Logik für Informatiker Logic for computer scientists

First-order structures

Till Mossakowski

WiSe 2009/10

A first-order structure \mathfrak{M} consists of:

- a nonempty set $D^{\mathfrak{M}}$, the domain of discourse;
- for each n-ary predicate P of the language, a set $\mathfrak{M}(P)$ of n-tuples $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ of elements of $D^{\mathfrak{M}}$, called the extension of P.
The extension of the identity symbol $=$ must be $\left\{\langle x, x\rangle \mid x \in D^{\mathfrak{M}}\right\} ;$
- for any name (individual constant) c of the language, an element $\mathfrak{M}(c)$ of $D^{\mathfrak{M}}$.

Variable assignments

A variable assignment in \mathfrak{M} is a (possibly partial) function g defined on a set of variables and taking values in $D^{\mathfrak{M}}$. Given a well-formed formula P, we say that the variable assignment g is appropriate for P if all the free variables of P are in the domain of g, that is, if g assigns objects to each free variable of P.

Term evaluation $[t]_{g}^{\text {MI }}$
$[t]_{g}^{197}$ is

- $\mathfrak{M}(t)$ if t is an individual constant, and
- $g(t)$ if t is a variable.
(1) $\mathfrak{M} \vDash R\left(t_{1}, \ldots, t_{n}\right)[g]$ iff $\left\langle\left[t_{1}\right]_{g}^{\mathfrak{M}}, \ldots,\left[t_{n}\right]_{g}^{\mathfrak{M}}\right\rangle \in \mathfrak{M}(R)$;
(2 $\mathfrak{M} \models \neg P[g]$ iff it is not the case that $\mathfrak{M} \models P[g]$;
($\mathfrak{M} \vDash P \wedge Q[g]$ iff both $\mathfrak{M} \models P[g]$ and $\mathfrak{M} \models Q[g]$;
- $\mathfrak{M} \models P \vee Q[g]$ iff $\mathfrak{M} \models P[g]$ or $\mathfrak{M} \models Q[g]$ or both;
- $\mathfrak{M} \models P \rightarrow Q[g]$ iff not $\mathfrak{M} \models P[g]$ or $\mathfrak{M} \vDash Q[g]$ or both;
- $\mathfrak{M} \models P \leftrightarrow Q[g]$ iff $(\mathfrak{M} \models P[g]$ iff $\mathfrak{M} \models Q[g])$;
(0) $\mathfrak{M} \vDash \forall x P[g]$ iff for every $d \in D^{\mathfrak{M}}, \mathfrak{M} \models P[g[x / d]]$;
(3) $\mathfrak{M} \vDash \exists x P[g]$ iff for some $d \in D^{\mathfrak{M}}, \mathfrak{M} \vDash P[g[x / d]]$.

Satisfaction, cont'd

Additionally,

- never $\mathfrak{M} \equiv \perp[g]$;
- always $\mathfrak{M} \vDash \top[g]$.

A structure \mathfrak{M} satisfies a sentence P,

$$
\mathfrak{M} \models P
$$

if $\mathfrak{M} \vDash P\left[g_{\emptyset}\right]$ for the empty assignment g_{\emptyset}.

Example

$$
D^{\mathfrak{M}}=\{a, b, c\}
$$

$$
\mathfrak{M}(\text { likes })=\{\langle a, a\rangle,\langle a, b\rangle,\langle c, a\rangle\}
$$

$$
\begin{aligned}
\mathfrak{M} & =\exists x \exists y(\operatorname{Likes}(x, y) \wedge \neg \operatorname{Likes}(y, y)) \\
\mathfrak{M} & =\neg \forall x \exists y(\operatorname{Likes}(x, y) \wedge \neg \operatorname{Likes}(y, y))
\end{aligned}
$$

Proposition Let \mathfrak{M}_{1} and \mathfrak{M}_{2} be structures which have the same domain and assign the same interpretations to the predicates and constant symbols in P. Let g_{1} and g_{2} be variable assignments that assign the same objects to the free variables in P. Then

$$
\mathfrak{M}_{1} \models P\left[g_{1}\right] \text { iff } \mathfrak{M}_{2} \models P\left[g_{2}\right]
$$

First-order validity and consequence

A sentence P is a first-order consequence of a set \mathcal{T} of sentences if and only if every structure that satisfies all the sentences in \mathcal{T} also satisfies P.
A sentence P is a first-order validity if and only if every structure satisfies P.
A set \mathcal{T} of sentences is called first-order satisfiable, if there is a structure satisfies each sentence in \mathcal{T}.

Theorem If $\mathcal{T} \vdash S$, then S is a first-order consequence of \mathcal{T}.
Proof: By induction over the derivation, we show that any sentence occurring in a proof is a first-order consequence of the assumption in force in that step.
An assumption is in force in a step if it is an assumption of the current subproof or an assumption of a higher-level proof.

Completeness of the shape axioms

The basic shape axioms
(1) $\neg \exists x(\operatorname{Cube}(x) \wedge \operatorname{Tet}(x))$
(2) $\neg \exists x(\operatorname{Tet}(x) \wedge \operatorname{Dodec}(x))$
(3) $\neg \exists x(\operatorname{Dodec}(x) \wedge \operatorname{Cube}(x))$
(9) $\forall x(\operatorname{Tet}(x) \vee \operatorname{Dodec}(x) \vee \operatorname{Cube}(x))$

SameShape introduction and elimination axioms

(1) $\forall x \forall y((\operatorname{Cube}(x) \wedge \operatorname{Cube}(y)) \rightarrow$ SameShape $(x, y))$
(2) $\forall x \forall y((\operatorname{Dodec}(x) \wedge \operatorname{Dodec}(y)) \rightarrow \operatorname{SameShape}(x, y))$

- $\forall x \forall y((\operatorname{Tet}(x) \wedge \operatorname{Tet}(y)) \rightarrow \operatorname{SameShape}(x, y))$
- $\forall x \forall y((\operatorname{SameShape}(x, y) \wedge \operatorname{Cube}(x)) \rightarrow$ Cube $(y))$
- $\forall x \forall y((\operatorname{SameShape}(x, y) \wedge \operatorname{Dodec}(x)) \rightarrow \operatorname{Dodec}(y))$
- $\forall x \forall y((\operatorname{SameShape}(x, y) \wedge \operatorname{Tet}(x)) \rightarrow \operatorname{Tet}(y))$

Completeness of the shape axioms

Two structures are isomorphic if there is a bijectiom between their domains, which is compatible with extensions of predicate and interpretation of constants.
Assume the language Cube, Tet, Dodec, SameShape Lemma For any structure satisfying the shape axioms, there is an isomorphic Tarski's world structure.
Theorem Let S be a sentence.
If S is a Tarski's world logical consequence of \mathcal{T}, then
S is a first-order consequence of \mathcal{T} plus the shape axioms.

Exercises

chapter 18, 18.1-18.19

