Logik für Informatiker Logic for computer scientists

Gödel's completeness theorem

Till Mossakowski

WiSe 2009/10

Till Mossakowski Logic

Theorem (Completeness theorem). Let \mathcal{T} be a set of propositional sentences, and S be a propositional sentence. If S is a tautological consequence of \mathcal{T} ($\mathcal{T} \models S$), then $\mathcal{T} \vdash S$.

Recall: $\mathcal{T} \models S$ means that each valuation satisfying \mathcal{T} also satisfies S.

 $\mathcal{T} \vdash S$ means that S is derivable from \mathcal{T} using the rules of Fitch.

Call a set of sentences \mathcal{T} formally inconsistent, if $\mathcal{T} \vdash \bot$. Example: $\{A \lor B, \neg A, \neg B\}$. Otherwise, \mathcal{T} is called formally consistent. Example: $\{A \lor B, A, \neg B\}$ Lemma $1 \mathcal{T} \cup \{\neg S\} \vdash \bot$ iff $\mathcal{T} \vdash S$. Reformulation of completeness: Every formally consistent set of sentences is tt-satisfiable. A set \mathcal{T} is *formally complete*, if for any sentence S in the same language as \mathcal{T} , either $\mathcal{T} \vdash S$ or $\mathcal{T} \vdash \neg S$. Lemma 2 For \mathcal{T} formally complete and consistent,

$$T \vdash R \land S \text{ iff } T \vdash R \text{ and } T \vdash S.$$

2
$$\mathcal{T} \vdash R \lor S$$
 iff $\mathcal{T} \vdash R$ or $\mathcal{T} \vdash S$.

$$T \vdash \neg S \text{ iff not } T \vdash S.$$

$$T \vdash R \to S \text{ iff } \mathcal{T} \not\vdash R \text{ or } \mathcal{T} \vdash S.$$

Lemma 3 Every formally complete and consistent set is tt-satisfiable.

Lemma 4 A set of sentence is formally complete iff for every atomic sentence A, either $\mathcal{T} \vdash A$ or $\mathcal{T} \vdash \neg A$.

Lemma 5 Every formally consistent set of sentences can be expanded to a formally consistent, formally complete set of sentences.

Theorem (Completeness theorem). Let \mathcal{T} be a set of sentences of a first-order language L and S be a sentence of the same language. If S is a first-order consequence of \mathcal{T} ($\mathcal{T} \models S$), then $\mathcal{T} \vdash S$. Recall: $\mathcal{T} \models S$ means that each first-order structure satisfying \mathcal{T} also satisfies S.

 $\mathcal{T} \vdash S$ means that S is derivable from \mathcal{T} using the rules of Fitch.

Adding witnessing constants L is enriched to L_H by adding infinitely many constants, the witnessing constants. The Henkin theory Isolate a theory \mathcal{H} in the enriched language L_H , which contains Henkin witnessing axioms. The Elimination theorem For any proof with sentences in L or from \mathcal{H} as premises, and a sentence in L as conclusion, we can eliminate the premises from \mathcal{H} from the proof. The Henkin construction For every truth assignment h assinging TRUE to all formulas in \mathcal{H} , there is a first-order structure \mathfrak{M}_h such that \mathfrak{M}_h makes true all first-order sentence that hmakes true.

Assume that $\mathcal{T} \models S$.

- **1** Hence, there is no model of $T \cup \{\neg S\}$.
- Objective By the Henkin construction, there is no assignment h satisfying T ∪ H ∪ {¬S}.
- **③** Hence, *S* is a tautological consequence of $T \cup H$.
- **9** By completeness of propositional logic, $T \cup H \vdash S$.
- **9** By the elimination theorem, $T \vdash S$.

For each well-formed formula P of L with exactly one free variable, add a new constant c_P , P's witnessing constant. E.g. for $Small(x) \land Cube(x)$, we introduce $c_{Small(x) \land Cube(x)}$. This process has to be iterated:

 $L = L_0 \subseteq L_1 \subseteq L_2 \subseteq \dots$

E.g. for $Smaller(y, c_{Small}(x) \land Cube(x))$, we introduce $c_{Smaller}(y, c_{Small}(x) \land Cube(x))$. Each witnessing constant appears in some L_n for the first time. n is called its *date of birth*.

$$\exists x \ P(x) \to P(c_{P(x)})$$

intuitve idea:

if there is something that satisfies P(x), then the object named by $c_{P(x)}$ provides an example

H1
$$\exists x \ P(x) \rightarrow P(c_{P(x)})$$
 (witnessing axioms, $\triangleq \exists Elim$)H2 $P(c) \rightarrow \exists x \ P(x)$ ($\triangleq \exists Intro$)H3 $\neg \forall x \ P(x) \leftrightarrow \exists x \ \neg P(x)$ (reduces $\forall to \exists$)H4 $c = c$ ($\triangleq =Intro$)H5 $(P(c) \land c = d) \rightarrow P(d)$ ($\triangleq =Elim$)

æ

If c_P and c_Q are two witnessing constants and the date of birth of c_P is less than or equal to that of c_Q , then c_Q does not appear in the witnessing axiom of c_P .

For any proof with sentences in L or from \mathcal{H} as premises, and a sentence in L as conclusion, we can eliminate the premises from \mathcal{H} from the proof.

Deduction Theorem If $\mathcal{T} \cup \{P\} \vdash Q$, then $\mathcal{T} \vdash P \rightarrow Q$. Lemma 1 If $\mathcal{T} \vdash P \rightarrow Q$ and $\mathcal{T} \vdash \neg P \rightarrow Q$, then $\mathcal{T} \vdash Q$. Lemma 2 If $\mathcal{T} \vdash (P \rightarrow Q) \rightarrow R$, then $\mathcal{T} \vdash \neg P \rightarrow R$, and $\mathcal{T} \vdash Q \rightarrow R$.

Lemma 3 Let \mathcal{T} be a set of sentences of some first-order language L, and Q be a sentence. Let P(x) be a formula of L with one free variable and which does not contain c. If $\mathcal{T} \vdash P(c) \rightarrow Q$ and c does not appear in \mathcal{T} or Q, then $\mathcal{T} \vdash \exists x \ P(x) \rightarrow Q$.

Lemma 4 Let \mathcal{T} be a set of sentences of some first-order language L, and Q be a sentence of L. Let P(x) be a formula of L with one free variable and which does not contain c. If

 $\mathcal{T} \cup \{\exists x \ P(x) \rightarrow P(c)\} \vdash Q \text{ and } c \text{ does not appear in } \mathcal{T} \text{ or } Q,$ then $\mathcal{T} \vdash Q$. Lemma 5 Let \mathcal{T} be a set of first-order sentences, let P(x) be a formula with one free variable, and let c and d be constant symbols. The following are provable in \mathcal{F} :

$$P(c)
ightarrow \exists x \ P(x) \
eg V(x)
ightarrow \exists x \
eg P(x)
ightarrow \exists x \
eg P(x)
ightarrow E(x)
ightarrow c = c \ (P(c) \land c = d)
ightarrow P(d)$$

For any proof with sentences in L or from \mathcal{H} as premises, and a sentence in L as conclusion, we can eliminate the premises from \mathcal{H} from the proof.

For every truth assignment h assinging TRUE to all formulas in \mathcal{H} , there is a first-order structure \mathfrak{M}_h such that \mathfrak{M}_h makes true all first-order sentence that h makes true.

Given h, construct \mathfrak{M} as follows:

- $D^{\mathfrak{M}}$: set of constant symbols in L_H
- $\mathfrak{M}(c)$ is just c

•
$$\mathfrak{M}(R)$$
 is $\{\langle c_1, \ldots c_n \rangle \mid h(R(c_1, \ldots c_n)) = \text{TRUE}\}\$
 $c \equiv d$ if and only if $h(c = d) = \text{TRUE}$

$$\mathfrak{M}_h = \mathfrak{M}/\equiv$$

For any sentence S of L_H , $\mathfrak{M}_h \models S$ iff h(S) = true.

Theorem (Compactness theorem) Let \mathcal{T} be a set of first-order sentences in a first-order language L. If every finite subset of \mathcal{T} is first order-satisfiable, then \mathcal{T} itself is first-order satisfiable.

Let L be the language of Peano arithmetic. Then there exists a first-order structure ${\mathfrak M}$ such that

- ${f 0}\ {\mathfrak M}$ contains all the natural numbers in its domain,
- M also contains elements greater than all the natural numbers, but
- If makes true exactly the same sentences of L as are true about the natural numbers.

- 17.4-17.16, 19.1-19.23
- deadline: 5.1.2010

æ

=

-