Logik für Informatiker Logic for computer scientists

Induction

Till Mossakowski

WiSe 2009/10

Induction

Induction is like a chain of dominoes. You need

- the dominoes must be close enough together \Rightarrow one falling dominoe knocks down the next (inductive step)
- you need to knock down the first dominoe (inductive basis)

Note: in the inductive step, branching is

[^0]
Induction

Induction is like a chain of dominoes. You need

- the dominoes must be close enough together \Rightarrow one falling dominoe knocks down the next (inductive step)
- you need to knock down the first dominoe (inductive basis)

Note: in the inductive step, branching is possible.

Inductive definition: Natural numbers

(1) 0 is a natural number.
(2) If n is natural number, then $\operatorname{suc}(n)$ is a natural number.
(3) There is no natural number whose successor is 0 .
(1) Two different natural numbers have different successors.
(5) Nothing is a natural number unless generated by repeated applications of (1) and (2).

$$
\begin{aligned}
& \forall y(0+y=y) \\
& \forall x \forall y(\operatorname{suc}(x)+y=\operatorname{suc}(x+y)) \\
& \forall y(0 * y=0) \\
& \forall x \forall y(\operatorname{suc}(x) * y=(x * y)+y)
\end{aligned}
$$

Formalization of Peano's axioms

(1) a constant 0
(2) a unary function symbol suc
(3) $\forall n \neg \operatorname{suc}(n)=0$
(4) $\forall m \forall n \operatorname{suc}(m)=\operatorname{suc}(n) \rightarrow m=n$
(5) $(\Phi(x / 0) \wedge \forall n(\Phi(x / n) \rightarrow \Phi(x / \operatorname{suc}(n)))) \rightarrow \forall n \Phi(x / n)$ if Φ is a formula with a free variable x, and $\Phi(x / t)$ denotes the replacement of x with t within Φ

Inductive proofs

Take $\Phi(x):=\forall y \forall z(x+(y+z)=(x+y)+z)$. Then

$$
(\Phi(x / 0) \wedge \forall n(\Phi(x / n) \rightarrow \Phi(x / \operatorname{suc}(n)))) \rightarrow \forall n \Phi(x / n)
$$

is just

$$
\begin{aligned}
& (\forall y \forall z(0)+(y+z)=(0+y)+z) \\
& \wedge \forall n \forall y \forall z(n+(y+z)=(n+y)+z \\
& \quad \rightarrow \operatorname{suc}(n)+(y+z)=(\operatorname{suc}(n)+y)+z)) \\
& \quad \rightarrow \forall n \forall y \forall z(n+(y+z)=(n+y)+z)
\end{aligned}
$$

With this, we can prove $\forall n \forall y \forall z(n+(y+z)=(n+y)+z)$

Inductive datatypes: Lists of natural numbers

(1) The empty list [] is a list.
(2) If l is a list and n is natural number, then $\operatorname{cons}(n, l)$ is a list.
(3) Nothing is a list unless generated by repeated applications of (1) and (2).

Note: This needs many-sorted first-order logic.
We have two sorts of objects: natural numbers and lists.

Recursive definition of functions over lists

```
length([]) \(=0\)
\(\forall n: \operatorname{Nat} \forall I:\) List \((\) length \((\operatorname{cons}(n, I))=\operatorname{suc}(\) length \((I)))\)
\(\forall I: \operatorname{List}([]++I=I)\)
\(\forall n:\) Nat \(\forall I_{1}\) : List \(\forall I_{2}\) : List
    \(\left(\operatorname{cons}\left(n, I_{1}\right)++I_{2}=\operatorname{cons}\left(n, I_{1}++I_{2}\right)\right)\)
```


Inductive proofs over lists

$\forall I_{1}:$ List $\forall I_{2}:$ List $\forall I_{3}:$ List

$$
\left(I_{1}++\left(I_{2}++I_{3}\right)=\left(I_{1}++I_{2}\right)++I_{3}\right)
$$

$\forall I_{1}:$ List $\forall I_{2}:$ List
$\left(\right.$ length $\left(I_{1}++I_{2}\right)=\operatorname{length}\left(I_{1}\right)+$ length $\left.\left(I_{2}\right)\right)$

A recursive program computing $0+1+2+\ldots+n$

```
public natural sumToRec(natural n) {
    if(n == 0) return 0;
    else return n + sumToRec(n - 1);
}
```


An imperative program

```
public natural sumUpTo(natural n) {
    natural sum = 0;
    natural count = 0;
    while(count < n) {
        count += 1;
        sum += count;
    }
    return sum;
}
    sum = 0 + 1+2+\ldots+ count
```


An imperative program

public natural sumUpTo(natural n) \{ natural sum = 0;
natural count = 0; while(count < n) \{ count += 1; sum += count; \}
return sum;
\}
Invariant: sum $=0+1+2+\ldots+$ count

A second imperative implementation

```
public natural sumDownFrom(natural n) {
    natural sum = 0;
    natural count = n;
    while(count > 0) {
        sum += count;
        count -= 1;
    }
    return sum;
}
```


A second imperative implementation

```
public natural sumDownFrom(natural n) {
    natural sum = 0;
    natural count = n;
    while(count > 0) {
        sum += count;
        count -= 1;
    }
    return sum;
}
Invariant: sum = (count +1) + .. + n
```

The Java Modeling Language (JML)
http://www.cs.ucf.edu/~1eavens/JML

Exercises

- Language, proof and logic, 16.27-16.31
- write a small Java program annotated with JML, such that universal and existential quantifiers are used
- How to make the notion of logical consequence more formal?
- For propositional logic: truth tables \Rightarrow tautological consequence
- For first-order logic, we need also to interpret quantifiers and identity
- The notion of first-order structure models Tarski's world situations and real-world situations using set theory

Example

A first-order structure \mathfrak{M} consists of:

- a nonempty set $D^{\mathfrak{M}}$, the domain of discourse;
- for each n-ary predicate P of the language, a set $\mathfrak{M}(P)$ of n-tuples $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ of elements of $D^{\mathfrak{M}}$, called the extension of P.
The extension of the identity symbol $=$ must be $\left\{\langle x, x\rangle \mid x \in D^{\mathfrak{M}}\right\} ;$
- for any name (individual constant) c of the language, an element $\mathfrak{M}(c)$ of $D^{\mathfrak{M}}$.

Example

An interpretation according to Tarski's World

Assume the language consists of the predicates Cube, Dodec and Larger and the names a, b and c.

- $D^{\mathfrak{M}}=\{$ Cube1, Cube2, Dodec1 $\}$;
- $\mathfrak{M}($ Cube $)=\{$ Cube1, Cube2 $\}$;
- $\mathfrak{M}($ Dodec $)=\{$ Dodec1 $\}$;
- $\mathfrak{M}($ Larger $)=\{($ Cube1, Cube2 $),($ Cube1, Dodec1 $)\} ;$
- $\mathfrak{M}(=)=$
$\{($ Cube1, Cube1), (Cube2, Cube2), (Dodec1, Dodec1) $\}$;
- $\mathfrak{M}(a)=$ Cube $1 ; \quad \mathfrak{M}(b)=$ Cube $2 ; \quad \mathfrak{M}(c)=$ Dodec 1 .

An interpretation not conformant with Tarski's World

- $D^{\mathfrak{M}}=\{$ Cube1, Cube2, Dodec1 $\}$;
- $\mathfrak{M}($ Cube $)=\{$ Dodec1, Cube2 $\}$;
- $\mathfrak{M}($ Dodec $)=\emptyset$;
- $\mathfrak{M}($ Larger $)=\{($ Cube1, Cube1 $),($ Dodec1, Cube2 $)\}$;
- $\mathfrak{M}(=)=$
$\{($ Cube1, Cube1), (Cube2, Cube2), (Dodec1, Dodec1) $\}$;
- $\mathfrak{M}(a)=$ Cube $1 ; \mathfrak{M}(b)=$ Cube2; $\mathfrak{M}(c)=$ Dodec 1 .

Variable assignments

A variable assignment in \mathfrak{M} is a (possibly partial) function g defined on a set of variables and taking values in $D^{\mathfrak{M}}$. Given a well-formed formula P, we say that the variable assignment g is appropriate for P if all the free variables of P are in the domain of g, that is, if g assigns objects to each free variable of P.

Examples

$D^{\mathfrak{M}}=\{$ Cube1, Cube2, Dodec1 $\}$
g_{1} assignes Cube1, Cube2, Dodec1 to the variables x, y, z, respectively.
g_{1} is appropriate for $\operatorname{Between}(x, y, z) \wedge \exists u(\operatorname{Large}(u))$, but not for $\operatorname{Larger}(x, v)$.
g_{2} is the empty assignment.
g_{2} is only appropriate for well-formed formulas without free variables (that is, for sentences).

Variants of variable assignments

If g is a variable assignment, $g[v / b]$ is the variable assignment

- whose domain is that of g plus the variable v, and
- which assigns the same values as g, except that
- it assigns b to the variable v.
$\left[t_{8}^{\eta{ }_{8}^{m}}\right.$ is
- $\mathfrak{M}(t)$ if t is an individual constant, and
- $g(t)$ if t is a variable.
(1) $\mathfrak{M} \vDash R\left(t_{1}, \ldots, t_{n}\right)[g]$ iff $\left\langle\left[t_{1}\right]_{g}^{\mathfrak{M}}, \ldots,\left[t_{n}\right]_{g}^{\mathfrak{M}}\right\rangle \in \mathfrak{M}(R)$;
(2 $\mathfrak{M} \models \neg P[g]$ iff it is not the case that $\mathfrak{M} \models P[g]$;
($\mathfrak{M} \vDash P \wedge Q[g]$ iff both $\mathfrak{M} \models P[g]$ and $\mathfrak{M} \models Q[g]$;
- $\mathfrak{M} \models P \vee Q[g]$ iff $\mathfrak{M} \models P[g]$ or $\mathfrak{M} \models Q[g]$ or both;
- $\mathfrak{M} \models P \rightarrow Q[g]$ iff not $\mathfrak{M} \models P[g]$ or $\mathfrak{M} \vDash Q[g]$ or both;
- $\mathfrak{M} \models P \leftrightarrow Q[g]$ iff $(\mathfrak{M} \models P[g]$ iff $\mathfrak{M} \models Q[g])$;
(0) $\mathfrak{M} \vDash \forall x P[g]$ iff for every $d \in D^{\mathfrak{M}}, \mathfrak{M} \models P[g[x / d]]$;
(3) $\mathfrak{M} \vDash \exists x P[g]$ iff for some $d \in D^{\mathfrak{M}}, \mathfrak{M} \vDash P[g[x / d]]$.

[^0]: possible.

