
Logik für Informatiker
Logic for computer scientists

Ontologies: Description Logics

Till Mossakowski

WiSe 2009/10

Till Mossakowski Logic

Ontology languages

description logics (efficiently decidable fragments of first-order
logic)

used for domain ontologies
standardised in web ontology language OWL

first-order logics

used for upper ontologies
standardised in Common Logic, CASL

Till Mossakowski Logic

Semantic networks

used for representation of and reasoning about knowledge

e.g. KL-ONE: reasoning about concepts, subclassing and their
relations

Till Mossakowski Logic

Description Logics

drawback of semantic networks:

often, meaning of arrows is not precisely defined
sometimes, full first-order logic is used ⇒ undecidable

Description Logics:

completely formal syntax and semantics,
decidable fragments of first-order logic
efficient reasoning tools available (Pellet, Fact++, Racer)

Till Mossakowski Logic

Description Logics: Concepts

Concepts (in OWL: classes) (Mother, Father, etc.)

Subsumption C v D (read: “C is subsumed by D”) means
that each C is a D

Woman v Person
Father v Male
. . .

Till Mossakowski Logic

Description Logics: Roles

To relate concepts, we need roles (in OWL: properties) like
’hasChild’.

Parent v ∃hasChild.> (>: top concept, includes everything. In
OWL: Thing)
Parent v ∃hasChild.Child
Child v ∃hasParent.> (Bad, because hasChild is converse to
hasParent which is not expressed here)
Child v ∃hasChild−.> (Better formalization)
hasParent ≡ hasChild− (Alternative, not possible in every DL)
Grandfather ≡ (∃hasChild.∃hasChild.>) uMale
(C ≡ D is an abbreviation for C v D and D v C)
Grandfather ≡ (∃hasChild.Parent) u Father
(Alternative formalization)

Till Mossakowski Logic

Description Logics: Signatures

A DL-signature Σ = (C,R, I) consists of

a set C of concept names,

a set R of role names,

a set I of individual names,

Till Mossakowski Logic

Description Logics: Concepts

For a signature Σ = (C,R, I) the set of ALC-concepts over Σ is
defined by the following grammar:

(Hets) Manchester syntax
C ::= A for A ∈ C a concept name

| > Thing
| ⊥ Nothing
| ¬C not C
| C u C C and C
| C t C C or C
| ∃R.C for R ∈ R R some C
| ∀R.C for R ∈ R R only C

ALC stands for “attributive language with complement”

Till Mossakowski Logic

Description Logic: Sentences

The set of ALC-Sentences over Σ (Sen(Σ)) is defined as

C v D, where C and D are ALC-concepts over Σ.

Class: C SubclassOf: D

a : C , where a ∈ I and C is a ALC-concept over Σ.

Individual: a Types: C

R(a1, a2), where R ∈ R and a1, a2 ∈ I.
Individual: a1 Facts: R a2

Till Mossakowski Logic

TBoxes and ABoxes

Description logics axioms are generally split up in two sets:

TBox: subsumptions and definitions involving concepts and
roles

e.g. Woman v Person

ABox: individuals and their membership in concepts and roles

e.g. john : Father, hasChild(john, harry)

Till Mossakowski Logic

Description Logic: Models

Given Σ = (C,R, I), a Σ-model is of form I = (∆I , ·I), where

∆I is a non-empty set

AI ⊆ ∆I for each A ∈ C

RI ⊆ ∆I ×∆I for each R ∈ R

aI ∈ ∆I for each a ∈ I

Till Mossakowski Logic

Description Logic: semantics of concepts

We can extend ·I to all concepts as follows:
>I = ∆I

⊥I = ∅
(¬C)I = ∆I \ CI

(C u D)I = CI ∩ DI

(C t D)I = CI ∪ DI

(∃R.C)I = {x ∈ ∆I |∃y ∈ ∆I .(x , y) ∈ RI , y ∈ CI}
(∀R.C)I = {x ∈ ∆I |∀y ∈ ∆I .(x , y) ∈ RI ⇒ y ∈ CI}

Till Mossakowski Logic

Description Logic: Satisfaction of sentences in a model

I |= C v D iff CI ⊆ DI .
I |= a : C iff aI ∈ CI .
I |= R(a1, a2) iff (aI1 , a

I
2) ∈ RI .

Till Mossakowski Logic

Description Logic: Logical Consequence

For Γ ⊆ Sen(Σ), φ ∈ Sen(Σ), φ is a logical consequence of Γ
(written: Γ |=Σ φ), if for each Σ-model I

I |= Γ implies I |= φ.

If Γ contains only subsumptions, Γ is written as T (TBox).
If Γ contains only sentences a : C and R(a1, a2), Γ is written as A
(ABox).

Till Mossakowski Logic

Example: a pizza ontology

VegetarianPizza v Pizza
MagheritaPizza v Pizza
TomatoTopping v VegetableTopping
MozzarellaTopping v CheeseTopping
VegetarianPizza ≡ ∀ hasTopping (VegetableTopping t CheeseTopping)
MagheritaPizza v ∃ hasTopping MozarellaTopping u

∃ hasTopping TomatoTopping u
∀ hasTopping

(MozzarellaTopping t TomatoTopping)

Logical consequence: MagheritaPizza v VegetarianPizza

Till Mossakowski Logic

TBox reasoning

Usually, satisfiability of concepts is tested. A concept C is
satisfiable in a TBox iff there is a model of the TBox that leads to
a non-empty interpretation of C .

Satisfiability and subsumption are inter-reducible:
T |= C v D iff T |= unsat(C u ¬D)
T |= unsat(C) iff T |= C v ⊥

Complexity of TBox reasoning for ALC:

general TBoxes: EXPTIME complete

empty or acyclic TBoxes: PSPACE complete1.

Acyclic TBoxes contain only definitions A ≡ C , such that concept
dependency is acyclic (A depends on all concepts occuring in C).

1We know that P ⊆ NP ⊆ PSPACE ⊆ EXPTIME and that P ⊂ EXPTIME,
so it is possible that PSPACE ⊂ EXPTIME.

Till Mossakowski Logic

ABox-Reasoning

For example: Instance checking:

T ,A |= a : C iff T ∪ A ∪ { not a : C} inconsistent

Complexity of deciding ABox consistency may be harder than
TBox reasoning, but it usually is not.
For ALC it is PSPACE/EXPTIME complete.

Till Mossakowski Logic

