Logik für Informatiker Logic for computer scientists

Till Mossakowski

WiSe 2009/10

- Monday 12:00-14:00 MZH 1400
- Thursday 14:00-16:00 MZH 5210
- Exercises (bring your Laptops with you!)
- Wednesday 8:00-10:00 Sportturm C 5130
- or within the course
- Web: www.informatik.uni-bremen.de/agbkb/lehre/ ws09-10/Logik/

PL1 is the formal language of first-order predicate logic

Why do we need a formal language?
\Rightarrow Slides from Prof. Barbara König, Universität Duisburg-Essen http://www.ti.inf.uni-due.de/teaching/ws0607/logik/folien/ einfuehrung.pdf

- Individual constants are symbols that denote a person, thing, object
- Examples:
- Numbers: 0, 1, 2, 3, ...
- Names: Max, Claire
- Formal constants: a, b, c, d, e, f, n1, n2
- Each individual constant must denote an existing object
- No individual constant can denote more than one object
- An object can have $0,1,2,3 \ldots$ names
- Predicate symbols denote a property of objects, or a relation between objects
- Each predicate symbol has an arity that tell us how many objects are related
- Examples:
- Arity 0: Gate0_is_low, A, B, ...
- Arity 1: Cube, Tet, Dodec, Small, Medium, Large
- Arity 2: Smaller, Larger, LeftOf, BackOf, SameSize, Adjoins
- Arity 3: Between

The interpretation of predicate symbols

- In Tarski's world, predicate symbols have a fixed interpretation, that not always completely coindices with the natural language interpretation
- In other PL1 languages, the interpretation of predicate symbols may vary. For example, \leq may be an ordering of numbers, strings, trees etc.
- Usually, the binary symbol $=$ has a fixed interpretation: equality

Atomic sentences

- in propositional logic (Boole):
- propositional symbols: a, b, c, \ldots
- in PL1 (Tarski's world):
- application of predicate symbols to constants: $\operatorname{Larger}(\mathrm{a}, \mathrm{b})$
- the order of arguments matters: Larger(a,b) vs. Larger(b,a)
- Atomic sentences denote truth values (true, false)

Function symbols

- Function symbols lead to more complex terms that denote objects. Examples:
- father, mother
- +, -, *, /
- This leads to new terms denoting objects:
- father(max) mother(father(max))
- $3^{*}(4+2)$
- This also leads to new atomic sentences:
- Larger(father(max), max)
- $2<3^{*}(4+2)$

Logical validity; satisfiability

A sentence A is a logically valid, if it is true in all circumstances. A sentence A is a satisfiable, if it is true in at least one circumstance.
A circumstance is

- in propositional logic: a valuation of the atomic formulas in the set $\{$ true, false \}
- in Tarski's world: a block world

Consequences . . .

Logical consequence

A sentence B is a logical consequence of A_{1}, \ldots, A_{n}, if all circumstances that make A_{1}, \ldots, A_{n} true also make B true. In symbols: $A_{1}, \ldots, A_{n} \models B$.
A_{1}, \ldots, A_{n} are called premises, B is called conclusion.
In this case, it is a valid argument to infer B from $A_{1}, \ldots A_{n}$. If also $A_{1}, \ldots A_{n}$ are true, then the valid argument is sound.

Logical consequence

A sentence B is a logical consequence of A_{1}, \ldots, A_{n}, if all circumstances that make A_{1}, \ldots, A_{n} true also make B true. In symbols: $A_{1}, \ldots, A_{n} \models B$.
A_{1}, \ldots, A_{n} are called premises, B is called conclusion.
In this case, it is a valid argument to infer B from $A_{1}, \ldots A_{n}$. If also $A_{1}, \ldots A_{n}$ are true, then the valid argument is sound.

Logical consequence - examples

- All men are mortal. Socrates is a man. So, Socrates is mortal.
- All rich actors are good actors. Brad Pitt is a rich actor. So he must be a good actor. (valid, but not sound)
- All rich actors are good actors. Brad Pitt is a good actor. So he must be a rich actor. (not valid)

Logical consequence - examples

- All men are mortal. Socrates is a man. So, Socrates is mortal. (valid, sound)
- All rich actors are good actors. Brad Pitt is a rich actor. So he must be a good actor. (valid, but not sound)
- All rich actors are good actors. Brad Pitt is a good actor. So he must be a rich actor. (not valid)

Logical consequence - examples

- All men are mortal. Socrates is a man. So, Socrates is mortal. (valid, sound)
- All rich actors are good actors. Brad Pitt is a rich actor. So he must be a good actor.
- All rich actors are good actors. Brad Pitt is a good actor. So he must be a rich actor. (not valid)

Logical consequence - examples

- All men are mortal. Socrates is a man. So, Socrates is mortal. (valid, sound)
- All rich actors are good actors. Brad Pitt is a rich actor. So he must be a good actor. (valid, but not sound)
- All rich actors are good actors. Brad Pitt is a good actor. So he must be a rich actor. (not valid)

Logical consequence - examples

- All men are mortal. Socrates is a man. So, Socrates is mortal. (valid, sound)
- All rich actors are good actors. Brad Pitt is a rich actor. So he must be a good actor. (valid, but not sound)
- All rich actors are good actors. Brad Pitt is a good actor. So he must be a rich actor.

Logical consequence - examples

- All men are mortal. Socrates is a man. So, Socrates is mortal. (valid, sound)
- All rich actors are good actors. Brad Pitt is a rich actor. So he must be a good actor. (valid, but not sound)
- All rich actors are good actors. Brad Pitt is a good actor. So he must be a rich actor. (not valid)

Fitch notation

All men are mortal
Socrates is a man
So, Socrates is mortal
A_{1}
A_{n}
B
Premise $_{1}$

Premise $_{n}$
Conclusion

Methods for showing (in)validity of arguments

Methods for showing (in)validity of arguments

Validity To show that an argument is valid, we must provide a proof. A proof consists of a sequence of proof steps, each of which must be valid.

- In propositional logic, we also can use truth tables to show validity. This it not possible in first-order logic.

Invalidity An argument can shown to be invalid by finding a counterexample (model), i.e. a circumstance where the premises are true, but the conclusion is false.

Methods for showing (in)validity of arguments

Validity To show that an argument is valid, we must provide a proof. A proof consists of a sequence of proof steps, each of which must be valid.

- In propositional logic, we also can use truth tables to show validity. This it not possible in first-order logic.
An argument can shown to be invalid by finding a (model), i.e. a circumstance where the premises are true, but the conclusion is false.

Methods for showing (in)validity of arguments

Validity To show that an argument is valid, we must provide a proof. A proof consists of a sequence of proof steps, each of which must be valid.

- In propositional logic, we also can use truth tables to show validity. This it not possible in first-order logic.
Invalidity An argument can shown to be invalid by finding a counterexample (model), i.e. a circumstance where the premises are true, but the conclusion is false.

Informal and formal proofs

- informal reasoning is used in everyday life
- semi-formal reasoning is used in mathematics and theoretical computer science
- balance between readability and precision
- formal proofs: follow some specific rule system,
- and are entirely rigorous
- and can be checked by a computer

An informal proof

- Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.
- But all mortals will eventually die, since that is what it means to be mortal.
- So Socrates will eventually die.
- But we are given that everyone who will eventually die sometimes worries about it.
- Hence Socrates sometimes worries about dying.

An informal proof

- Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.
- But all mortals will eventually die, since that is what it means to be mortal.
- So Socrates will eventually die.
- But we are given that everyone who will eventually die sometimes worries about it.
- Hence Socrates sometimes worries about dying.

An informal proof

- Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.
- But all mortals will eventually die, since that is what it means to be mortal.
- So Socrates will eventually die.
- But we are given that everyone who will eventually die sometimes worries about it.
- Hence Socrates sometimes worries about dying.

An informal proof

- Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.
- But all mortals will eventually die, since that is what it means to be mortal.
- So Socrates will eventually die.
- But we are given that everyone who will eventually die sometimes worries about it.
- Hence Socrates sometimes worries about dying.

An informal proof

- Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.
- But all mortals will eventually die, since that is what it means to be mortal.
- So Socrates will eventually die.
- But we are given that everyone who will eventually die sometimes worries about it.
- Hence Socrates sometimes worries about dying.

The need for formal proofs

A formal proof

1. Cube(c)
2. $c=b$
3. Cube(b)

$=$ Elim: 1,2

A formal proof

1. Cube(c)
2. $c=b$
3. Cube(b)

$=$ Elim: 1,2

A formal proof

1. Cube(c)
2. $c=b$
3. Cube(b)

$=$ Elim: 1,2
(1) =Elim: If $b=c$, then whatever holds of b holds of c (indiscernibility of identicals).
(2) =Intro: $b=b$ is always true in FOL (reflexivity of identity)
(3) Symmetry of Identity: If $b=c$, then $c=b$.
a Transitivity of Identity: If $a=b$ and $b=c$, then $a=c$
The latter two principles follow from the first two.

Four principles for the identity relation

(1) =Elim: If $b=c$, then whatever holds of b holds of c (indiscernibility of identicals).
(2) =Intro: $b=b$ is always true in FOL (reflexivity of identity).
(3) Symmetry of Identity: If $b=c$, then $c=b$.
(9) Transitivity of Identity: If $a=b$ and $b=c$, then $a=c$

The latter two principles follow from the first two.

Four principles for the identity relation

(1) =Elim: If $b=c$, then whatever holds of b holds of c (indiscernibility of identicals).
(2) =Intro: $b=b$ is always true in FOL (reflexivity of identity).
(3) Symmetry of Identity: If $b=c$, then $c=b$.
(9) Transitivity of Identity: If $a=b$ and $b=c$, then $a=c$.

The latter two principles follow from the first two.

Four principles for the identity relation

(1) =Elim: If $b=c$, then whatever holds of b holds of c (indiscernibility of identicals).
(2) =Intro: $b=b$ is always true in FOL (reflexivity of identity).
(3) Symmetry of Identity: If $b=c$, then $c=b$.
(9) Transitivity of Identity: If $a=b$ and $b=c$, then $a=c$.

The latter two principles follow from the first two.

Four principles for the identity relation

(1) =Elim: If $b=c$, then whatever holds of b holds of c (indiscernibility of identicals).
(2) =Intro: $b=b$ is always true in FOL (reflexivity of identity).
(3) Symmetry of Identity: If $b=c$, then $c=b$.
(9) Transitivity of Identity: If $a=b$ and $b=c$, then $a=c$.

The latter two principles follow from the first two.

Informal proof of symmetry of identity

- Suppose that $a=b$.
- We know that $a=a$, by the reflexivity of identity.
- Now substitute the name b for the first use of the name a in $a=a$, using the indiscernibility of identicals.
- We come up with $b=a$, as desired.

Informal proof of symmetry of identity

- Suppose that $a=b$.
- We know that $a=a$, by the reflexivity of identity.
- Now substitute the name b for the first use of the name a in $a=a$, using the indiscernibility of identicals.
- We come up with $b=a$, as desired.

Informal proof of symmetry of identity

- Suppose that $a=b$.
- We know that $a=a$, by the reflexivity of identity.
- Now substitute the name b for the first use of the name a in $a=a$, using the indiscernibility of identicals.

Informal proof of symmetry of identity

- Suppose that $a=b$.
- We know that $a=a$, by the reflexivity of identity.
- Now substitute the name b for the first use of the name a in $a=a$, using the indiscernibility of identicals.
- We come up with $b=a$, as desired.

Formal proofs

```
P
S1 Justification 1
Sn
Justification n Justification \(\mathrm{n}+1\)
```

[^0][^1][^2]
Fitch rule: Identity introduction

Identity Introduction (= Intro):
 $\triangleright \mathrm{n}=\mathrm{n}$

Fitch rule: Identity elimination

Identity Elimination (= Elim):

$$
\begin{aligned}
& \mathrm{P}(\mathrm{n}) \\
& \vdots \\
& \mathrm{n}=\mathrm{m} \\
& \vdots \\
& \mathrm{P}(\mathrm{~m})
\end{aligned}
$$

Fitch rule: Reiteration

Reiteration (Reit):

	P

[^0]: 1. $a=b$
 2. $a=a$
 3. $b=a$
 $=$ Intro:
 $=$ Elim: 2,1
[^1]: 1. $a=b$
 2. $a=a$
 3. $b=a$
 $=$ Intro:
 $=$ Elim: 2,1
[^2]: 1. $a=b$
 2. $a=a$
 3. $b=a$
 $=$ Intro:
 $=$ Elim: 2,1
