Logik für Informatiker Logic for computer scientists

Soundness an completness

Till Mossakowski

WiSe 2009/10

Object and meta theory

```
Object theory = reasoning within a formal proof system (e.g. Fitch)

Meta theory = reasoning about a formal proof system
```

Tautological consequence

A sentence S is a *tautological consequence* of a set of sentences \mathcal{T} , written

$$\mathcal{T} \models_{\mathcal{T}} \mathcal{S}$$
,

if all valuations of atomic formulas with truth values that make all sentences in \mathcal{T} true also make S true.

 \mathcal{T} is called *tt-satisfiable*, if there is a valuation making all sentences in \mathcal{T} true. (Note: \mathcal{T} may be infinite.)

Propositional proofs

S is \mathcal{F}_T -provable from \mathcal{T} , written

$$\mathcal{T} \vdash_{\mathcal{T}} \mathcal{S}$$
,

if there is a formal proof of S with premises drawn from $\mathcal T$ using the elimination and introduction rules for $\vee, \wedge, \neg, \rightarrow, \leftrightarrow$ and \bot . Again note: $\mathcal T$ may be infinite.

Consistency

A set of sentences ${\mathcal T}$ is called *formally inconsistent*, if

$$T \vdash_{\mathcal{T}} \bot$$
.

Example: $\{A \lor B, \neg A, \neg B\}$.

Otherwise, \mathcal{T} is called *formally consistent*.

Example: $\{A \lor B, A, \neg B\}$

Soundness

Theorem 1. The proof calculus $\mathcal{F}_{\mathcal{T}}$ is sound, i.e. if

$$\mathcal{T} \vdash_{\mathcal{T}} \mathcal{S}$$
,

then

$$T \models_T S$$
.

Proof: Book: by contradiction, using the first invalid step.

Here: by induction on the length of the proof.

Completeness

Theorem 2 (Bernays, Post). The proof calculus $\mathcal{F}_{\mathcal{T}}$ is complete, i.e. if

$$T \models_T S$$
,

then

$$\mathcal{T} \vdash_{\mathcal{T}} \mathcal{S}$$
.

Theorem 2 follows from:

Theorem 3. Every formally consistent set of sentences is tt-satisfiable.

Lemma 4. $\mathcal{T} \cup \{\neg S\} \vdash_{\mathcal{T}} \bot$ if and only if $\mathcal{T} \vdash_{\mathcal{T}} S$.

Proof of Theorem 3

A set \mathcal{T} is *formally complete*, if for any sentence S, either $\mathcal{T} \vdash_{\mathcal{T}} S$ or $\mathcal{T} \vdash_{\mathcal{T}} \neg S$.

Proposition 5. Every formally complete and formally consistent set of sentences is tt-satisfiable.

Proposition 6. Every formally consistent set of sentences can be expanded to a formally complete and formally consistent set of sentences.

Proof of Proposition 5

Lemma 7. Let $\mathcal T$ be formally complete and formally consistent. Then

- ② $T \vdash_T (R \lor S)$ iff $T \vdash_T R$ or $T \vdash_T S$

Proof of Proposition 6

Lemma 8. A set of sentences \mathcal{T} is formally complete if and only if for any atomic sentence A,

either
$$\mathcal{T} \vdash_{\mathcal{T}} A$$
 or $\mathcal{T} \vdash_{\mathcal{T}} \neg A$.

Compactness Theorem

Theorem 9. Let \mathcal{T} be any set of sentences. If every finite subset of \mathcal{T} is tt-satisfiable, then \mathcal{T} itself is satisfiable.