Logik für Informatiker Logic for computer scientists

Quantifiers

Till Mossakowski

WiSe 2009/10

Till Mossakowski Logic

$$\begin{array}{l} \forall x \; Cube(x) \; (\text{``All objects are cubes.''}) \\ \forall x \; (Cube(x) \rightarrow Large(x)) \; (\text{``All cubes are large.''}) \\ \hline \forall x \; Large(x) \; (\text{``All objects are large.''}) \end{array}$$

 $\exists x \ Cube(x)$

"There exists a cube."

 $\exists x \ (Cube(x) \land Large(x))$

"There exists a large cube."

All P's are Q's.
$$\forall x(P(x) \rightarrow Q(x))$$
Some P's are Q's. $\exists x(P(x) \land Q(x))$ No P's are Q's. $\forall x(P(x) \rightarrow \neg Q(x))$ Some P's are not Q's. $\exists x(P(x) \land \neg Q(x))$

Note:

 $\forall x(P(x) \rightarrow Q(x))$ does not imply that there are some P's. $\exists x(P(x) \land Q(x))$ does not imply that not all P's are Q's.

- A first-order signature consists of
 - a set of predicate symbols with arities, like Smaller⁽²⁾, Dodec⁽¹⁾, Between⁽³⁾, \leq ⁽²⁾, including propositional symbols (nullary predicate symbols), like $A^{(0)}, B^{(0)}, C^{(0)}$, (written uppercase)
 - its names or constants for individuals, like *a*, *b*, *c*, (written lowercase)
 - its function symbols with arities, like $f^{(1)}, +^{(2)}, \times^{(2)}$.

Usually, arities are omitted.

In the book, the terminology "language" is used. "Signature" is more precise, since it exactly describes the ingredients that are needed to generate a (first-order) language.

$$\begin{array}{ll}t ::= a & \text{constant} \\ t ::= x & \text{variable} \\ & \mid f^{(n)}(t_1, \dots, t_n) & \text{application of function symbols} \\ & \text{to terms} \end{array}$$

Usually, arities are omitted. Variables are: t, u, v, w, x, y, z, possibly with subscripts.

Well-formed formulas

$$F ::= p^{(n)}(t_1, \dots, t_n)$$

$$| \perp$$

$$| \neg F$$

$$| (F_1 \land \dots \land F_n)$$

$$| (F_1 \land \dots \lor F_n)$$

$$| (F_1 \rightarrow F_2)$$

$$| (F_1 \leftrightarrow F_2)$$

$$| \forall \nu F$$

$$| \exists \nu F$$

application of predicate symbols contradiction negation conjunction disjunction implication equivalence universal quantification existential quantification

The variable ν is said to be bound in $\forall \nu F$ and $\exists \nu F$.

The outermost parenthese of a well-formed formula can be omitted:

 $Cube(x) \wedge Small(x)$

In general, parentheses are important to determine the scope of a quantifier (see next slide).

An occurrence of a variable in a formula that is not bound is said to be free.

$\exists y \ LeftOf(x, y)$	x is free, y is bound	
$(Cube(x) \land Small(x))$	x is free, y is bound	
$\rightarrow \exists y \; LeftOf(x, y)$		
$\exists x \ (Cube(x) \land Small(x))$	Both occurrences of x are bound	
$\exists x \ Cube(x) \land Small(x)$	The first occurrence of x is bound,	
	the second one is free	

A sentence is a well-formed formula without free variables.

 $\perp \qquad \qquad A \land B$ $Cube(a) \lor Tet(b)$

$$\forall x \ (Cube(x) \rightarrow Large(x))$$

 $\forall x ((Cube(x) \land Small(x)) \rightarrow \exists y \ LeftOf(x, y))$

伺 ト く ヨ ト く ヨ ト

3

- We need to fix some domain of discourse.
- ∀x S(x) is true iff for every object in the domain of discourse with name n, S(n) is true.
- $\exists x \ S(x)$ is true iff for some object in the domain of discourse with name $n, \ S(n)$ is true.
- Not all objects need to have names hence we assume that for objects, names n_1, n_2, \ldots can be invented "on the fly".

Form	Your commitment	Player to move	Goal
$P \lor Q$	TRUE	you Tarski's World	Choose one of P, Q that is true.
$P \land Q$	TRUE FALSE	Tarski's World you	Choose one of P, Q that is false.
∃x P(x)	TRUE FALSE	you Tarski's World	Choose some b that satisfies the wff $P(x)$.
$\forall x P(x)$	TRUE	Tarski's World you	Choose some b that does not satisfy $P(x)$.

æ

Э

```
 \begin{array}{l} \forall x(Cube(x) \rightarrow Small(x)) \\ \forall x \ Cube(x) \\ \forall x \ Small(x) \\ \forall x \ Cube(x) \\ \forall x \ Small(x) \\ \forall x \ Small(x) \\ \forall x \ Cube(x) \land Small(x)) \end{array}
```

```
 \begin{array}{l} \exists x(Cube(x) \rightarrow Small(x)) \\ \exists x \ Cube(x) \\ \exists x \ Small(x) \\ \exists x \ Cube(x) \\ \exists x \ Small(x) \\ \exists x \ Small(x) \\ \exists x(Cube(x) \land Small(x)) \end{array}
```

$$\exists x \ Cube(x) \lor \exists x \neg Cube(x)$$

is a logical truth, but

$$\forall x \ Cube(x) \lor \forall x \neg Cube(x)$$

is not. By contrast,

$$\forall x \ Cube(x) \lor \neg \forall x \ Cube(x)$$

is a tautology.