Ontologies

Till Mossakowski

WiSe 2009/10
Ontologies

- Ontology in philosophy:
 philosophical study of the nature of being
- Ontology in computer science:
 - conceptualisation of a domain
 - hierarchical taxonomy
 - explaining relations between concepts
 - shared within one or among several communities
 - applications
 - classification: knowledge representation and organization
 - application: information storing, sharing, retrieval and reuse
This is not an ontology:

- Pictures
 - Home
 - Work
 - Vacations
 - Italy
 - Europe

Classifications focus on:
- access, based on pre-determined criteria (encoded by syntactic keys)

Precision is here gained by focusing on:
- Meaning of terms (e.g. by ensuring the correct interpretation of the keys)
- Nature and structure of a domain (e.g. by clarifying the motivations for the taxonomy)
Upper ontologies and domain ontologies

- Upper ontology: very general and abstract concepts
 - e.g. DOLCE, BFO, SUMO, Cyc, ...
- Domain ontology: precise description of concepts from a small domain
 - e.g. Snowmed, NCI, GALEN, JRAO (medicine, anatomy, drugs), Dublin Core (documents and publishing), GUM (linguistics)
- both are complementary
- level in between: Core ontologies
Figure 2: Taxonomy of DOLCE basic categories.
Domain ontologies: NCI, GALEN, JRAO
Applications: semantic web

- Wikipedia has many lists, like “List of metropolitan areas in Spain by population”
- Semantic web technology can generate these automatically
- Semantic Mediawiki
Ontology languages

- description logics (efficiently decidable fragments of first-order logic)
 - Web Ontology Language OWL
- first-order logics
 - Knowledge Interchage Format (KIF), Common Logic (CL): untyped
 - Common Algebraic Specification Language (CASL): typed