Logik für Informatiker Logic for computer scientists

Description Logics and First-Order Logic; Outlook

Till Mossakowski

WiSe 2009/10

Till Mossakowski Logic

- A DL-signature $\boldsymbol{\Sigma} = (\boldsymbol{\mathsf{C}},\boldsymbol{\mathsf{R}},\boldsymbol{\mathsf{I}})$ consists of
 - a set **C** of concept names,
 - a set R of role names,
 - a set I of individual names,

For a signature $\Sigma = (\mathbf{C}, \mathbf{R}, \mathbf{I})$ the set of \mathcal{ALC} -concepts over Σ is defined by the following grammar:

(Hets) Manchester syntax

		()
<i>C</i> ::=	A for $A \in \mathbf{C}$	a concept name
	T	Thing
		Nothing
	¬ <i>C</i>	not C
	<i>C</i> ⊓ <i>C</i>	C and C
	<i>C</i> \sqcup <i>C</i>	C or C
	$\exists R.C$ for $R \in \mathbf{R}$	R some C
	$\forall R.C \text{ for } R \in \mathbf{R}$	R only C

 \mathcal{ALC} stands for "attributive language with complement"

The set of \mathcal{ALC} -Sentences over Σ (Sen(Σ)) is defined as

• $C \sqsubseteq D$, where *C* and *D* are \mathcal{ALC} -concepts over Σ .

Class: C SubclassOf: D

- a: C, where a ∈ I and C is a ALC-concept over Σ. Individual: a Types: C
- $R(a_1, a_2)$, where $R \in \mathbf{R}$ and $a_1, a_2 \in \mathbf{I}$. Individual: a1 Facts: R a2

Given $\Sigma = (\mathbf{C}, \mathbf{R}, \mathbf{I})$, a Σ -model is of form $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where

- $\Delta^{\mathcal{I}}$ is a non-empty set
- $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each $A \in \mathbf{C}$
- $R^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Delta^\mathcal{I}$ for each $R \in \mathbf{R}$
- $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each $a \in \mathbf{I}$

We can extend $\cdot^{\mathcal{I}}$ to all concepts as follows: $T^{\mathcal{I}} = \Delta^{\mathcal{I}}$ $\perp^{\mathcal{I}} = \emptyset$ $(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$ $(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$ $(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$ $(\exists R.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \exists y \in \Delta^{\mathcal{I}}.(x, y) \in R^{\mathcal{I}}, y \in C^{\mathcal{I}}\}$ $(\forall R.C)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} | \forall y \in \Delta^{\mathcal{I}}.(x, y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$

Description Logic: Satisfaction of sentences in a model

$$\begin{split} \mathcal{I} &\models C \sqsubseteq D & \text{iff} \quad C^{\mathcal{I}} \subseteq D^{\mathcal{I}}. \\ \mathcal{I} &\models a : C & \text{iff} \quad a^{\mathcal{I}} \in C^{\mathcal{I}}. \\ \mathcal{I} &\models R(a_1, a_2) & \text{iff} \quad (a_1^{\mathcal{I}}, a_2^{\mathcal{I}}) \in R^{\mathcal{I}}. \end{split}$$

$$\phi((\mathbf{C}, \mathbf{R}, \mathbf{I})) = (F, P) \text{ with}$$

• $S = \{\text{Thing}\} \text{ (one sort = single-sorted)}$
• $F = \{a : \text{Thing} | a \in \mathcal{I}\} \text{ (constants)}$
• $P = \{A : \text{Thing} | A \in \mathbf{C}\} \cup \{R : \text{Thing} \times \text{Thing} | R \in \mathbf{R}\}$
(predicate symbols)

(本部) (本語) (本語)

æ

•
$$\alpha_x(A) = A(x: \text{Thing})$$

•
$$\alpha_x(\neg C) = \neg \alpha_x(C)$$

•
$$\alpha_x(C \sqcap D) = \alpha_x(C) \land \alpha_x(D)$$

•
$$\alpha_x(\mathcal{C} \sqcup D) = \alpha_x(\mathcal{C}) \lor \alpha_x(D)$$

•
$$\alpha_x(\exists R.C) = \exists y : \text{Thing.}(R(x, y) \land \alpha_y(C))$$

•
$$\alpha_x(\forall R.C) = \forall y : \text{Thing.}(R(x, y) \to \alpha_y(C))$$

Sentence translation

•
$$\alpha_{\Sigma}(C \sqsubseteq D) = \forall x : \text{Thing.} (\alpha_{x}(C) \rightarrow \alpha_{x}(D))$$

•
$$\alpha_{\Sigma}(a:C) = \alpha_{X}(C)[a/x]^{1}$$

•
$$\alpha_{\Sigma}(R(a,b)) = R(a,b)$$

Model translation (FOL-models are translated to ALC-models!)

• For
$$M' \in \text{Mod}^{FOL}(\phi \Sigma)$$
 define $\beta_{\Sigma}(M') := (\Delta, \cdot')$ with $\Delta = M'_{\text{Thing}}$ and $A' = M'_A, a' = M'_a, R' = M'_R$.

¹Replace x by a.

Translating ALC to FOL: Correctness

Theorem 1: $C^{\mathcal{I}} = \{ m \in M'_{\text{Thing}} | M' + \{ x \mapsto m \} \models \alpha_x(C) \}$ **Proof:** By Induction over the structure of *C*.

•
$$A^{\mathcal{I}} = M'_{A} = \left\{ m \in M'_{\text{Thing}} | M' + \{ x \mapsto m \} \models A(x) \right\}$$

• $(\neg C)^{\mathcal{I}} = \Delta \setminus C^{\mathcal{I}}$
 $= {}^{I.H.} \Delta \setminus \{ m \in M'_{\text{Thing}} | M' + \{ x \mapsto m \} \models \alpha_{x}(C) \}$
 $= \{ m \in M'_{\text{Thing}} | M' + \{ x \mapsto m \} \models \neg \alpha_{x}(C) \}$

Theorem 2: (Satisfaction condition)

$$\beta(M) \models \varphi \text{ iff } M \models \alpha(\varphi)$$

Theorem 3: (Logical consequence coincides)

$$\Gamma \models \varphi$$
 (in \mathcal{ALC}) iff $\alpha(\Gamma) \models \alpha(\varphi)$ (in FOL)

Outlook

→ □ → → 三 → → 三 →

æ

- many-sorted logic (variables, constants, predicates and functions have types)
 E.g.: ∀n : Nat ∀l : List head(cons(n, l)) = n
- partial function logic: D(f(x)) ("f(x) is defined")
- higher-order logic: $\forall f : s \to t ..., \forall p : Pred(t) ...$ $\forall u \forall v (Path(u, v) \leftrightarrow$ $\forall R \ \{ [\forall x \forall y \forall z (R(x, y) \land R(y, z) \to R(x, z))$ $\land \forall x \forall y (DirectWay(x, y) \to R(x, y))]$ $\to R(u, v) \})$

- many-sorted logic (variables, constants, predicates and functions have types)
 E.g.: \(\forall n : Nat \(\forall l : List head(cons(n, l))) = n\)
- partial function logic: D(f(x)) ("f(x) is defined")
- higher-order logic: $\forall f : s \to t ..., \forall p : Pred(t) ...$ $\forall u \forall v (Path(u, v) \leftrightarrow$ $\forall R \quad \{ [\forall x \forall y \forall z (R(x, y) \land R(y, z) \to R(x, z)) \land \forall x \forall y (DirectWay(x, y) \to R(x, y))] \land \forall x \forall y (DirectWay(x, y) \to R(x, y))]$ $\rightarrow R(u, v) \})$

- many-sorted logic (variables, constants, predicates and functions have types)
 E.g.: \(\forall n : Nat \(\forall l : List head(cons(n, l))) = n\)
- partial function logic: D(f(x)) ("f(x) is defined")
- higher-order logic: $\forall f : s \to t ..., \forall p : Pred(t) ...$ $\forall u \forall v (Path(u, v) \leftrightarrow$ $\forall R \quad \{ [\forall x \forall y \forall z (R(x, y) \land R(y, z) \to R(x, z)) \land \forall x \forall y (DirectWay(x, y) \to R(x, y))] \land \forall x \forall y (DirectWay(x, y) \to R(x, y))]$ $\rightarrow R(u, v) \})$

modal logic:
□ P ("necessarily P") and ◇P ("possibly P")
Other readings of □P:
It ought to be that P
It is known that P
It is provable that P
Always P (temporal logic)

temporal logic: □P ("always in the future, P"), ◇P
 ("sometimes in the future, P"), and P ("in the next step, P")
 e.g. □bank_account > 0 (very unrealistic)

temporal logic of actions (TLA): □[state' = f(state)]_{state}
 read: always in the future, either the state does not change, or the next state is f applied to the previous state

dynamic logic: [p]P ("after every run of program p, P holds") P ("after some run of program p, P holds")

- temporal logic of actions (TLA): □[state' = f(state)]_{state}
 read: always in the future, either the state does not change, or the next state is f applied to the previous state
- dynamic logic:
 [p]P ("after every run of program p, P holds")
 P ("after some run of program p, P holds")

- agent logics, e.g. ATL: agents A and B have the possibility to make a telephone call, if they cooperate
- *logics for security*, e.g. ABLP: *A controls P* ("agent *A* has the permission to perform action *P*")

- agent logics, e.g. ATL: agents A and B have the possibility to make a telephone call, if they cooperate
- *logics for security*, e.g. ABLP: *A controls P* ("agent *A* has the permission to perform action *P*")

```
    description logics, e.g. ALC:

Elephant = Mammal □∃bodypart.Trunk □∀color.Grey

abbreviates

∀x[Elephant(x) ↔

(Mammal(x) ∧ ∃y(bodypart(x, y) ∧ Trunk(y))

∧∀z(color(x, z) → Grey(z)))]
```

• three-valued logics: truth values are true, false, and undefined

 object constraint logic (OCL) (for UML — the unified modeling language)

-- Managers get a higher salary than employees inv Branch2:

self.employee->forall(e | e <> self.manager implies self.manager.salary > e.salary)

- three-valued logics: truth values are true, false, and undefined
- object constraint logic (OCL) (for UML — the unified modeling language)

-- Managers get a higher salary than employees inv Branch2:

self.employee->forall(e | e <> self.manager implies self.manager.salary > e.salary) • *fuzzy logic*: truth values in the interval [0,1] correspond to different degrees of truth (e.g. Peter is quite tall, is tall, is very tall)

paraconsistent logics for databases, local inconsistency is o.k. and should not lead to global inconsistency

- non-monotonic logics
 new facts make previous arguments invalid, e.g
 Bird(x) ⊢ CanFly(x)
 {Bird(x), Penguin(x)} ∀ CanFly(x)
- *linear logic* (resource-bounded logic) $A \otimes A \vdash B$

(we can prove B when we are allowed to use A twice)

paraconsistent logics

for databases, local inconsistency is o.k. and should not lead to global inconsistency

non-monotonic logics
 new facts make previous arguments invalid, e.g.
 Bird(x) ⊢ CanFly(x)
 {Bird(x), Penguin(x)} ∀ CanFly(x)

• *linear logic* (resource-bounded logic) $A \otimes A \vdash B$ (we can prove *B* when we are allowed to use *A* twice)

paraconsistent logics

for databases, local inconsistency is o.k. and should not lead to global inconsistency $% \left({{{\left[{{{\left[{{{c_{1}}} \right]}} \right]}_{i}}}_{i}}} \right)$

- non-monotonic logics
 new facts make previous arguments invalid, e.g.
 Bird(x) ⊢ CanFly(x)
 {Bird(x), Penguin(x)} ∀ CanFly(x)
- linear logic (resource-bounded logic) $A \otimes A \vdash B$

(we can prove B when we are allowed to use A twice)

- different aspects of the complex world / of software systems
- one "big" logic covering everything would be too clumsy
- good news: most of the logics are based on propositional or first-order logics
- most of the logics have central notions in common

- A notion of *language* (or vocabulary of symbols, or signature)
- A syntax for *sentences*
- A notion of *model*
- A notion of satisfaction, i.e. M ⊨ P (read: "M satisfies P", or "P holds in M")
- A calculus $\mathcal{T} \vdash P$ (read "P is provable from \mathcal{T})

• A notion of *language* (or vocabulary of symbols, or signature)

- A syntax for *sentences*
- A notion of *model*
- A notion of satisfaction, i.e. M ⊨ P (read: "M satisfies P", or "P holds in M")
- A calculus $\mathcal{T} \vdash P$ (read "P is provable from \mathcal{T})

- A notion of *language* (or vocabulary of symbols, or signature)
- A syntax for *sentences*
- A notion of *model*
- A notion of satisfaction, i.e. M ⊨ P (read: "M satisfies P", or "P holds in M")
- A calculus $\mathcal{T} \vdash P$ (read "P is provable from \mathcal{T})

- A notion of *language* (or vocabulary of symbols, or signature)
- A syntax for *sentences*
- A notion of *model*
- A notion of satisfaction, i.e. M ⊨ P (read: "M satisfies P", or "P holds in M")
- A calculus $\mathcal{T} \vdash P$ (read "P is provable from \mathcal{T})

- A notion of *language* (or vocabulary of symbols, or signature)
- A syntax for *sentences*
- A notion of *model*
- A notion of satisfaction, i.e. M ⊨ P (read: "M satisfies P", or "P holds in M")
- A calculus $\mathcal{T} \vdash P$ (read "P is provable from \mathcal{T})

- A notion of *language* (or vocabulary of symbols, or signature)
- A syntax for *sentences*
- A notion of model
- A notion of satisfaction, i.e. M ⊨ P (read: "M satisfies P", or "P holds in M")
- A calculus $\mathcal{T} \vdash P$ (read "P is provable from \mathcal{T})

- logical consequence: $\mathcal{T} \models P$ iff for all models M with $M \models \mathcal{T}$, also $M \models P$
- *logical validity*: $\models P$ iff for all models M, also $M \models P$
- satisfiability: T is satisfiable iff there is some M with M ⊨ T
- formal consistency: \mathcal{T} is formally consistent iff $\mathcal{T} \not\vdash P$ for some P
- soundness of the calculus: $T \vdash P$ implies $T \models P$
- (sometimes) *completeness*: $T \models P$ implies $T \vdash P$

- logical consequence: $\mathcal{T} \models P$ iff for all models M with $M \models \mathcal{T}$, also $M \models P$
- *logical validity*: $\models P$ iff for all models M, also $M \models P$
- satisfiability: \mathcal{T} is satisfiable iff there is some M with $M \models \mathcal{T}$
- formal consistency: \mathcal{T} is formally consistent iff $\mathcal{T} \not\vdash P$ for some P
- soundness of the calculus: $T \vdash P$ implies $T \models P$
- (sometimes) *completeness*: $T \models P$ implies $T \vdash P$

• logical consequence: $\mathcal{T} \models P$ iff for all models M with $M \models \mathcal{T}$, also $M \models P$

- *logical validity*: $\models P$ iff for all models M, also $M \models P$
- satisfiability: \mathcal{T} is satisfiable iff there is some M with $M \models \mathcal{T}$
- formal consistency: \mathcal{T} is formally consistent iff $\mathcal{T} \not\vdash P$ for some P
- soundness of the calculus: $\mathcal{T} \vdash P$ implies $\mathcal{T} \models P$
- (sometimes) *completeness*: $\mathcal{T} \models P$ implies $\mathcal{T} \vdash P$

• logical consequence: $\mathcal{T} \models P$ iff for all models M with $M \models \mathcal{T}$, also $M \models P$

- *logical validity*: $\models P$ iff for all models M, also $M \models P$
- satisfiability: \mathcal{T} is satisfiable iff there is some M with $M \models \mathcal{T}$
- formal consistency: \mathcal{T} is formally consistent iff $\mathcal{T} \not\vdash P$ for some P
- soundness of the calculus: $\mathcal{T} \vdash P$ implies $\mathcal{T} \models P$
- (sometimes) *completeness*: $\mathcal{T} \models P$ implies $\mathcal{T} \vdash P$

• logical consequence: $\mathcal{T} \models P$ iff for all models M with $M \models \mathcal{T}$, also $M \models P$

- *logical validity*: $\models P$ iff for all models M, also $M \models P$
- satisfiability: T is satisfiable iff there is some M with M ⊨ T
- formal consistency: \mathcal{T} is formally consistent iff $\mathcal{T} \not\vdash P$ for some P
- soundness of the calculus: $\mathcal{T} \vdash P$ implies $\mathcal{T} \models P$
- (sometimes) *completeness*: $\mathcal{T} \models P$ implies $\mathcal{T} \vdash P$

- logical consequence: $\mathcal{T} \models P$ iff for all models M with $M \models \mathcal{T}$, also $M \models P$
- *logical validity*: $\models P$ iff for all models M, also $M \models P$
- satisfiability: T is satisfiable iff there is some M with M ⊨ T
- formal consistency: \mathcal{T} is formally consistent iff $\mathcal{T} \not\vdash P$ for some P
- soundness of the calculus: $T \vdash P$ implies $T \models P$
- (sometimes) *completeness*: $\mathcal{T} \models P$ implies $\mathcal{T} \vdash P$

- The central notions common to all logics can be axiomatized
- Based on this meta-notion, multi-logic systems can be defined
- In Bremen, we also develop multi-logic tools

CASL for software specification

Please (anonymously) fill out the questionaire and return it to me! (either now, or MZH 6. Ebene, Postfach 99)