Theorem (Completeness theorem). Let T be a set of propositional sentences, and S be a propositional sentence. If S is a tautological consequence of T ($T \models S$), then $T \vdash S$.

Recall: $T \models S$ means that each valuation satisfying T also satisfies S.

$T \vdash S$ means that S is derivable from T using the rules of Fitch.
Call a set of sentences T formally inconsistent, if $T \vdash \bot$.
Example: $\{A \lor B, \lnot A, \lnot B\}$.
Otherwise, T is called formally consistent.
Example: $\{A \lor B, A, \lnot B\}$

Lemma 1 $T \cup \{\lnot S\} \vdash \bot$ iff $T \vdash S$.

Reformulation of completeness: Every formally consistent set of sentences is tt-satisfiable.
A set \mathcal{T} is formally complete, if for any sentence S in the same language as \mathcal{T}, either $\mathcal{T} \vdash S$ or $\mathcal{T} \vdash \neg S$.

Lemma 2 For \mathcal{T} formally complete and consistent,

1. $\mathcal{T} \vdash R \land S$ iff $\mathcal{T} \vdash R$ and $\mathcal{T} \vdash S$.
2. $\mathcal{T} \vdash R \lor S$ iff $\mathcal{T} \vdash R$ or $\mathcal{T} \vdash S$.
3. $\mathcal{T} \vdash \neg S$ iff not $\mathcal{T} \vdash S$.
4. $\mathcal{T} \vdash R \rightarrow S$ iff $\mathcal{T} \not\vdash R$ or $\mathcal{T} \vdash S$.
5. $\mathcal{T} \vdash R \leftrightarrow S$ iff ($\mathcal{T} \vdash R$ iff $\mathcal{T} \vdash S$).
Lemma 3 Every formally complete and consistent set is tt-satisfiable.

Lemma 4 A set of sentence is formally complete iff for every atomic sentence \(A \), either \(\mathcal{T} \vdash A \) or \(\mathcal{T} \vdash \neg A \).

Lemma 5 Every formally consistent set of sentences can be expanded to a formally consistent, formally complete set of sentences.
Theorem (Completeness theorem). Let \mathcal{T} be a set of sentences of a first-order language L and S be a sentence of the same language. If S is a first-order consequence of \mathcal{T} ($\mathcal{T} \models S$), then $\mathcal{T} \vdash S$.

Recall: $\mathcal{T} \models S$ means that each first-order structure satisfying \mathcal{T} also satisfies S.

$\mathcal{T} \vdash S$ means that S is derivable from \mathcal{T} using the rules of Fitch.
Adding witnessing constants L is enriched to L_H by adding infinitely many constants, the *witnessing constants*.

The Henkin theory Isolate a theory \mathcal{H} in the enriched language L_H, which contains *Henkin witnessing axioms*.

The Elimination theorem For any proof with sentences in L or from \mathcal{H} as premises, and a sentence in L as conclusion, we can eliminate the premises from \mathcal{H} from the proof.

The Henkin construction For every truth assignment h assigning TRUE to all formulas in \mathcal{H}, there is a first-order structure \mathcal{M}_h such that \mathcal{M}_h makes true all first-order sentence that h makes true.
Assume that $\mathcal{T} \models S$.

1. Hence, there is no model of $\mathcal{T} \cup \{\neg S\}$.
2. By the Henkin construction, there is no assignment h satisfying $\mathcal{T} \cup \mathcal{H} \cup \{\neg S\}$.
3. Hence, S is a tautological consequence of $\mathcal{T} \cup \mathcal{H}$.
4. By completeness of propositional logic, $\mathcal{T} \cup \mathcal{H} \vdash S$.
5. By the elimination theorem, $\mathcal{T} \vdash S$.
Adding witnessing constants

For each well-formed formula P of L with exactly one free variable, add a new constant c_P, P's **witnessing constant**.

E.g. for $Small(x) \land Cube(x)$, we introduce $c_{Small(x) \land Cube(x)}$.

This process has to be iterated:

$$L = L_0 \subseteq L_1 \subseteq L_2 \subseteq \ldots$$

E.g. for $Smaller(y, c_{Small(x) \land Cube(x)})$, we introduce $c_{Smaller(y, c_{Small(x) \land Cube(x)})}$.

Each witnessing constant appears in some L_n for the first time. n is called its **date of birth**.
The Henkin witnessing axioms

$\exists x \ P(x) \rightarrow P(c_{P(x)})$

intuitive idea:
if there is something that satisfies $P(x)$, then the object named by $c_{P(x)}$ provides an example
The Henkin theory

H1 \(\exists x \ P(x) \rightarrow P(c_{P(x)}) \) \((\text{witnessing axioms, } \hat{=} \ \exists \text{Elim}) \)

H2 \(P(c) \rightarrow \exists x \ P(x) \) \((\hat{=} \ \exists \text{Intro}) \)

H3 \(\neg \forall x \ P(x) \leftrightarrow \exists x \ \neg P(x) \) \((\text{reduces } \forall \text{ to } \exists) \)

H4 \(c = c \) \((\hat{=} = \text{Intro}) \)

H5 \((P(c) \land c = d) \rightarrow P(d) \) \((\hat{=} = \text{Elim}) \)
Independence lemma

If c_P and c_Q are two witnessing constants and the date of birth of c_P is less than or equal to that of c_Q, then c_Q does not appear in the witnessing axiom of c_P.
Elimination Theorem

For any proof with sentences in L or from \mathcal{H} as premises, and a sentence in L as conclusion, we can eliminate the premises from \mathcal{H} from the proof.
Deduction Theorem If $\mathcal{T} \cup \{P\} \vdash Q$, then $\mathcal{T} \vdash P \rightarrow Q$.

Lemma 1 If $\mathcal{T} \vdash P \rightarrow Q$ and $\mathcal{T} \vdash \neg P \rightarrow Q$, then $\mathcal{T} \vdash Q$.

Lemma 2 If $\mathcal{T} \vdash (P \rightarrow Q) \rightarrow R$, then $\mathcal{T} \vdash \neg P \rightarrow R$, and $\mathcal{T} \vdash Q \rightarrow R$.

Lemma 3 Let \mathcal{T} be a set of sentences of some first-order language L, and Q be a sentence. Let $P(x)$ be a formula of L with one free variable and which does not contain c. If $\mathcal{T} \vdash P(c) \rightarrow Q$ and c does not appear in \mathcal{T} or Q, then $\mathcal{T} \vdash \exists x \ P(x) \rightarrow Q$.
Lemma 4 Let \mathcal{T} be a set of sentences of some first-order language L, and Q be a sentence of L. Let $P(x)$ be a formula of L with one free variable and which does not contain c. If $\mathcal{T} \cup \{\exists x \ P(x) \rightarrow P(c)\} \vdash Q$ and c does not appear in \mathcal{T} or Q, then $\mathcal{T} \vdash Q$.
Lemma 5 Let \mathcal{T} be a set of first-order sentences, let $P(x)$ be a formula with one free variable, and let c and d be constant symbols. The following are provable in \mathcal{F}:

$$
\begin{align*}
P(c) &\rightarrow \exists x \ P(x) \\
\neg \forall x \ P(x) &\leftrightarrow \exists x \ \neg P(x) \\
&\quad \quad \quad c = c \\
(P(c) \land c = d) &\rightarrow P(d)
\end{align*}
$$
Elimination Theorem

For any proof with sentences in L or from \mathcal{H} as premises, and a sentence in L as conclusion, we can eliminate the premises from \mathcal{H} from the proof.
The Henkin construction

For every truth assignment h assigning \texttt{TRUE} to all formulas in \mathcal{H}, there is a first-order structure M_h such that M_h makes true all first-order sentence that h makes true.

Given h, construct M as follows:

- D^M: set of constant symbols in L_H
- $M(c)$ is just c
- $M(R)$ is $\{\langle c_1, \ldots, c_n \rangle \mid h(R(c_1, \ldots, c_n)) = \texttt{TRUE}\}$

 $c \equiv d$ if and only if $h(c = d) = \texttt{TRUE}$

$$M_h = M/\equiv$$
The truth lemma

For any sentence S of L_H, $M_h \models S$ iff $h(S) = true$.
Consequences of the Completeness Theorem

Theorem (Compactness theorem) Let \mathcal{T} be a set of first-order sentences in a first-order language L. If every finite subset of \mathcal{T} is first order-satisfiable, then \mathcal{T} itself is first-order satisfiable.
Let L be the language of Peano arithmetic. Then there exists a first-order structure M such that

1. M contains all the natural numbers in its domain,
2. M also contains elements greater than all the natural numbers, but
3. M makes true exactly the same sentences of L as are true about the natural numbers.
Exercises

- 17.4-17.16, 19.1-19.23
- deadline: 5.1.2010