Logik für Informatiker Logic for computer scientists

Ontologies: Description Logics

Till Mossakowski

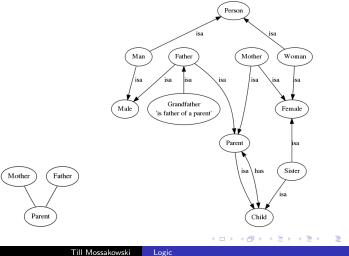
WiSe 2009/10

Till Mossakowski Logic

- description logics (efficiently decidable fragments of first-order logic)
 - used for domain ontologies
 - standardised in web ontology language OWL
- first-order logics
 - used for upper ontologies
 - standardised in Common Logic, CASL

Semantic networks

- used for representation of and reasoning about knowledge
- e.g. KL-ONE: reasoning about concepts, subclassing and their relations



- drawback of semantic networks:
 - often, meaning of arrows is not precisely defined
 - $\bullet\,$ sometimes, full first-order logic is used \Rightarrow undecidable
- Description Logics:
 - completely formal syntax and semantics,
 - decidable fragments of first-order logic
 - efficient reasoning tools available (Pellet, Fact++, Racer)

- Concepts (in OWL: classes) (Mother, Father, etc.)
- Subsumption C ⊑ D (read: "C is subsumed by D") means that each C is a D
 - Woman 🗆 Person
 - Father \sqsubseteq Male
 - . . .

- To relate concepts, we need *roles* (in OWL: *properties*) like 'hasChild'.
 - Parent ⊑ ∃hasChild.⊤ (⊤: top concept, includes everything. In OWL: Thing)
 - $Parent \sqsubseteq \exists hasChild.Child$
 - *Child* ⊑ ∃*hasParent*.⊤ (Bad, because *hasChild* is converse to *hasParent* which is not expressed here)
 - *Child* $\sqsubseteq \exists hasChild^-$. \top (Better formalization)
 - $hasParent \equiv hasChild^-$ (Alternative, not possible in every DL)
 - Grandfather ≡ (∃hasChild.∃hasChild.⊤) ⊓ Male
 (C ≡ D is an abbreviation for C ⊑ D and D ⊑ C)
 - Grandfather ≡ (∃hasChild.Parent) ⊓ Father (Alternative formalization)

- A DL-signature $\boldsymbol{\Sigma} = (\boldsymbol{\mathsf{C}}, \boldsymbol{\mathsf{R}}, \boldsymbol{\mathsf{I}})$ consists of
 - a set **C** of concept names,
 - a set R of role names,
 - a set I of individual names,

For a signature $\Sigma = (\mathbf{C}, \mathbf{R}, \mathbf{I})$ the set of \mathcal{ALC} -concepts over Σ is defined by the following grammar:

(Hets) Manchester syntax

		()
<i>C</i> ::=	A for $A \in \mathbf{C}$	a concept name
	T	Thing
		Nothing
	¬ <i>C</i>	not C
	<i>C</i> ⊓ <i>C</i>	C and C
	<i>C</i> \sqcup <i>C</i>	C or C
	$\exists R.C$ for $R \in \mathbf{R}$	R some C
	$\forall R.C \text{ for } R \in \mathbf{R}$	R only C

 \mathcal{ALC} stands for "attributive language with complement"

The set of \mathcal{ALC} -Sentences over Σ (Sen(Σ)) is defined as

• $C \sqsubseteq D$, where *C* and *D* are \mathcal{ALC} -concepts over Σ .

Class: C SubclassOf: D

- a: C, where a ∈ I and C is a ALC-concept over Σ. Individual: a Types: C
- $R(a_1, a_2)$, where $R \in \mathbf{R}$ and $a_1, a_2 \in \mathbf{I}$. Individual: a1 Facts: R a2

Description logics axioms are generally split up in two sets:

- *TBox*: subsumptions and definitions involving concepts and roles
 - e.g. $Woman \sqsubseteq Person$
- ABox: individuals and their membership in concepts and roles
 - e.g. john : Father, hasChild(john, harry)

Given $\Sigma = (\mathbf{C}, \mathbf{R}, \mathbf{I})$, a Σ -model is of form $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where

- $\Delta^{\mathcal{I}}$ is a non-empty set
- $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each $A \in \mathbf{C}$
- $R^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Delta^\mathcal{I}$ for each $R \in \mathbf{R}$
- $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each $a \in \mathbf{I}$

We can extend $\cdot^{\mathcal{I}}$ to all concepts as follows: $T^{\mathcal{I}} = \Delta^{\mathcal{I}}$ $\perp^{\mathcal{I}} = \emptyset$ $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$ $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$ $(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$ $(\exists R.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \exists y \in \Delta^{\mathcal{I}}.(x, y) \in R^{\mathcal{I}}, y \in C^{\mathcal{I}}\}$ $(\forall R.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \forall y \in \Delta^{\mathcal{I}}.(x, y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$

Description Logic: Satisfaction of sentences in a model

$$\begin{split} \mathcal{I} &\models C \sqsubseteq D & \text{iff} \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}. \\ \mathcal{I} &\models a : C & \text{iff} \quad a^{\mathcal{I}} \in C^{\mathcal{I}}. \\ \mathcal{I} &\models R(a_1, a_2) & \text{iff} \quad (a_1^{\mathcal{I}}, a_2^{\mathcal{I}}) \in R^{\mathcal{I}}. \end{split}$$

For $\Gamma \subseteq \text{Sen}(\Sigma), \phi \in \text{Sen}(\Sigma)$, ϕ is a *logical consequence* of Γ (written: $\Gamma \models_{\Sigma} \phi$), if for each Σ -model \mathcal{I}

 $\mathcal{I} \models \Gamma$ implies $\mathcal{I} \models \phi$.

If Γ contains only subsumptions, Γ is written as \mathcal{T} (TBox). If Γ contains only sentences a : C and $R(a_1, a_2)$, Γ is written as \mathcal{A} (ABox).

- VegetarianPizza MagheritaPizza TomatoTopping MozzarellaTopping VegetarianPizza MagheritaPizza
- ⊑ Pizza
- ⊑ Pizza
- \Box VegetableTopping
- ⊆ CheeseTopping
- $\equiv \forall$ hasTopping (VegetableTopping \sqcup CheeseTopping)
- \sqsubseteq \exists hasTopping MozarellaTopping \sqcap
 - ∃ hasTopping TomatoTopping ⊓
 - \forall hasTopping

(MozzarellaTopping ⊔ TomatoTopping)

Logical consequence: MagheritaPizza 🗆 VegetarianPizza

Usually, satisfiability of concepts is tested. A concept C is *satisfiable* in a TBox iff there is a model of the TBox that leads to a non-empty interpretation of C.

Satisfiability and subsumption are inter-reducible: $\mathcal{T} \models C \sqsubseteq D$ iff $\mathcal{T} \models unsat(C \sqcap \neg D)$ $\mathcal{T} \models unsat(C)$ iff $\mathcal{T} \models C \sqsubseteq \bot$

Complexity of TBox reasoning for \mathcal{ALC} :

- general TBoxes: EXPTIME complete
- empty or acyclic TBoxes: PSPACE complete¹.

Acyclic TBoxes contain only definitions $A \equiv C$, such that concept dependency is acyclic (A depends on all concepts occuring in C).

¹We know that $P \subseteq NP \subseteq PSPACE \subseteq EXPTIME$ and that $P \subset EXPTIME$, so it is possible that PSPACE $\subset EXPTIME$.

For example: Instance checking:

 $\mathcal{T}, \mathcal{A} \models a : C \text{ iff } \mathcal{T} \cup \mathcal{A} \cup \{ \text{ not } a : C \} \text{ inconsistent}$

Complexity of deciding ABox consistency may be harder than TBox reasoning, but it usually is not. For \mathcal{ALC} it is PSPACE/EXPTIME complete.