribution of work

VS.

• better maintenance and possibilities of re-use

Layers of CASL (cont'd)

Architectural specifications serve to structure implementations: define how models of a specification may be constructed out of models of simpler specifications.

Layers of CASL (cont'd)

Architectural specifications serve to structure implementations: define how models of a specification may be constructed out of models of simpler specifications.

Libraries allow the distributed (over the Internet) storage and retrieval of (particular versions of) named specifications.