Logik für Informatiker Proofs in propositional logic

Till Mossakowski

WiSe 2009/10

Logical consequence

- Q is a logical consequence of P_1, \ldots, P_n , if all worlds that make P_1, \ldots, P_n true also make Q true.
- Q is a tautological consequence of P_1, \ldots, P_n , if all valuations of atomic formulas with truth values that make P_1, \ldots, P_n true also make Q true.
- Q is a TW-logical consequence of P_1, \ldots, P_n , if all worlds from Tarski's world that make P_1, \ldots, P_n true also make Q true.

- With proofs, we try to show (tauto)logical consequence
- Truth-table method can lead to very large tables, proofs are often shorter
- Proofs are also available for consequence in full first-order logic, not only for tautological consequence

Itruth-table method leads to exponentially growing tables

- 20 atomic sentences \Rightarrow more than 1.000.000 rows
- Itruth-table method cannot be extended to first-order logic
- *model checking* can overcome the first limitation (up to 1.000.000 atomic sentences)
- proofs can overcome both limitations

- truth-table method leads to exponentially growing tables
 - $\bullet~20$ atomic sentences \Rightarrow more than 1.000.000 rows
- truth-table method cannot be extended to first-order logic
- *model checking* can overcome the first limitation (up to 1.000.000 atomic sentences)
- proofs can overcome both limitations

- truth-table method leads to exponentially growing tables
 - $\bullet~20$ atomic sentences \Rightarrow more than 1.000.000 rows
- ② truth-table method cannot be extended to *first-order logic*
 - *model checking* can overcome the first limitation (up to 1.000.000 atomic sentences)
 - proofs can overcome both limitations

- truth-table method leads to exponentially growing tables
 - $\bullet~20$ atomic sentences \Rightarrow more than 1.000.000 rows
- ② truth-table method cannot be extended to first-order logic
 - *model checking* can overcome the first limitation (up to 1.000.000 atomic sentences)
 - proofs can overcome both limitations

- truth-table method leads to exponentially growing tables
 - $\bullet~20$ atomic sentences \Rightarrow more than 1.000.000 rows
- ② truth-table method cannot be extended to *first-order logic*
 - *model checking* can overcome the first limitation (up to 1.000.000 atomic sentences)
 - proofs can overcome both limitations

• A proof consists of a sequence of proof steps

- Each proof step is known to be valid and should
 - be significant but easily understood, in *informal* proofs,
 - follow some proof rule, in formal proofs.
- Some valid patterns of inference that generally go unmentioned in informal (but not in formal) proofs:
 - From $P \land Q$, infer P.
 - From P and Q, infer $P \wedge Q$.
 - From *P*, infer $P \vee Q$.

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should
 - be significant but easily understood, in *informal* proofs,
 - follow some proof rule, in formal proofs.
- Some valid patterns of inference that generally go unmentioned in informal (but not in formal) proofs:
 - From $P \land Q$, infer P.
 - From P and Q, infer $P \wedge Q$.
 - From *P*, infer $P \vee Q$.

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should
 - be significant but easily understood, in *informal* proofs,
 follow some *proof rule*, in *formal* proofs.
- Some valid patterns of inference that generally go unmentioned in informal (but not in formal) proofs:
 - From $P \land Q$, infer P.
 - From P and Q, infer $P \wedge Q$.
 - From *P*, infer $P \vee Q$.

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should
 - be significant but easily understood, in *informal* proofs,
 - follow some proof rule, in formal proofs.
- Some valid patterns of inference that generally go unmentioned in informal (but not in formal) proofs:
 - From $P \land Q$, infer P.
 - From P and Q, infer $P \wedge Q$.
 - From *P*, infer $P \vee Q$.

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should
 - be significant but easily understood, in *informal* proofs,
 - follow some proof rule, in formal proofs.
- Some valid patterns of inference that generally go unmentioned in informal (but not in formal) proofs:
 - From $P \land Q$, infer P.
 - From P and Q, infer $P \wedge Q$.
 - From *P*, infer $P \lor Q$.

- A proof consists of a sequence of proof steps
- Each proof step is known to be valid and should
 - be significant but easily understood, in *informal* proofs,
 - follow some proof rule, in formal proofs.
- Some valid patterns of inference that generally go unmentioned in informal (but not in formal) proofs:
 - From $P \wedge Q$, infer P.
 - From P and Q, infer $P \wedge Q$.
 - From *P*, infer $P \lor Q$.

To prove S from $P_1 \vee \ldots \vee P_n$, prove S from each of P_1, \ldots, P_n .

Claim: there are irrational numbers b and c such that b^c is rational.

Proof: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational. Case 1: If $\sqrt{2}^{\sqrt{2}}$ is rational: take $b = c = \sqrt{2}$. Case 2: If $\sqrt{2}^{\sqrt{2}}$ is irrational: take $b = \sqrt{2}^{\sqrt{2}}$ and $c = \sqrt{2}$. Then $b^c = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^2 = 2$.

To prove S from $P_1 \vee \ldots \vee P_n$, prove S from each of P_1, \ldots, P_n . Claim: there are irrational numbers b and c such that b^c is rational.

Proof: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational. Case 1: If $\sqrt{2}^{\sqrt{2}}$ is rational: take $b = c = \sqrt{2}$. Case 2: If $\sqrt{2}^{\sqrt{2}}$ is irrational: take $b = \sqrt{2}^{\sqrt{2}}$ and $c = \sqrt{2}$. Then $b^c = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^2 = 2$.

To prove *S* from $P_1 \vee \ldots \vee P_n$, prove *S* from each of P_1, \ldots, P_n . *Claim:* there are irrational numbers *b* and *c* such that b^c is rational. *Proof:* $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational.

Case 1: If $\sqrt{2}^{\sqrt{2}}$ is rational: take $b = c = \sqrt{2}$. Case 2: If $\sqrt{2}^{\sqrt{2}}$ is irrational: take $b = \sqrt{2}^{\sqrt{2}}$ and $c = \sqrt{2}$ Then $b^c = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^2 = 2$.

To prove S from $P_1 \vee \ldots \vee P_n$, prove S from each of P_1, \ldots, P_n . Claim: there are irrational numbers b and c such that b^c is rational.

Proof: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational. Case 1: If $\sqrt{2}^{\sqrt{2}}$ is rational: take $b = c = \sqrt{2}$. Case 2: If $\sqrt{2}^{\sqrt{2}}$ is irrational: take $b = \sqrt{2}^{\sqrt{2}}$ and $c = \sqrt{2}$. Then $b^c = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^2 = 2$.

To prove S from $P_1 \vee \ldots \vee P_n$, prove S from each of P_1, \ldots, P_n . Claim: there are irrational numbers b and c such that b^c is rational.

Proof: $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational. Case 1: If $\sqrt{2}^{\sqrt{2}}$ is rational: take $b = c = \sqrt{2}$. Case 2: If $\sqrt{2}^{\sqrt{2}}$ is irrational: take $b = \sqrt{2}^{\sqrt{2}}$ and $c = \sqrt{2}$. Then $b^c = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{(\sqrt{2} \cdot \sqrt{2})} = \sqrt{2}^2 = 2$.

To prove $\neg S$, assume S and prove a contradiction \bot . (\perp may be inferred from P and $\neg P$.)

To prove $\neg S$, assume S and prove a contradiction \bot . (\perp may be inferred from P and $\neg P$.) Assume $Cube(c) \lor Dodec(c)$ and Tet(b). Claim: \neg (b = c).

To prove $\neg S$, assume S and prove a contradiction \bot . (\bot may be inferred from P and $\neg P$.) Assume $Cube(c) \lor Dodec(c)$ and Tet(b). $Claim: \neg(b = c)$. Proof: Let us assume b = c. Case 1: If Cube(c), then by b = c, also Cube(b), which contradicts Tet(b). Case 2: Dodec(c) similarly contradicts Tet(b). In both case, we arrive at a contradiction. Hence, our assum b = c cannot be true thus $\sigma(b = c)$.

To prove $\neg S$, assume S and prove a contradiction \bot . $(\bot \text{ may be infered from } P \text{ and } \neg P.)$ Assume $Cube(c) \lor Dodec(c)$ and Tet(b). $Claim: \neg(b = c)$. Proof: Let us assume b = c. Case 1: If Cube(c), then by b = c, also Cube(b), which contradicts Tet(b). Case 2: Dodec(c) similarly contradicts Tet(b). In both case, we arrive at a contradiction. Hence, our assumption

b = c cannot be true, thus $\neg(b = c)$.

To prove $\neg S$, assume S and prove a contradiction \bot . $(\bot \text{ may be inferred from } P \text{ and } \neg P.)$ Assume $Cube(c) \lor Dodec(c)$ and Tet(b). $Claim: \neg(b = c)$. Proof: Let us assume b = c. Case 1: If Cube(c), then by b = c, also Cube(b), which contradicts Tet(b). Case 2: Dodec(c) similarly contradicts Tet(b). In both case, we arrive at a contradiction. Hence, our assumption b = c cannot be true, thus $\neg(b = c)$.

To prove $\neg S$, assume S and prove a contradiction \bot . (\perp may be inferred from P and $\neg P$.) Assume $Cube(c) \lor Dodec(c)$ and Tet(b). Claim: \neg (b = c). *Proof:* Let us assume b = c. *Case 1*: If Cube(c), then by b = c, also Cube(b), which contradicts Tet(b). Case 2: Dodec(c) similarly contradicts Tet(b). In both case, we arrive at a contradiction. Hence, our assumption b = c cannot be true, thus $\neg(b = c)$.

Arguments with inconsistent premises

A proof of a contradiction \perp from premises P_1, \ldots, P_n (without additional assumptions) shows that the premises are *inconsistent*. An argument with inconsistent premises is always *valid*, but more importantly, always *unsound*.

```
Home(max) ∨ Home(claire)
¬Home(max)
¬Home(claire)
```

```
\mathsf{Home}(\mathsf{max}) \land \mathsf{Happy}(\mathsf{carl})
```

The rule system of Fitch (natural deduction)

Arguments without premises

A proof without any premises shows that its conclusion is a *logical truth*.

Example: $\neg (P \land \neg P)$.

• Well-defined set of formal proof rules

- Formal proofs in Fitch can be mechanically checked
- For each connective, there is
 - an *introduction rule*, e.g. "from P, infer $P \lor Q$ ".
 - an *elimination rule*, e.g. "from $P \wedge Q$, infer P".

- Well-defined set of formal proof rules
- Formal proofs in Fitch can be mechanically checked
- For each connective, there is
 - an *introduction rule*, e.g. "from P, infer $P \lor Q$ ".
 - an *elimination rule*, e.g. "from $P \wedge Q$, infer P".

- Well-defined set of formal proof rules
- Formal proofs in Fitch can be mechanically checked
- For each connective, there is
 - an *introduction rule*, e.g. "from *P*, infer $P \lor Q$ ".
 - an *elimination rule*, e.g. "from $P \land Q$, infer P".

- Well-defined set of formal proof rules
- Formal proofs in Fitch can be mechanically checked
- For each connective, there is
 - an *introduction rule*, e.g. "from P, infer $P \lor Q$ ".
 - an *elimination rule*, e.g. "from $P \land Q$, infer P".

- Well-defined set of formal proof rules
- Formal proofs in Fitch can be mechanically checked
- For each connective, there is
 - an *introduction rule*, e.g. "from P, infer $P \lor Q$ ".
 - an *elimination rule*, e.g. "from $P \wedge Q$, infer P".

Conjunction Elimination (\land Elim) $P_1 \land \ldots \land P_i \land \ldots \land P_n$ \vdots P_i

Conjunction Introduction (\land Intro) P_1 \Downarrow P_n \vdots $P_1 \land \ldots \land P_n$

Disjunction Introduction (\lor Intro) P_i \vdots $P_1 \lor \ldots \lor P_i \lor \ldots \lor P_n$

The proper use of subproofs

1. $(B \land A) \lor (A \land C)$	
2. $B \land A$	
3. B	\wedge Elim: 2
4. A	\wedge Elim: 2
5. $A \wedge C$	
6. A	\land Elim: 5
7. A	\lor Elim: 1, 2–4, 5–6
8. A ∧ B	\wedge Intro: 7, 3

æ

The proper use of subproofs (cont'd)

- In justifying a step of a subproof, you may cite any *earlier step* contained in the main proof, or in any subproof whose assumption is *still in force*. You may *never* cite individual steps inside a subproof that has *already ended*.
- Fitch enforces this automatically by not permitting the citation of individual steps inside subproofs that have ended.

The proper use of subproofs (cont'd)

- In justifying a step of a subproof, you may cite any *earlier step* contained in the main proof, or in any subproof whose assumption is *still in force*. You may *never* cite individual steps inside a subproof that has *already ended*.
- Fitch enforces this automatically by not permitting the citation of individual steps inside subproofs that have ended.

æ

< E

< 一型

Negation Introduction (\neg Intro)

Negation Elimination (\neg Elim) $\begin{vmatrix} \neg \neg P \\ \vdots \\ P \end{vmatrix}$

$\begin{array}{c|c} \bot & \mathbf{Elimination} \\ (\bot & \mathbf{Elim}) \\ \\ & & \downarrow \\ & \vdots \\ & & \triangleright \\ & \mathsf{P} \end{array}$

æ

Э

P